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SAPK pathways and p53 cooperatively regulate
PLK4 activity and centrosome integrity
under stress
Takanori Nakamura1,2,3,4, Haruo Saito3,4 & Mutsuhiro Takekawa1,2,4

Polo-like kinase 4 is essential for centrosome duplication, but its hyperactivation causes

supernumerary centrosomes. Here we report that polo-like kinase 4 is directly phosphory-

lated and activated by stress-activated protein kinase kinase kinases (SAPKKKs).

Stress-induced polo-like kinase 4 activation promotes centrosome duplication, whereas

stress-induced SAPK activation prevents centrosome duplication. In the early phase of stress

response, the balance of these opposing signals prevents centrosome overduplication.

However, in the late phase of stress response, p53 downregulates polo-like kinase 4

expression, thereby preventing sustained polo-like kinase 4 activity and centrosome

amplification. If both p53 and the SAPKK MKK4 are simultaneously inactivated, as is

frequently found in cancer cells, persistent polo-like kinase 4 activity combined with the lack

of SAPK-mediated inhibition of centrosome duplication conspire to induce supernumerary

centrosomes under stress. Indeed, tumour-derived MKK4 mutants induced centrosome

amplification under genotoxic stress, but only in p53-negative cells. Thus, our results reveal

a mechanism that preserves the numeral integrity of centrosomes, and an unexplored

tumour-suppressive function of MKK4.
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C
entrosomes, which consist of a pair of centrioles
surrounded by an amorphous pericentriolar material,
serve as the microtubule-organizing centres that are

prerequisite for the formation of mitotic spindles in animal
cells1,2. In order for cells to undergo normal bipolar cell division,
the single interphase centrosome must duplicate precisely
once before mitosis. Centrosome duplication is initiated at the
G1/S transition and is completed during S phase. The rigorous
control of centrosome numbers directs accurate chromosome
segregation at cell division and is thus crucial for maintenance
of the stability of genomes. The presence of more than two
centrosomes (centrosome amplification) leads to the formation of
multipolar mitotic spindles and consequently to chromosome-
segregation errors3. Recent studies have shown that most cells
with centrosome amplification can still undergo bipolar cell
division, as multiple centrosomes cluster into two poles4,5.
Centrosome amplification, however, significantly increases
the frequency of lagging chromosomes during anaphase by
causing erroneous, merotelic kinetochore-microtubule
attachment, thereby promoting chromosome missegregation.
Because chromosome missegregation results in both numerical
(aneuploidy) and structural (translocations) abnormalities of
chromosomes6, ablation of the numeral integrity of centrosomes
induces chromosomal instability, and thus is considered to be
a major cause of carcinogenesis and malignant progression.
Indeed, centrosome amplification and the resulting chromo-
somal instability are common features of human cancers, and
correlate with poor clinical outcomes7,8. Interestingly, centrosome
number is often increased in cancer cells after various stress
stimuli including DNA damage, oxidative stress and heat
shock9–11, although the mechanism by which centrosome
amplification arises after stress in cancer cells remains obscure.

Polo-like kinase 4 (PLK4), a divergent member of the polo-like
kinase family, is an evolutionarily conserved master regulator of
centrosome duplication. PLK4 localizes to centrosomes and is
essential for centriole biogenesis12. Depletion of PLK4 in cells
leads to centrosome duplication arrest, whereas overexpression of
PLK4 induces centrosome amplification by production of
multiple procentrioles13,14. Previous reports have demonstrated
that dysregulation (both hyperactivation and deactivation) of
PLK4 predisposes cells to the development of cancer. PLK4 is
expressed aberrantly (either over or underexpression) in human
colorectal and liver cancers15,16. Mice heterozygous for PLK4
(PLK4þ /� ) spontaneously develop liver and lung tumours,
whereas PLK4 homozygous null mice are embryonic lethal17.
Furthermore, overexpression of PLK4 promotes tumorigenesis in
Drosophila18,19. Therefore, PLK4 activity must be adequately
controlled to maintain centrosome integrity and to prevent
carcinogenesis. During normal cell-cycle progression, the levels of
PLK4 transcripts are low in G1, gradually increase through S and
G2, and reach a maximum in mitosis20. Regulatory mechanisms
of PLK4 activity, however, remain obscure. In particular,
although PLK4 has been suggested to be involved in cellular
stress responses12,21, it is unclear if (and how) PLK4 activity is
regulated after stress, which frequently provokes centrosome
amplification in cancer cells.

In mammalian cells, stress stimuli elicit activation of specific
intracellular signalling networks that regulate cell fates, ranging
from survival to apoptosis. One of the major signalling systems
that govern cellular stress responses is the p53 pathway. The
tumour-suppressor p53 preserves genomic stability by triggering
growth arrest or apoptosis after DNA damage and certain other
cellular stresses22,23. In response to stress, p53 protein is gradually
stabilized and accumulates in the nucleus, where it functions as a
transcriptional regulator. Activated p53 interacts with sequence-
specific DNA-binding sites and modulates, either positively or

