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Araf kinase antagonizes Nodal-Smad2 activity in
mesendoderm development by directly
phosphorylating the Smad2 linker region
Xingfeng Liu1,*, Cong Xiong1,*, Shunji Jia1, Yu Zhang1, Ye-Guang Chen1, Qiang Wang2 & Anming Meng1,2

Smad2/3-mediated transforming growth factor b signalling and the Ras-Raf-Mek-Erk cascade

have important roles in stem cell and development and tissue homeostasis. However, it

remains unknown whether Raf kinases directly crosstalk with Smad2/3 signalling and how

this would regulate embryonic development. Here we show that Araf antagonizes mesen-

doderm induction and patterning activity of Nodal/Smad2 signals in vertebrate embryos by

directly inhibiting Smad2 signalling. Knockdown of araf in zebrafish embryos leads to an

increase of activated Smad2 with a decrease in linker phosphorylation; consequently, the

embryos have excess mesendoderm precursors and are dorsalized. Mechanistically, Araf

physically binds to and phosphorylates Smad2 in the linker region with S253 being

indispensable in a Mek/Erk-independent manner, thereby attenuating Smad2 signalling by

accelerating degradation of activated Smad2. Our findings open avenues for investigating the

potential significance of Raf regulation of transforming growth factor b signalling in versatile

biological and pathological processes in the future.
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M
embers of the transforming growth factor b (TGF-b)
superfamily have versatile roles in development, stem
cell self-renewal and differentiation, and diseases1,2.

Loss-of-function studies in mice and zebrafish demonstrate that
Nodal proteins of the TGF-b superfamily are essential for
induction of mesoderm and endoderm3–5. In Xenopus late
blastulas, the dorsal to ventral gradient of Nodal signals
resulting from spatially differential expression of several Nodal
genes specifies different mesoderm fates along the dorsoventral
axis6. During signal transduction, Nodal ligands bind to and
activate membrane receptors, which then phosphorylate serine
residues within the C-terminal SXS motif of the downstream
effectors Smad2 and/or Smad3; phospho-Smad2/3 form
complexes with Smad4 and the complexes in the cytosol
translocate into the nucleus to regulate transcription of many
target genes7,8. In accordance, knocking out of Smad2 in mice or
interference with Smad2/3 in zebrafish blocks mesendoderm
development9–11. Smad2 also has an important role in
mesendoderm differentiation of mouse embryonic stem cells12,13.

Smad2/3 phosphorylation has been found to be regulated by
other mechanisms in addition to the receptor regulation. For
example, phosphorylated C-terminal SXS motif of Smad2/3,
p-Smad2/3C, can be dephosphorylated in the nucleus, resulting in
termination of TGF-b/Nodal signalling14. Several serine and
threonine residues in the linker region of Smad2/3 can be
phosphorylated by mitogen-activated protein kinases (MAPKs)
and cyclin-dependent kinases15. Linker phosphorylation of
Smad2/3 by extracellular signal-regulated kinases (ERKs)
accelerates their degradation, thus leading to a reduction of
Smad2/3 in the nucleus16. However, it remains unknown whether
Smad2/3 linker phosphorylation functions to attenuate Nodal
signalling in mesendodermal induction and patterning during
normal embryogenesis.

To better understand how Smad2/3 activity is regulated during
embryonic development, we looked for Smad2-/3-binding
partners expressed in zebrafish embryos by yeast two-hybrid
screen. One of the identified Smad2/3 partners was Araf, a
member of Raf kinase family that, upon activation by Ras,
normally activate MEK/ERKs17. We demonstrate that in zebrafish
embryos, araf functions to antagonize, independent of Erk
activation, mesendoderm induction and dorsalizing activity of
Nodal/Smad2 signalling. Mechanistically, Araf inactivates Smad2
signalling by directly phosphorylating specific serine residues of
the Smad2 linker.