negatively, the expression of its target genes, thereby potentiating
apoptosis. Another prominent event that responds rapidly to
stress conditions is activation of the stress-activated p38 and JNK
MAPK (SAPK) cascades24,25. The SAPK cascades consist of a
three-tiered core of protein kinases, namely SAPKKK, SAPK
kinase (SAPKK) and SAPK, and are activated by various stresses
(for example, DNA damage, osmotic stress or oxidative stress)
and by inflammatory cytokines (for example, tumour-necrosis
factor-a (TNFa) or interleukin-1). Reflecting the presence of a
wide range of cellular stresses, mammalian cells express more
than a dozen SAPKKKs, such as MEKK1/2/3, MTK1 (also known
as MEKK4), TAK1, ASK1, TAO1 and MLK1/2/3, each of which is
activated in response to a distinct set of stimuli. Upon stress
stimuli, these SAPKKKs activate a relatively limited number
of their cognate SAPKKs (MKK3/4/6/7), which, in turn,
activate SAPKs, thereby regulating reparative and/or apoptotic
responses. Thus, both p53 and the SAPK pathways are critical for
the dictation of cell-fate decisions in cells exposed to stress.
Importantly, these signalling systems are frequently compromized
in human cancers. In most cancers, p53 is inactivated, either by
mutation or by other means including viral oncoproteins26.
Furthermore, MKK4, the only SAPKK that can activate both p38
and JNK, is a target for inactivating mutations in various cancers,
and is thus thought to be an important tumour suppressor27–29,
although the precise mechanism by which MKK4 exerts its
tumour-suppressor function remains elusive.

Here we investigated how PLK4 is regulated by stress, and how
such regulation relates to oncogenesis, with a particular emphasis
on the interplay between PLK4, p53 and the SAPK pathways. Our
data reveal a molecular mechanism that underlies centrosome
amplification in cancer cells, in which the two tumour
suppressors, p53 and MKK4, are frequently mutated.

Results
PLK4 binds to active forms of stress-responsive MAPKKKs. To
clarify the role, if any, of PLKs in cellular stress responses, we
initially examined whether there is any functional cross-talk
between PLKs and the SAPK pathways. In this examination, we
found that PLK4 bound the kinase domain of the SAPKKK
MTK1 (refs 30,31) (Fig. 1a, lane 6). PLK4 did not bind to
unactivated full-length MTK1, but it did so if GADD45b, a
specific activator of MTK1 (ref. 32), was co-expressed (Fig. 1a,
lanes 3 and 4). Thus, only an active form of MTK1 bound to
PLK4 through its kinase domain. Deletion analysis of PLK4
showed that two regions in PLK4, termed BD1 (261–491) and
BD2 (762–970), could separately bind to MTK1 (Fig. 1b;
Supplementary Fig. S1a,b). PLK4 also preferentially bound to
the active form of another SAPKKK, TAK1 (Fig. 1c). Interaction
between endogenous PLK4 and TAK1 was detected by co-
immunoprecipitation (Fig. 1d) from HeLa cells, synchronized in
the G2/M phase, in which PLK4 was expressed at high levels (see
Supplementary Fig. S1c). Consistent with the transfection
experiments, the binding of endogenous TAK1 to PLK4 was
enhanced when cells were stimulated with osmotic stress
(sorbitol), which activates TAK1 (refs 20,33) (Fig. 1d).

SAPKKKs directly phosphorylate PLK4 at T170. Because PLK4
preferentially binds to active forms of SAPKKKs, we next inves-
tigated if SAPKKKs could regulate PLK4 activity by phosphor-
ylation. For this purpose, we transfected HEK293 cells with
Myc-PLK4 together with various activated SAPKKKs (either by
expression of a constitutively active SAPKKK mutant or by
co-expression of a SAPKKK and its specific activator) (Fig. 2a).
Expression of active MTK1 (Flag-MTK1-C) elicited an
upward band shift of co-expressed Myc-PLK4 in a western blot.
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Active forms of several other SAPKKKs (TAK1, MEKK1 or
MLK3) could also induce a PLK4 band shift, whereas ASK1 or the
mitogen-activated MAPKKK, c-Raf, could not. Phosphatase
treatment showed that this PLK4 band shift was caused by
phosphorylation (Fig. 2b). This band shift required the kinase
activities of both MTK1 and PLK4, because it disappeared if
kinase-dead mutants of MTK1(K/R) or PLK4(K/M or T/A) were
used (Fig. 2c, upper panel; Supplementary Fig. S2a). These results
raised the possibility that one of the kinases activated the other
kinase. To determine if MTK1 affects PLK4 activity in vivo, Myc-
PLK4 was immunoprecipitated from cell extracts, and its kinase
activity was assessed in vitro using a-casein as an exogenous
substrate (Fig. 2c, lower panel). Co-expression of constitutively
active Flag-MTK1-C, but not its kinase-dead mutant (K/R),
strongly enhanced PLK4 activity. Thus, MTK1 kinase activity is
required to activate PLK4 in vivo. The PLK4 band shift, however,
likely results from autophosphorylation of activated PLK4. MTK1
did not activate PLK1, 2 or 3 (Supplementary Fig. S2b). The
combined results suggest that various, if not all, SAPKKKs
activate PLK4 in vivo.

To determine how SAPKKKs activate PLK4, we employed
in vitro kinase assays. For that purpose, we purified activated
SAPKKKs (Myc-MTK1, Myc-TAK1 or Flag-MEKK1-C) from
transfected 293FT cells and incubated them with kinase-dead
GST-PLK4(K/M) that was expressed in bacteria. In vitro kinase
assays using only these purified proteins showed that active
MTK1, TAK1 and MEKK1, but not catalytically inactive
MTK1(K/R), could directly phosphorylate GST-PLK4(K/M)
(Fig. 2d, top; Supplementary Fig. S2c,d). To test if these kinases
phosphorylate the essential activating phosphorylation site
(T170) of PLK4 (ref. 20), we generated an antibody against
phosphorylated T170 (Supplementary Fig. S2e). Immunoblot
analyses using anti-phospho-T170 demonstrated that the
SAPKKKs did phosphorylate T170 in vitro (Fig. 2d, second
row; Supplementary Fig. S2c,d). Thus, these SAPKKKs can
activate PLK4 by directly phosphorylating the activating
phosphorylation site, T170. In contrast, constitutively active
B-Raf(V600E) did not phosphorylate PLK4-T170 (Fig. 2e), which
explains why Raf-family kinases could not activate PLK4 in vivo
(Fig. 2a).
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Figure 1 | Stress-responsive MAPKKKs bind PLK4. (a) Co-immunoprecipitation of Myc-MTK1 and Flag-PLK4. 293FT cells were transfected as indicated.