Results
araf knockdown promotes mesendoderm and dorsal development.
Zebrafish araf gene is maternally expressed and its transcripts are
ubiquitously distributed during early embryonic development
(Fig. 1a). When araf was knocked down in zebrafish embryos
using the morpholinos araf-MO1 and araf-MO2 (see Supple-
mentary Fig. S1 for their effectiveness test), the expression of
mixer18,19, gata5 (ref. 20) and snail1a21 in the blastodermal
margin, in which both mesoderm and endoderm precursors
reside22, was expanded at the shield stage (Fig. 1b, and
Supplementary Fig. 2a); similarly, the expression of gata5, sox32
(ref. 18) and sox17 (ref. 23) in the endodermal precursors during
midgastrulation was enhanced (Fig. 1c). In addition, araf
morphants showed a marked expansion of the dorsal markers
goosecoid (gsc), floating head (flh) and chordin (chd) (Fig. 1d),
accompanied by a drastic reduction of the ventral markers eve1,
gata2 and bmp4 (Fig. 1e). These changes were confirmed by
quantitative RT–PCR analysis (Supplementary Fig. S2b). In
addition, araf morphants exhibited dorsalized phenotypes at 24
hpf (Supplementary Fig. S3). These data indicate that araf acts to

inhibit mesoderm and endoderm induction as well as to restrict
dorsal development during normal embryogenesis.

araf inhibits Nodal/Smad2 activity in mesendoderm
formation. We next looked into functional interaction between
araf and Nodal/Smad2 activity in zebrafish embryos. As
demonstrated before, overexpression of squint (sqt), the key nodal
gene for zebrafish mesendoderm induction4,24, caused ectopic
or enhanced expression of the mesoderm marker ntl, the
mesendodermal marker gata5, the endodermal marker sox32
and the dorsal marker gsc, but inhibited the expression of the
ventral marker eve1 at the shield stage (Fig. 2a,b). These effects
were largely compromised by co-injection of 200 pg araf mRNA.
Similarly, araf overexpression antagonized mesendoderm
induction and dorsalizing activity of casmad2 mRNA encoding
a constitutively active Smad2 (Fig. 2c,d). Conversely, injection of
araf-MOs antagonized the effect of lefty1, the antagonist of Nodal
signals25, on chd and gata2 expression (Supplementary Fig. S4);
but, araf-MOs injection was less effective in recovering lefy1-
repressed gata5 and sox32 expression, which might be because the
specification of the endodermal fate requires a higher Smad2
activity that could not be achieved by araf knockdown in the
deficiency of the upstream activating signals. Nevertheless, these
data suggest that araf counteracts the developmental functions of
Nodal/Smad2 signalling in zebrafish embryos.

As Mek/Erk can be activated by Raf kinases17, we asked
whether araf inhibited mesendoderm induction and dorsal
development through Erk activation. We found that araf-MOs-
induced expansion of mesendodermal markers could not be
alleviated by overexpression of erk2 (Supplementary Fig. S5),
which is the major Erk gene functioning during early
development of zebrafish embryos26,27. This indicates that araf
functions independent of Erk signalling.