Immunoprecipitated Myc-MTK1 was probed for co-precipitating Flag-PLK4. GB, GADD45-binding domain. AID, auto-inhibitory domain; C, C-terminal;

DD, dimerization domain; KD, kinase domain; N, N terminal. (b) MTK1-binding domains in PLK4. CPB, cryptic Polo-box; PBD, Polo-box domain;

*, IgG light chain. (c) PLK4 preferentially interacts with activated TAK1. 293FT cells were co-transfected with Myc-TAB1, Myc-TAK1 and Flag-PLK4.

Immunoprecipitated Myc-TAK1 was probed for co-precipitating Flag-PLK4. (a–c) The levels of protein expression in cell lysates are also shown.

(d) Association of endogenous PLK4 with TAK1 in HeLa cells treated with (þ ) or without (� ) sorbitol. Phosphorylated MKK4 (P-MKK4) in the extracts

was probed with an anti-phospho-MKK4 antibody (fifth). The expression level of MKK4 is also shown (bottom). C, control IgG; *, a non-specific

band.
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Various stress stimuli activate PLK4 via SAPKKKs in vivo.
These in vitro results suggested that stresses that activate
SAPKKKs would induce PLK4-T170 phosphorylation and PLK4
activation in vivo. To examine if osmotic stress activates PLK4,
HEK293 cells transiently transfected with Myc-PLK4 were
stimulated with 0.5M sorbitol. Following sorbitol treatment, both
PLK4-T170 phosphorylation (Fig. 3a, top row) and the size of the
PLK4 band shift (Fig. 3a, middle row) gradually increased over
B60min. Osmotic stress also enhanced PLK4 kinase activity
(Fig. 3b). To exclude the possibility that activated PLK4 itself
phosphorylates PLK4-T170, stress-induced T170 phosphoryla-
tion was examined in HEK293 cells stably expressing Myc-
PLK4(K/M). The kinase-dead K/M mutation prevents any
autophosphorylation event. Osmotic stress rapidly evoked
PLK4-T170 phosphorylation even in these cells, concurrently
with the activation of SAPKKKs, which was indicated by
MKK4 phosphorylation (Fig. 3c; Supplementary Fig. S2f). Other
stresses (etoposide, ultraviolet or TNFa) also induced PLK4
phosphorylation (Fig. 3d; Supplementary Fig. S2g,h). Thus, var-
ious stress stimuli activate PLK4 by inducing T170 phosphor-
ylation in vivo.

The p38 and JNK SAPK pathways are activated mainly through
TAK1 in response to either osmotic stress or TNFa (refs 33,34).
Therefore, we next investigated whether PLK4 phosphorylation
induced by these stimuli is also mediated by TAK1. Indeed,
inhibition of TAK1 activity either by use of a specific TAK1
inhibitor35, by co-transfection of a dominant-negative TAK1
(K/W), or by TAK1-specific short interfering RNAs (siRNAs),
abrogated PLK4 phosphorylation induced by osmotic stress or
TNFa (Fig. 3e–h for transfected PLK4; Fig. 3i for endogenous
PLK4). In contrast, inhibition of the SAPK pathways at the level of
SAPK using specific inhibitors of p38 and JNK, or at the level of
SAPKK using dominant-negative MKK4(K/R), did not suppress
PLK4-T170 phosphorylation (Supplementary Fig. S3a,b). We
therefore concluded that TAK1 directly phosphorylated and
activated PLK4 in response to osmotic stress or TNFa in vivo as
well as in vitro. It is likely that different SAPKKKs phosphorylate
and activate PLK4 in response to other stress stimuli.

SAPKKK-mediated PLK4 activation occurs in the cytoplasm.
PLK4 shuttles between centrosomes and the cytoplasm36. To
identify the cellular location where PLK4 binds to and is activated
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Figure 2 | Stress-responsive MAPKKKs phosphorylate and activate PLK4. (a) 293FT cells were transfected with Myc-PLK4, together with MAPKKKs

and their activators as indicated. The induced band shift of Myc-PLK4 was analysed by immunoblotting. (b) The MTK1-induced PLK4 band shift is

caused by phosphorylation. 293FT cells were co-transfected with Myc-PLK4 and constitutively active Flag-MTK1-C. Immunoprecipitated Myc-PLK4 was
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immunoblotting using an anti-Myc antibody. (c) MTK1 enhances PLK4 activity. The band shift (upper) and in vitro kinase activity (lower) of Myc-PLK4.

a-Casein was used as an exogenous substrate for PLK4 in vitro. K/M, PLK4(K41M); T/A, PLK4(T170A); K/R, MTK1(K1371R). (d,e) Stress-responsive

MAPKKKs phosphorylate PLK4 at T170. Recombinant GST-PLK4(K41M) was incubated with immunoprecipitated MAPKKKs in vitro, and its

phosphorylation status was monitored by 32P incorporation (d) or by immunoblotting using an anti-phospho-PLK4(T170) antibody (d,e).
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by SAPKKKs, we used an in situ proximity ligation assay (PLA),
which can visualize specific protein–protein interactions within a
cell37. HeLa cells were co-transfected with Flag-PLK4, Myc-
MTK1 and GADD45b (an MTK1 activator), together with green
fluorescent protein (GFP)-centrin as a centrosome marker. PLA

signals arising from intermolecular interactions between active
MTK1 and PLK4 were detected in the cytoplasm, but not in the
centrosome (Fig. 4a). Similar results were also obtained for the
interaction between TAK1 and PLK4 (Fig. 4b). Furthermore,
subcellular fractionation indicated that endogenous PLK4 was
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Figure 3 | Stress stimuli activate PLK4 via SAPKKKs. (a,b) 293FTcells transfected with Myc-PLK4 were stimulated with osmotic stress (0.5M sorbitol).