araf knockdown upregulates p-Smad2C in zebrafish embryos.
Previous studies have shown that the Erk kinase activity attenu-
ates BMP signalling by phosphorylating the linker region of
Smad1, which results in degradation of activated Smad1, and this
mechanism ensures neural induction on the dorsal side in
Xenopus embryos28–32. We wondered whether Araf reduces
Smad1 or Smad2 stability in zebrafish embryos. To address
this issue, we examined, by western blotting, C-terminally
phosphorylated Smad2 (p-Smad2C) and Smad1/5/8 (p-Smad1/
5/8C) and linker-phosphorylated Smad2 (p-Smad2L) levels as
well as phospho-Erk1/2 (p-Erk) levels in araf-MOs injected
embryos. Compared with injection of the standard control
morpholino, araf-MOs injection caused a significant increase of
p-Smad2C with a decrease of p-Smad2L, while the total Smad2
level showed little changes (Fig. 3a,b). In contrast, total Smad1/5/8
and p-Smad1/5/8C exhibited a significant decrease in araf
morphants (Fig. 3a,b), which was confirmed by immunostaining
with anti-p-Smad1/5/8C antibody (Fig. 3c). The reduction of the
p-Smad1/5/8C level in araf morphants could be recovered by
co-knockdown of chd (Supplementary Fig. S6), implying that araf
could regulate Bmp signalling indirectly. Furthermore, reporter
assays in fish embryos revealed that araf knockdown enhanced
the TGF-b reporter ARE3-Luc expression but attenuated the BMP
reporter BRE-Luc expression (Supplementary Fig. S7a). These
results together indicate that araf functions to inhibit Nodal/
Smad2 rather than BMP/Smad1/5/8 signalling in zebrafish
embryos. Notably, araf knockdown had little effect on Erk1/2
or p-Erk1/2 levels (Fig. 3a,b,d), suggesting that araf inhibits
Smad2 signalling in fish embryos in an Erk-independent fashion
though Raf members usually activate Erk1/2 via Mek.
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Araf downregulates TGF-b signalling in mammalian cells. We
next investigated the inhibitory role of Araf in TGF-b/Smad2
signalling in mammalian cells. Like zebrafish Raf1a, Araf was able
to enhance the expression of the Erk reporter ELK1-luciferase in
mammalian cells (Supplementary Fig. S7b). In human Hep3B cells,
basal or TGF-b1-stimulated expression of ARE3-luciferase, a TGF-b
responsive reporter33, was inhibited by transfection of zebrafish
Araf in a dose-dependent manner (Fig. 4a), but enhanced by
knockdown of endogenous ARAF (Fig. 4b) (see Supplementary
Fig. S8 for the effectiveness of ARAF shRNAs). The application of
the MEK inhibitor PD98059 or the ERK inhibitor EIP I could not
eradicate the Araf suppression of basal or TGF-b1-stimulated
ARE3-luciferase expression (Fig. 4c), supporting the idea that
Araf attenuates TGF-b signalling independent of MEK/ERK
kinase activity. Furthermore, overexpression of Araf blocked
TGF-b1-induced nuclear accumulation of Smad2 in HeLa cells
(Fig. 4d,e) and reduced the amount of endogenous p-SMAD2C in
Hep3B cells (Fig. 4f,g). We found that Araf transfection promoted
ubiquitination and degradation of co-expressed Smad2
(Supplementary Fig. S9), which accords with the fact that the

linker phosphorylation usually accelerates the degradation of
Smad2 (ref. 15). These results are consistent with elevated
p-Smad2C levels in araf morphants.

Smad2 physically interacts with Araf in the cytosol. To test
whether Araf exerts an effect on Smad2 directly or indirectly, we
first investigated physical interaction of Araf and Smad2.
Co-immunoprecipitation (Co-IP) experiments in mammalian
HEK293T cells showed that HA-Araf was present in Myc–Smad2
complexes immunoprecipitated with anti-Myc antibody (Fig. 5a).
GST pull-down assay revealed a direct interaction of zebrafish
Araf with Smad2 (Fig. 5b). Human ARAF was detected in the
protein complexes immunoprecipitated with the anti-Smad2/3
antibody (Fig. 5c), indicating an association of endogenous
SMAD2 and ARAF. Araf overexpressed in zebrafish embryos
could also associate with endogenous Smad2 (Fig. 5d). Impor-
tantly, the Smad2–Araf interaction in mammalian cells was
enhanced by TGF-b1 stimulation (Fig. 5e), and co-expressed Araf
associated with more phospho-mimetic Smad2(S466/468D)
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mutant than wild-type Smad2 but it was unable to interact with
phospho-resistant Smad2(S466/468A) mutant (Supplementary
Fig. S10). These results suggest that the activated Smad2 has a
higher affinity for Araf. Domain mapping analysis indicated that
the C-terminal kinase domain of Araf and the linker-MH2 region
of Smad2 were required for their interaction (Fig. 5f–h).

As endogenous Araf is located in the cytosol (Fig. 5i), we
hypothesized that Araf-Smad2 binding occurred in the cytosol.
By performing bimolecular fluorescence complementation (BiFC)
assay in HeLa cells, we found that reconstituted fluorescent
YFP from YC-Araf (fusion of Araf to C-terminal half of YFP) and
YN-Smad2 (fusion of N-terminal half of YFP to Smad2) were
present in the cytosol but not in the nuclei (Fig. 5j). Thus, Araf
interacts with cytosolic Smad2.

Araf promotes Smad2 linker phosphorylation through S253.
Previous reports have shown that Erk kinases can inactivate

p-Smad1/2/3C by phosphorylating serine and threonine resi-
dues in their linker region16,34. Protein sequence alignment
analysis revealed that the known ERK phosphorylation sites of
human SMAD2, that is, Ser245, Ser250 and Thr220 (ref. 15), are
conserved in zebrafish Smad2 (Ser246, Ser251 and Thr221)
(Fig. 6a). Using Supporting Vector Machines35, we predicted
two additional phosphorylation sites by Raf kinases: Ser200
and Ser253 in zebrafish Smad2, and Ser199 and Thr252 in
human SMAD2. We note that avian and amphibian Smad2
proteins contain a serine residue but other mammalian
Smad2 proteins contain a threonine residue at the position
equivalent to Ser253 of zebrafish Smad2. The residue Ser200,
but not Ser253/Thr252, is also conserved in the Smad3
linker (Fig. 6a).

Western blot analysis in HEK293 cells showed that
co-transfection of zebrafish Araf (HA-Araf) dramatically
increased linker phosphorylation levels of zebrafish Smad2
(p-Smad2L), detected with anti-phospho-Smad2(Ser245/250/
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255) antibody, while linker phosphorylation of zebrafish
Smad2(S246/251/256A) mutant, an equivalent of human
SMAD2(S245/250/255A) mutant, was not detected by the
same antibody (Fig. 6b). Compared with Smad2(S246A),
Smad2(T254V), Smad2(S256A) (Supplementary Fig. S11) and
Smad2(S200A) (lane 5, Fig. 6b) mutants, the S246/251/256
phosphorylation level of Smad2 (S253A) mutant was markedly
reduced, implying that Ser253 is required for the
phosphorylation of adjacent serine residues by Araf. On the
other hand, the S246/251/256 phosphorylation level of the
phospho-mimetic Smad2(S253D) mutant was higher than that
of wild-type Smad2 (Fig. 6c), supporting the importance of
Ser253 for the phosphorylation of S246/251/256. We also found
that Thr252 of human SMAD2 was essential for the linker
phosphorylation at Ser245/250/255 (Supplementary Fig. S12).
Thus, zebrafish Ser253/human Thr252 is a novel, important
residue for Smad2 linker phosphorylation.

The zebrafish Smad2(S253A) mutant protein associated with
more Araf (Fig. 6d), implying that Araf binds to its
unphosphorylated substrate more stably. Smad2(S253A) was
found to be resistant to ubiquitination promoted by Araf
(Fig. 6e), suggesting that this mutant is more stable due to
unphosphorylation of the linker. Accordingly, compared with
wild-type Smad2, Smad2(S253A) enhanced TGF-b1-induced
ARE3-luciferase reporter expression more greatly, but the
phospho-mimetic Smad2(S253D) promoted the reporter
expression less efficiently (Fig. 6f).