Immunoprecipitated Myc-PLK4 was analysed for T170 phosphorylation (a) or for its kinase activity in an in vitro kinase assay (b). (c,d) Immunoblotting of

PLK4(T170) and MKK4 phosphorylation induced by various stress stimuli. HEK293 cells stably expressing Myc-PLK4(K41M) were stimulated with
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were assessed by immunoblotting using anti-phospho-PLK4(T170) and anti-phospho-MKK4 antibodies, respectively (top and third). The same filters were
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present in both cytoplasmic and centrosomal fractions, whereas
endogenous TAK1 was present only in the cytoplasm (Fig. 4c).
Thus, SAPKKKs interact with and activate PLK4 primarily in the
cytoplasm. It is, however, likely that stress-activated PLK4 is not
limited to the cytoplasm but can be localized both in the
cytoplasm and in the centrosome, because PLK4 rapidly shuttles
between centrosomes and the cytoplasm36.

PLK4 provides a survival signal that is downregulated by p53.
To clarify the physiological relevance of stress-induced PLK4
activation, we first tested if PLK4 affects cellular stress responses.
In this regard, a previous study has reported that PLK4 expression
is transcriptionally repressed by the tumour-suppressor p53
(ref. 38). Indeed, following etoposide or ultraviolet treatment, the
PLK4 protein gradually disappeared, accompanied by p53
accumulation, in p53-wt A549 cells, but the PLK4 protein
persisted in the p53-null H1299 cells (Fig. 5a; Supplementary
Fig. S4a). Reintroduction of wild-type p53 into H1299 cells
restored etoposide-induced suppression of PLK4 expression
(Fig. 5b). These findings indicate that stress-induced PLK4
activity is gradually attenuated by the activation of p53. To
investigate the role of PLK4 in the regulation of stress-induced
apoptosis in the absence of any contribution from p53, PLK4
expression was knocked down by specific siRNAs in the p53-null
H1299 cells (Supplementary Fig. S4b). PLK4 depletion by siRNA
augmented etoposide-induced activation of caspase-9 (an initiator
caspase), caspase-3 (an effector caspase) and the resulting
proteolytic cleavage of PARP, which is a hallmark of apoptosis
(Fig. 5c). Similar results were obtained using a distinct siRNA-
targeting PLK4 (Supplementary Fig. S4c). Thus, increased kinase
activity of PLK4 (mediated by SAPKKKs) suppressed apoptosis,
whereas decreased expression of PLK4 (mediated by stress-
induced p53) potentiated apoptosis.

To gain insight into the molecular mechanism by which PLK4
inhibits apoptosis, we next investigated if PLK4 modulates
functions of several key regulators of stress-induced apoptosis,
such as the survival kinase AKT and Bcl-2 family proteins39,40.
Depletion of PLK4 in H1299 cells by PLK4 siRNA markedly
attenuated etoposide-induced activation of AKT, as demonstrated
by its phosphorylation at T308 and S473 and by the
phosphorylation state of an endogenous AKT substrate protein,
FoxO4 (Fig. 5d). Immunofluorescence staining using an anti-

phospho-AKT(T308) antibody further confirmed that depletion of
PLK4 suppresses accumulation of active AKT in the nucleus
following etoposide treatment (Fig. 5e,f). In contrast, PLK4 did not
directly phosphorylate key members of tested Bcl-2 family proteins
(Bax, Bak, Bcl-xL and Bcl-2) in vitro (Supplementary Fig. S4d).
Thus, PLK4 protects cells from apoptosis by mediating stress-
induced AKT activation. Based on the combined findings, we
conclude that stress stimuli activate SAPKKKs, which then activate
both pro-survival PLK4 and pro-apoptotic SAPK signalling24,41,42.
At the same time, stress stimuli induce p53 that suppresses PLK4
expression. At first glance, these conflicting signals seem
unproductive. However, the actual cell fate will be decided by
the different timing of these signalling systems (see Fig. 8c, left
panel). Stress-induced activation of PLK4 can take place only in
the early phase of the stress response, because gradual activation of
p53 will eventually eliminate PLK4 if the stress continues
unabated. Therefore, we conclude that the PLK4 activation
provides a time-limited survival signal in cells exposed to stress.

SAPKs inhibit centrosome amplification. Hyperactivation of
PLK4 has been reported to drive centrosome overduplication
that is marked by three or more centrosomes per cell43,44. Indeed,
overexpression of Myc-PLK4 or hyper-stable Myc-PLK4-S285A/
T289A (AA)45 induced centrosome overduplication (Fig. 6a,b;
Supplementary Fig. S5a). Therefore, we next examined if
SAPKKK-mediated PLK4 activation would also induce centro-
some amplification. Unexpectedly, however, co-transfection of
Myc-PLK4 with MTK1-C, which activates PLK4, was far less
effective in evoking centrosome overduplication than Myc-PLK4
alone. One possible explanation of this result was that endogenous
SAPKs (p38 and JNK) that were activated by MTK1-C might have
inhibited centrosome overduplication. Indeed, co-expression of
SAPKs together with MTK1-C and PLK4 further repressed
centrosome overduplication (Fig. 6a). Moreover, expression of
constitutively active p38AS (ref. 46), even in the absence of co-
transfected MTK1-C, suppressed PLK4-induced centrosome
overduplication (Fig. 6c). Myc-p38AS, however, inhibited neither
PLK4-T170 phosphorylation nor PLK4 kinase activity (Fig. 6d;
Supplementary Fig. S5c,d), indicating that activated SAPKs block
centrosome duplication without affecting PLK4. In theory,
activated SAPKs could affect centrosome duplication indirectly
by arresting the cell cycle. However, there was no substantial
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difference between the cell-cycle distribution of cells expressing
PLK4 alone and those expressing both MTK1-C and PLK4
(Supplementary Fig. S5b). Moreover, Myc-p38AS suppressed