Araf kinase activity directly phosphorylates Smad2 linker. A key
issue is whether Araf directly or indirectly via Mek/Erk phosphor-
ylates the linker region of Smad2. To address this issue, we purified
GST-Araf that was expressed and activated by FGF2 treatment in
HEK293T cells in the absence or presence of the MEK inhibitor
PD98059 or the ERK inhibitor EIP I. The addition of the inhibitor
would prevent contamination of activated MEKs or ERKs in the
purified GST-Araf. The Araf mutant ArafKD, which carried a
K338W mutation (equivalent to K336W of human ARAF) and
presumably lost the kinase activity36, served as a control. The
purified Araf protein or the kinase-dead mutant ArafKD was
incubated with bacterially expressed, pre-purified Smad2 or
Smad2(S253A) in the presence of (g-32P)-labelled ATP with or
without addition of PD98059 or EIP I. As shown in Fig. 6g, GST-
Araf protein, which was purified from the PD98059-treated cells and
thus contained little p-Erks, effectively phosphorylated wild-type
Smad2 (lane 4) but not Smad2(S253A) (lane 6) in the kinase
reaction in the presence of PD98059, suggesting an MEK-
independent, S253-dependent linker phosphorylation of Smad2.
GST-Araf protein purified from cells without PD98059 also
phosphorylated Smad2(S253A) in the kinase reaction lacking
PD98059 (Fig. 6g, lane 3), implying that other kinases co-
precipitated with the GST-Araf protein may phosphorylate S253-
independent residues of Smad2. Transfection of GST-ArafKD

appeared to inhibit Erk activation in the cell culture even if
PD98059 was not added, so that purified GST-ArafKD could not
contain much activated MEKs/ERKs for phosphorylating wild-type
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Smad2 in the kinase reaction without PD98059 (lane 2). Similarly,
Smad2 phosphorylation by GST-Araf could not be inhibited by EIP I
treatment (Fig. 6h), suggesting an ERK-independent phosphorylation.

To further confirmMek/Erk-independent Smad2 phosphorylation
by Araf, we carried out another in vitro kinase assay by incubating
Smad2 and Araf proteins, both of which were purified from
bacterially expressed products and thus would not contain MAPK
kinases, in the presence of (g-32p)-labelled ATP (Fig. 6i). Compared
with ArafKD, wild-type Araf yielded a strong radioactive Smad2
band, with the mutant Smad2(S253A) being much more weakly
labelled. These observations support the idea that Araf can bypass
MAPKs to directly phosphorylate the Smad2 linker.

Smad2(S253A) mutant possesses stronger activity in embryos.
As Araf-mediated phosphorylation of the Smad2 linker region is

dependent on ser253 of Smad2, we tested whether smad2(S253A)
mutant could produce a stronger effect in zebrafish embryos than
wild-type Smad2 due to its resistance to Araf phosphorylation.
Generally, comparing with smad2 overexpression, a similar level
of smad2(S253A) overexpression (Supplementary Fig. S13) caused
a more obvious increase of gsc, gata5 and sox32, and on the other
hand, a more apparent decrease of eve1, leading to a slightly
higher percentage of embryos with altered marker expression
(Fig. 7a–d). Importantly, co-injection of 100 pg araf mRNA with
400 pg smad2(S253A) mRNA did not change the ratio of embryos
with altered marker expression compared with smad2(S253A)
injection alone, whereas araf and wild-type smad2 co-injection
lowered the ratios of the affected embryos. Thus, Smad2(S253A)
is more potent than wild-type Smad2 in mesendoderm induction
and dorsoventral patterning and is resistant to the antagonizing
effect of Araf. These data support the idea that araf inhibits
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with HA-Araf and stimulated with TGF-b1 stimulation, and immunostained with anit-Smad2/3 (d) or anti-p-SMAD2/3 antibody (e) plus DAPI staining for

nuclei. Note that nuclear Smad2/3 in most of the HA-Araf-expressing cells was reduced compared with neighbouring untransfected cells. The ratio of HA-

Araf-expressing cells with reduced nuclear Smad2/3 was shown in the right bottom image. (f,g) Araf accelerated endogenous p-SMAD2C degradation in

Hep3B cells. Total SMAD2 and p-SMAD2C levels were examined by western blotting with anti-SMAD2/3 and anti-p-SMAD2 (S465/467) antibodies (f),

respectively. Time points at which TGF-b1 was added or washed away were indicated by a downward or upward arrow, respectively. Molecular weight markers in

kDa were indicated. The relative p-SMAD2C level was the ratio of p-SMAD2C to total SMAD2 as measured by Image J analysis (g).
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Nodal/Smad2 activity in mesendoderm induction and dorsal
development by phosphorylating the Smad2 linker.

Discussion
In this study, we demonstrate that Araf can directly bind to and
phosphorylate the linker of Smad2, leading to degradation of
activated Smad2. In zebrafish embryos, araf acts to attenuate
Nodal/Smad2 signalling to ensure normal germ layer formation

and dorsoventral patterning. Our data provide a direct link
between TGF-b signalling and Raf kinases.

Araf is a component of the Ras-Raf-Mek-Erk kinase cascade.
Previous studies have shown that Erk kinases can phosphorylate
the linker region of Smad2/3 to inactivate p-Smad2/3C
(refs 16,37,38). In this study, we obtained lines of evidence to
support that Araf kinase can directly phosphorylate the Smad2
linker in the absence of Mek/Erk kinase activity. Therefore, Ras/
MAPK signalling can crosstalk with TGF-b signalling at both Raf/
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Smad2 and Erk/Smad2 levels. The choice of the paths could
depend on cell types and microenvironments.

Smad2/3-mediated Nodal signalling and Smad1/5/8-mediated
Bmp signalling have distinct roles in germ layer induction and
patterning of vertebrate embryos. Nodal signalling is essential
for mesoderm and endoderm induction and dorsal develop-
ment39, whereas Bmp signals primarily act to induce epidermis
from the ectoderm and to promote ventral tissue develop-
ment40. In Xenopus embryos, MAPKs are found to antagonize
ventral BMP/Smad1 signalling to allow neural induction on the
dorsal side28,29. Our data do not support a role of endogenous
Araf in zebrafish embryos in downregulating BMP/Smad1/5/8

signalling and inhibiting its embryonic functions. First,
embryos depleted of araf exhibited a decrease rather than
an increase of p-Smad1/5/8C (Fig. 3a–c). Second, embryos
depleted of araf are dorsalized (Fig. 1d,e, and Supplementary
Fig. S3), while embryos deficient in Bmp signalling are
dorsalized41–43. The attenuation of Bmp/Smad1/5/8 signalling
in araf morphants can be ascribed to an increased expression of
the Bmp antagonist chordin on the dorsal side (Supplementary
Fig. S6).

The Raf kinase family in mammalian species consists of three
members, Araf, Braf and Raf1/C-Raf. The zebrafish genome
contains at least four raf genes, araf, braf, raf1a and raf1b as
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documented in the ZFIN database. We found that, like Araf,
purified zebrafish Braf and Raf1a proteins were able to in vitro
phosphorylate the Smad2 linker (data not shown). However,
knockdown of braf or raf1a in zebrafish embryos did not

significantly affect the levels of p-Smad2L, p-Smad2C, p-Smad1/
5/8C and p-Erk (Supplementary Fig. S14b,c), nor did it lead to an
increased expression of the mesendoderm marker gata5 and the
endoderm marker sox32 at the shield stage (Supplementary Fig.
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S14d), suggesting that these two Raf members may not have
inhibitory roles in Smad2 signalling and mesendoderm induction
during early embryogenesis. A previous report demonstrates that
raf1a knockdown in zebrafish embryos causes cardiac malforma-
tion and other defects at 3 day postfertilization44. It appears that
different Raf members have distinct developmental functions.
This may be due to their differential spatial and temporal
activities and regulation by distinct mechanisms.

Unexpectedly, the kinase-inactive mutant of Araf, ArafKD, still
possesses an activity inhibiting TGF-b signalling in mammalian
cells (Supplementary Fig. S15a). Although ArafKD overexpression
was unable to reduce total SMAD2 (Supplementary Fig. S9b) or
p-SMAD2C (Supplementary Fig. S15d) level, it associated with
Smad2 more strongly than wild-type Araf and prevented Smad2
from binding to Smad4, ultimately blocking nuclear translocation
of Smad2 (Supplementary Fig. S15b,c,e). Therefore, ArafKD

suppresses TGF-b/Smad2 signalling in a mechanism different
from wild-type Araf. Accordingly, overexpression of arafKD

mRNA also antagonized the effects of ectopic sqt in mesendo-
derm induction and patterning in zebrafish embryos
(Supplementary Fig. S16).