centrosome duplication even in aphidicolin-treated U2OS cells,
in which centrosome duplication is uncoupled from the cell cycle14

(Fig. 6e). Thus, p38 can inhibit centrosome duplication per se.
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To investigate if the converse is true, that is, if inhibition of
SAPK activities would potentiate centrosome overduplication, we
established mouse embryonic fibroblasts (MEFs) in which
expression of a few or all of the SAPKKs (MKK3/4/6/7) were
depleted. For this purpose, we used MKK3� /� MKK6� /�

double-knockout MEFs (D3/6 MEFs) that are immortalized with
the large T antigen47. The MKK4 and MKK7 genes in these cells
were knocked down using specific short hairpin RNAs (shRNAs)
to generate MEFs with the phenotype D3/6/4 or D3/6/4/7. As
shown in Fig. 7a, stress-induced activation of SAPKs (p38 and
JNK) was severely compromized in D3/6/4/7 MEFs, and was
compromized to various degrees in D3/6 or D3/6/4 MEFs. As
anticipated, the incidence of PLK4-induced centrosome
overduplication in these MEFs showed an inverse correlation
with the SAPK activities of the MEFs: lower SAPKK activities
enhanced centrosome overduplication (Fig. 7b), whereas

constitutively active SAPKKs (MKK3EE and MKK6DD) or SAPK
(p38AS) repressed centrosome overduplication (Supplementary Fig.
S5e). Treatment with the genotoxic-stress agent etoposide, which
activates SAPKs, evoked robust centrosome amplification,
multipolar spindle formation and hyperploidy (44N) in D3/6/4/
7 MEFs, but not in wild-type cells (Fig. 7c,d; Supplementary Fig.
S5f,g). Thus, if stress stimuli activate PLK4 in the absence of SAPK
activation, centrosome overduplication is induced, thereby leading
to chromosomal instability and aneuploidy. Normally, however,
simultaneous activation of PLK4 and SAPKs by stress stimuli
prevents abnormal amplification of centrosomes under stress
conditions.

SAPKs and p53 cooperate to maintain centrosome integrity.
In the previous sections, we demonstrated that stress-activated
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SAPKs inhibit PLK4-mediated centrosome overduplication.
Furthermore, stress-induced p53 downregulates PLK4 expression,
thereby preventing its prolonged activation. Together, these
findings imply that, under stress conditions, the numeral integrity
of centrosomes is preserved by SAPKs and p53, which might act
synergistically. Because both p53 and the MKK4 SAPKK are
frequently impaired in human cancers48, we next tested a

hypothesis that was based on the current findings, namely that
combined inhibition of MKK4 and p53 might evoke centrosome
amplification in cells exposed to genotoxic stress. To inactivate
MKK4, we utilized two cancer-derived dominant-negative MKK4
mutants (N234I and S251N), which inhibit SAPK activation49. To
inactivate p53 by proteasome-mediated degradation, we used the
E6 gene of the human papilloma virus type 16 (HPV16)50. U2OS
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cells, in which both SAPK and p53 signalling are intact, were
transfected with the dominant-negative MKK4 mutants and/or
HPV16-E6, and were exposed to etoposide (Fig. 8a,b;
Supplementary Fig. S6a). Although the MKK4 mutants or
HPV16-E6 individually had little effect on centrosome number,
their combined expression significantly increased the incidence of
supernumerary centrosomes. Similarly, depletion of MKK4 by
siRNA in p53-null H1299 cells led to a higher incidence of
supernumerary centrosomes compared with control H1299 cells,
following etoposide treatment (Supplementary Fig. S6b). Thus,
simultaneous inactivation of MKK4 and p53 increased the risk of
centrosome amplification under stress conditions.

Discussion
In this study, we provide the first evidence for a direct functional
link between the stress-responsive MAPK pathways and PLK4, a

key regulator of centrosome number. In response to stress stimuli,
PLK4 is directly phosphorylated and activated by SAPKKKs,
thereby protecting cells from stress-induced apoptosis (see
Fig. 8c). Previous studies have shown that the abundance and
activity of PLK4 are regulated by transcription, protein stability
and phosphorylation12. In particular, PLK4 phosphorylation at
T170 in the kinase activation loop is essential for the catalytic
activity of PLK4 (ref. 20). The upstream kinases that are
responsible for T170 phosphorylation, however, have not been
identified. We found here that, under stress conditions, SAPKKKs
directly phosphorylate PLK4 at T170. SAPKKK-mediated
activation of PLK4 takes place primarily in the cytoplasm and
specifically in response to stress. In contrast, a previous report
showed that under normal exponential growth conditions, PLK4
activation occurs only at centrosomes51. In addition, activities of
SAPKKKs are not significantly altered throughout the cell cycle in
cells without stress, as monitored by MKK3/6 phosphorylation
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(Supplementary Fig. S1c). Therefore, SAPKKK-mediated PLK4
activation is specific for the regulation of cellular stress responses.