All Smads consist of two conserved domains, the N-terminal
MH1 domain and the C-terminal MH2 domain, which are
connected by the less conserved linker region. We found that
zebrafish Araf also bound to human SMAD1 and SMAD3 as well
as zebrafish Smad3a and Smad3b while it failed to associate with
human SMAD4, SMAD5, SMAD6 or SMAD7 (Supplementary
Fig. S17a–c). However, purified Araf protein appeared unable to
phosphorylate purified zebrafish Smad3a and Smad3b and
human SMAD1 and SMAD4 (Supplementary Fig. S17d). As
demonstrated in in vitro phosphorylation assays, S253 or T252 of
zebrafish or human Smad2 is essential for efficient phosphoryla-
tion of Smad2 linker by Araf. However, an equivalent residue is
absent in human SMAD3 or in zebrafish Smad3a/b. The absence
of this residue in the Smad3 linker may explain why Araf has little
effect on linker phosphorylation of Smad3. In accord with the
inability of Araf to phosphorylate the Smad3 linker, transfection
of zebrafish Araf into Hep3B cells did not cause a reduction
of TGF-b1-activated endogenous pSMAD3C (Supplementary
Fig. S17e).

In zebrafish embryos, araf is maternally and zygotically
expressed and its transcripts are distributed ubiquitously during
early development (Fig. 1a). Usually, Raf proteins are activated by
upstream growth factor signalling via Ras45,46. From blastulation
to gastrulation stages in zebrafish embryos, fgf genes are expressed
in mesendoderm progenitors and are positively regulated by
Nodal signals5,47,48. It is possible that Araf proteins are activated
by the Nodal/Fgf/Ras signal cascade and feed back to negatively
regulate Nodal signalling.

Our data indicate that Araf controls mesendoderm induction
and patterning in zebrafish embryos by directly phosphorylating
the Smad2 linker and ultimately terminating its activity. It would
be interesting to test whether this mechanism has a role in
organogenesis, tissue homeostasis and stem cell pluripotency and
differentiation.

Methods
Yeast two-hybrid screen and constructs. For identifying Smad2-/3-binding
proteins, zebrafish smad2, smad3a and smad3b cDNA were individually cloned
into the bait vector pGBKT7. The cDNA library was constructed using cDNAs
derived from zebrafish embryos at the one-cell, 40% epiboly, 5-somite and 24-hpf
stages and the BD Matchmaker Yeast Two-Hybrid System (BD Biosciences
Clontech)49. Araf was initially identified as one of the Smad3a binding partner. The
constructs were generated as detailed in the Supplementary Methods.

Cell culture and transfection. HEK293T and HEK293 cells were cultured in
DMEM, and HeLa and Hep3B cells in MEM. Transfection was performed using

the polyethylenimine method. When needed, cells were treated before harvest by
adding 2.5 ngml� 1 of TGF-b1 (PeproTech Asia), 0.1mgml� 1 of the protein
synthesis inhibitor cycloheximide (Sigma), 50 mM of the MEK inhibitor PD98059
(Sigma), or 20 mM of the ERK inhibitor EIP I (Calbiochem). Unless otherwise
stated, cDNAs cloned into the expression vectors were of the zebrafish origin.

Luciferase reporter assays and immunoprecipitation. For the luciferase reporter
assays in mammalian cells, each plasmid mixture consisting of 0.3 mg ARE3-luci-
ferase, 0.15 mg FAST2 and other plasmids was equally divided into three wells in a
24-well plate. The cells were harvested with passive lysis buffer (Promega) about
36 h after transfection. When TGF-b stimulation was required, cells were cultured
in the serum-free medium and incubated for 12–16 h in MEM containing 0.2% FBS
and 2.5 ngml� 1 TGF-b1. Luciferase activity was measured by a microplate
luminometer (Centro LB 960, Berthold Technologies), and normalized for
transfection efficiency by the internal control renilla. Experiments were repeated
in triplicate. For the luciferase reporter assays in zebrafish embryos, wild-type
embryos were injected with corresponding expression reporter DNAs at the
one-cell stage and collected at the 75% epiboly stage. The other steps proceeded
essential as did in cultured cells.