The substrate specificity of SAPKKKs is relatively broad. For
instance, several SAPKKKs phosphorylate inhibitor of nuclear
factor k-B kinase b (IKKb) in addition to their cognate
SAPKKs24. Here we showed that PLK4 is a novel substrate of
several SAPKKKs. Thus, SAPKKKs not only activate the SAPK
pathways but also initiate the PLK4 pathway within the same cell
to trigger diverse, even opposing (survival or death), cellular
responses. SAPKKK-mediated bifurcation of intracellular
signalling might be critical for the dictation of cell-fate
decisions depending on the type, strength and duration of
stress stimuli. Indeed, we found that SAPKKK-mediated PLK4
activation suppressed apoptosis, particularly in the early phase of
the stress response in cells with wild-type p53.

Although the importance of PLK4 in the regulation of
centrosome duplication has been well documented, less is known
about the roles of PLK4 in other cellular processes. Accumulating
evidence suggests that PLK4 also functions outside of the
centrosome and is involved in controlling several essential
cellular functions including cytokinesis and gene expression16,21.
Furthermore, it should be noted that PLK4� /� mice are
embryonic lethal at E7.5 with a marked increase in apoptotic
cells17, suggesting that PLK4 has a role in the regulation of
apoptosis. We demonstrated here that under stress conditions,
PLK4 serves as a pro-survival kinase and suppresses apoptotic cell
death. Depletion of PLK4 by siRNAs significantly inhibited stress-
induced AKT activation and thus augmented caspase-9-mediated
apoptosis. AKT is activated not only by growth factors but also by
a variety of stresses including DNA damage, although the
molecular mechanism by which stress stimuli activate AKT is
poorly understood39,52. Our results showed that PLK4 is a critical
mediator of stress-induced AKT activation. Interestingly, PLK4 is
transcriptionally repressed by p53 via the recruitment of histone
deacetylase (HDAC) repressors38. Indeed, we showed that
genotoxic stresses, such as etoposide treatment or ultraviolet
irradiation, gradually downregulated PLK4 protein expression in
a p53-dependent manner. Therefore, stress-induced, SAPKKK-
mediated PLK4 activation provides a time-limited survival signal
in p53 wild-type cells exposed to stress, and modulates the fate of
cells in a manner that depends on the duration of the stress
stimulus.

Another even more important conclusion from our results is
that the numeral integrity of centrosomes is preserved, under
stress conditions, by both SAPKs and p53, which act synergis-
tically (Fig. 8c). In normal cells under stress, SAPKs are rapidly
activated and inhibit PLK4-mediated centrosome overduplica-
tion. Furthermore, when stress continues unabated, the tumour-
suppressor p53 is gradually activated, and downregulates PLK4 to
promote apoptosis and to reduce the risk of PLK4-induced
centrosome amplification. Thus, SAPKs and p53 cooperate to
maintain centrosome integrity under stress. The precise mechan-
ism by which SAPKs inhibit centrosome overduplication remains
to be elucidated. Our data, however, showed that the constitu-
tively active SAPK, p38AS, did not alter stress-induced PLK4
activity in vivo. Moreover, p38AS suppressed aphidicolin-induced
centrosome overduplication in U2OS cells. Thus, SAPKs directly
prevent centrosome amplification by inhibiting centrosome
duplication per se. Previous reports showed that a portion of
activated p38 and JNK are localized in the centrosomes53–56. In
addition, these SAPKs phosphorylate several molecules that can
be localized in the centrosomes, such as the Cdc25 family
of phosphatases, MK2, HSF1 and MNK1 (refs 55,57,58).
Therefore, SAPKs might inhibit stress-induced centrosome
amplification by phosphorylating these or other substrates in
the centrosomes.

Importantly, p53 and the SAPK pathways are frequently
co-compromized in human cancer cells26,28. Furthermore,
mutational inactivation of MKK4 has been shown to drive
carcinogenesis (known as driver mutations). However, how
MKK4 prevents carcinogenesis remains unclear27,49. Based on
the present results, we propose the following mechanism for
centrosome amplification in cancer cells (see Fig. 8c, right). When
p53 is inactivated, cells fail to check the sustained PLK4 survival
signal. Even under such conditions, activated SAPKs can still
suppress centrosome overduplication. However, if an additional
mutation occurs in the MKK4 gene, and both p53 and SAPK
pathways are simultaneously impaired, stress-induced PLK4
activation readily promotes centrosome overduplication, thereby
inducing chromosomal instability and aneuploidy. Centrosome
amplification and chromosomal instability are hallmarks of
cancer cells, and contribute to tumour aggressiveness3,4,59.
Thus, our results provide a mechanistic insight into the
molecular pathogenesis of centrosome alterations in human
cancer, and highlight a novel tumour-suppressor role of MKK4.
MKK4-mediated, robust activation of SAPKs protects cells from
stress-induced centrosome amplification and consequent
chromosomal instability in p53-negative cells. Therefore, the
tumour-suppressive function of MKK4 is manifested particularly
when p53 is also inactivated. Consistent with this notion, MKK4
mutations frequently coexist with p53 mutations in human
cancer cells48. Given that PLK4 knockdown potentiated
etoposide-induced apoptosis in p53-null cancer cells, PLK4
could be a potential therapeutic target for human cancer.