Western blotting and Co-IP were performed as previously described49.
Antibody information was listed in the Supplementary Information.

For the GST pull-down assay, GST–Araf fusion protein, which was expressed in
E. coli, was enriched using Glutathione Sepharose 4B beads (GE Healthcare). After
washed with PBS, the beads were incubated with purified Smad2 for 2 h at 4 �C,
followed by washing with PBS again. The final eluent was analysed by western blot
using anti-GST and anti-Smad2/3 antibodies.

Immunofluorescence and BiFC assays. For immunofluorescence, about 24–30 h
after transfection and necessary stimulation, HeLa cells grown on the coverslip
were fixed with 4% formaldehyde for 20min at room temperature, followed by
0.5% Triton X-100 treatment for 5min and 3% BSA blocking. The cells were then
incubated with corresponding primary and secondary antibodies along with DAPI
staining for visualization of nuclei. Fluorescence images were acquired with a Zeiss
710 META microscope.

For BiFC assay, pXF1-YN-Araf and pXF1-YC-Smad2 were individually or
together transfected into HeLa cells. YFP fluorescence was detected 48 h after
transfection with a Zeiss710META microscope at 488 nm. The expression of
YN-Araf or YC-Smad2 was detected by immunostaining using anti-GFP antibody
and DyLight 549-labelled secondary antibody.

in vitro kinase activity assay. GST-Araf or GST-ArafKD was expressed in
HEK293T cells. The cells were starved for 18 h and then treated with 12.5 ngml� 1

FGF2 (Sigma) in combination with 50 mM PD98059, 20 mM EIP or DMSO 6 h
before harvest. The GST fusion proteins were enriched using Glutathione
Sepharose 4B. The in vitro phosphorylation reaction mixture contained GST-Araf
or GST-ArafKD eluent, 2 mg bacterially expressed Smad2, 1 mCi g-32P-ATP, and a
corresponding MAPK inhibitor in the kinase buffer (50mM Tris �Cl, 10mM
MgCl2, 1mM CaCl2, 60mM KCl, 5mM MnCl2, 5% glycerol, pH 7.4). The reaction
lasted 30min at room temperature and then was stopped by adding 25mM EDTA.
The mixture was separated on a SDS–PAGE gel; the gel was dried and exposed to
X-ray film at � 80 �C.

GST-Araf, GST-ArafKD or GST-Smads was also expressed in E. coli BL21 cells by
induction with 1mM isopropyl-b D-thiogalactoside. After elution with Glutathione
Sepharose 4B, GST tag of the fusion proteins was cut off with PreScission Protease
(GE Healthcare) to obtain Araf and Smad proteins. The purified proteins were used
for in vitro phosphorylation assay as described above except that the MAPK
inhibitors were not added to the reaction.

Embryos, injection, in situ hybridization and other assays. Tuebingen strain of
zebrafish was used. RNA synthesis and whole-mount in situ hybridization were
performed as described previously11,50. mRNAs and morpholinos were injected
into one-cell stage embryos and harvested at indicated stages. Unless otherwise
stated, 20 ng araf-cMO (control MO) or araf-MOs (10 ng araf-MO1þ 10 ng araf-
MO2) was injected per embryo. Ethical approval was obtained from the Animal
Care and Use Committee of Tsinghua University. Morpholino sequences and
methods for western blotting, Co-IP and immunostaining in zebrafish embryos
were described in the Supplementary Information.

Statistical analyses. Data were averaged from three independent experiments and
expressed as mean plus s.d. Significance was analysed using Student’s t-test.
*Po0.05 and **Po0.01 indicated the significance levels.
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