Methods
Media and buffers. Lysis buffer A contained 20mM Tris-HCl (pH7.5), 1% Triton
X-100, 0.5% deoxycholate, 10% glycerol, 137mM NaCl, 2mM EDTA, 54mM
b-glycerophosphate, 10mM NaF, 2mM sodium vanadate, 1mM dithiothreitol,
1mM phenylmethylsulphonyl fluoride, 10 mgml� 1 leupeptin and 10mgml� 1

aprotinin. Lysis buffer B: Lysis buffer A without deoxycholate. Kinase buffer
contained 25mM Tris-HCl (pH 7.5), 25mM MgCl2, 25mM b-glycerophosphate,
0.5mM sodium vanadate, 2mM EGTA and 2mM dithiothreitol. SDS–PAGE
loading buffer consisted of 65mM Tris-HCl (pH 6.8), 5% (vol/vol) 2-mercap-
toethanol, 3% SDS, 0.1% bromophenol blue and 10% glycerol.

Plasmids. PLK4 was subcloned into pcDNA4Myc, pcDNA3Flag and pEGFP
(Clontech) vectors using PCR. The mammalian expression plasmids for epitope-
tagged MAPKKKs (pMyc-MTK1, HA-ASK1, Myc-TAK1, HA-TAK1, Flag-
MEKK1-C, Flag-MLK3, Flag-BRaf(V600E), Flag-c-Raf-C and their derivatives],
Myc-TAB1, GADD45b, Myc-GADD45b, Flag-TRAF2, GST-Cdc42(V12),
HA-MKK3EE, HA-MKK3(K/N), HA-MKK4, HA-MKK6DD, HA-MKK6(K/N),
Myc-p38AS, HA-p38, HA-p38(K/N) and HA-JNK have been described42,46,60.
To generate retroviral expression vectors, Myc-PLK4(K41M) or Myc-PLK4(K41M,
T170A) were subcloned into pQCXIP (Invitrogen). The vector encoding HPV16-
E6 (16E6SD-L151del) was from T. Kiyono50. Mutants were generated using PCR
mutagenesis.

Tissue culture. HEK293, 293FT, HeLa, U2OS, A549 and H1299 cells were grown
in DMEM and 10% FBS, and MEFs in high-glucose DMEM and 10% FBS. As
indicated, cells were treated with sorbitol (0.5M for 30min), etoposide (50 mM for
3 h), ultraviolet (80 Jm� 2 followed by a 30-min incubation) or TNFa (50 ngml� 1

for 20min). Transfections were performed using Effectene (Qiagen). The total
amount of plasmid DNA was adjusted to 1 mg per plate with an empty vector.

Co-immunoprecipitation assay. Cell lysates were prepared in Lysis buffer B,
precleared with protein G-sepharose beads at 4 �C for 1 h and incubated with an
appropriate antibody immobilized on protein G-sepharose beads at 4 �C for 5 h.
Immunoprecipitates were collected by centrifugation, washed four times with Lysis
buffer B and subjected to SDS–PAGE.

Immunoblotting analyses. Immunoblotting analyses were carried out as descri-
bed60. Digital images were captured using LAS-1000 Plus (Fujifilm). The following
primary antibodies were used: mouse anti-Myc 9E10, anti-HA F7, anti-GST B-14,
anti-GFP B-2, anti-MEK1 H-8 and anti-p53 DO-1 (Santa Cruz Biotechnology);
mouse anti-Flag M2 (Sigma); rabbit anti-Myc, anti-p38, anti-JNK1, anti-ERK, anti-
MKK4 and anti-MKK3/6 (Santa Cruz Biotechnology); rabbit anti-TAK1 (Sigma);
goat anti-GADD45b (Santa Cruz Biotechnology); rabbit anti-phospho-MKK4,
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anti-phospho-MKK3/6, anti-phospho-MEK1/2, anti-phospho-p38, anti-phospho-
JNK, anti-phospho-ERK, anti-phospho-MAPKAPK2, anti-phospho-c-Jun,
anti-phospho-Aurora-A/B/C D13A11, anti-phospho-Akt(T308) C31E5E, anti-
phospho-Akt(S473) D9E, anti-phospho-FoxO, anti-FoxO, anti-Akt, anti-PLK4 and
anti-MKK7 (Cell Signaling); mouse anti-phospho-PLK1 2A3 (Abcam); anti-PLK1
35-206 (Zymed); anti-phospho-ATM 10H11.E12 (Cell Signaling); anti-Actin
ACTN05 (Thermo); anti-Cyclin B1 V152 (MBL); anti-a-tubulin B-5-1-2 (Sigma);
anti-Centrin 20H5 (Millipore); rabbit anti-PARP (Roche); anti-Caspase-3, anti-
ATM D2E2 (Cell Signaling); and mouse anti-Caspase-9 5B4 (MBL). An affinity-
purified anti-phospho-PLK4(T170) was made in-house. All antibodies were used at
a dilution of 1:1,000, except anti-a-tubulin (diluted 1:5,000), anti-Cyclin B1
(diluted 1:10,000), anti-phospho-Akt(S473) (diluted 1:2,000) and anti-PARP
(diluted 1:3,000).

Proximity ligation assay. HeLa cells grown on chamber slides were transfected
with GFP-centrin (a centrosome marker), Flag-PLK4, Myc-MTK1 and GADD45b,
or with GFP-centrin, Myc-PLK4, HA-TAK1 and Flag-TAB1. Thirty-six hours after
transfection, PLA was performed using the Duolink in situ PLA kit (Olink
Bioscience) according to the manufacturer’s protocol. The following primary
antibodies were used at a dilution of 1:400: rabbit anti-Myc (Santa Cruz
Biotechnology); mouse anti-Flag (Sigma); mouse anti-Myc (Santa Cruz
Biotechnology); and rabbit anti-TAK1 (Sigma).

Soluble/insoluble fractionation. Soluble and insoluble fractions were prepared as
described51. Briefly, HeLa cells synchronized in G2/M by thymidine-nocodazole
treatment were washed with PBS and lysed in PHEM buffer (45mM PIPES, 45mM
HEPES, 10mM EGTA and 5mMMgCl2, pH 6.9) containing 1% Triton X-100. Cell
lysates were centrifuged at 300 g for 10min at 4 �C. The supernatant (soluble
fraction) was transferred to a new tube. The insoluble pellet (insoluble fraction) was
washed with PHEM buffer and solubilized in a volume of SDS sample buffer by
sonication on ice. Proteins in the soluble fraction were precipitated by adding 9
volumes of methanol, centrifuged at 4,000 g for 10min at 4 �C, and the pellet was
solubilized in the same volume of SDS loading buffer as that used for the insoluble
fraction.

In vitro kinase assay. Immune-complex kinase assays were performed as descri-
bed32. Briefly, cell extracts (in Lysis buffer A) were immunoprecipitated with the
appropriate antibody for 4 h at 4 �C. Immune complexes were recovered with the
aid of protein G-sepharose beads, washed twice with Lysis buffer B containing
500mM NaCl, twice with Lysis buffer B and twice with kinase buffer.
Immunoprecipitates were resuspended in 30 ml of kinase buffer containing 3 mg of
GST-PLK4(K41M) (for MAPKKKs) or a-casein (for PLK4). The kinase reaction
was initiated by the addition of [g-32P] ATP, incubated for 30min at 30 �C and
terminated with SDS loading buffer. Incorporation of the radioactive phosphate
group was visualized by autoradiography. GST-PLK4(K41M) was produced in
E. coli using pGEX6P-1.

Phosphatase assay. Immunoprecipitated Myc-PLK4 was incubated with 55U of
calf-intestine alkaline phosphatase (Roche) in AP buffer (50mM Tris-HCl pH 8.0,
100mM NaCl and 10mM MgCl2) for 30min at 25 �C. Phosphatase inhibitors were
25mM b-glycerophosphate, 25mM NaF and 2mM sodium vanadate.

Immunofluorescence staining. Cells grown on glass coverslips were transfected
with plasmids using Effectene and fixed with ice-cold methanol for 10min. The
cells were washed with PBS, permeabilized with 0.1% Triton X-100 for 5min,
incubated in the blocking solution BlockAce (Snow Brand) for 1 h, then incubated
with the appropriate primary antibody (anti-g-tubulin GTU-88 (Sigma); anti-Myc
9E10 (Santa Cruz Biotechnology); anti-Myc 9B11, anti-HA 6E2 (Cell Signaling);
and anti-Centrin 20H5 (Millipore)) for 50min in PBS containing 2% BSA.
Following four PBS washes, cells were incubated for 30min with the appropriate
second antibody (Alexa Fluor 488-conjugated anti-mouse IgG1, Alexa Fluor
568-conjugated anti-mouse IgG or IgG2a, Cy2-conjugated anti-rabbit IgG or
Dylight488-conjugated anti-rabbit IgG antibody). The coverslips were washed and
mounted in FluorSave (Calbiochem). Fluorescence microscopic images were
captured using a Nikon TE2000-E fluorescent microscope equipped with a Pho-
tometrics Cool-SNAP-HQ CCD camera, and the Universal Metamorph software
(Molecular Devices) or Keyence BZ-9000 fluorescence microscope system.

siRNA- or shRNA-mediated gene silencing. Cells were transfected with siRNAs
using Lipofectamine RNAiMAX (Invitrogen). The following siRNAs were used:
si-TAK1 no. 1, 50-AAAGCGUUUAUUGUAGAGCUUdTdT-30 ; si-TAK1 no. 2, 50-CC
CGUGUGAACCAUCCUAAUAdTdT-30 ; i-TAK1 no. 3, 50-AACGGACAGCCAAGA
CGUAGAdTdT-30 ; si-PLK4 no. 1, 50-AAGGACUUGGUCUUACAACUAdTdT-30 ;
si-PLK4 no. 2, 50-GGACCUUAUUCACCAGUUAdTdT-30; si-MKK4 no. 1, 50-AGGG
UGUAUAGUGUUCACAAAdTdT-30; si-MKK4 no. 2, 50-UUGGACGAGGAGCUU
AUGGUUdTdT-30 .

The cells were subjected to various analyses 96 h (for si-TAK1), 72 h (for
si-PLK4) or 48 h (for si-MKK4) after transfection. The shRNA expression vectors

were constructed by inserting the following synthetic oligonucleotides into pSu-
per.retro vector: shRNA for mouse MKK4 (shMKK4), 50-gatccccATGTC-
TACCTCGTTCGATAttcaagagaTATCGAACGAGGTAGACATttttta-30 ; shRNA
for mouse MKK7 (shMKK7), 50-gatccccgTGAGATACTCGAGGTGGATttcaaga-
gaATCCACCTCGAGTATCTCAttttta-30 . MKK3/6� /�MEFs47 were infected with
retroviruses encoding shMKK4 and/or shMKK7, and the infected cells were
selected using puromycin.

Flow cytometry. MEFs were treated with etoposide (0.4 mM) for 8 h followed by
recovery in drug-free medium for 2 days. The cells were trypsinized, washed with
PBS and fixed in 70% EtOH at � 20 �C. Following a wash in PBS, the cells were
stained with propidium iodide for 30min and filtered through a cell-strainer. DNA
content per cell was analysed by flow cytometry using Guava PCA (Millipore).

Statistics. The statistical significance of the difference between mean values was
tested using Student’s t-test. Data are means±s.e.m. of at least three independent
experiments.
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