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Two-dimensional structure from random
multiparticle X-ray scattering images using
cross-correlations
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Knowledge of the structure of biological macromolecules, especially in their native environ-

ment, is crucial because of the close structure–function relationship. X-ray small-angle

scattering is used to determine the shape of particles in solution, but the achievable reso-

lution is limited owing to averaging over particle orientations. In 1977, Kam proposed to

obtain additional structural information from the cross-correlation of the scattering inten-

sities. Here we develop the method in two dimensions, and give a procedure by which the

single-particle diffraction pattern is extracted in a model-independent way from the corre-

lations. We demonstrate its application to a large set of synchrotron X-ray scattering images

on ensembles of identical, randomly oriented particles of 350 or 200nm in size. The obtained

15 nm resolution in the reconstructed shape is independent of the number of scatterers. The

results are discussed in view of proposed ‘snapshot’ scattering by molecules in the liquid

phase at X-ray free-electron lasers.
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T
he majority of macromolecular structures currently avail-
able at atomic resolution has resulted from X-ray cryo-
crystallography at synchrotrons, which requires crystals

larger than a few micrometres to avoid excessive radiation
damage1. Three-dimensional (3D) molecular shapes may also be
extracted from solution small-angle X-ray scattering (SAXS)2,3,
whereby the few nanometers limit in the resolution4,5 is owing to
the fact that only the isotropic component of the single-particle
scattering intensity is accessible.

The advent of X-ray free-electron lasers (XFELs)6 is
stimulating the emergence of new imaging methodologies7,8.
Among these is serial crystallography on easier-to-grow
submicrometer crystals, in the ‘diffract-and-destroy’ mode,
which was recently demonstrated to provide near-atomic
resolution9. However, accessing structural information on non-
crystalline and non-oriented samples beyond the capabilities of
SAXS remains challenging. Snapshot diffraction from single
particles has been considered by several groups10–12, motivated
by the high-intensity of the fs-duration XFEL pulses. But despite
the enormous increase in peak brilliance, a typical XFEL single-
shot diffraction image of an isolated biomolecule is predicted to
yield much less than one photon per coherent pixel at the relevant
resolution, requiring sophisticated statistical and computational
methods for establishing the model of the 3D diffraction
intensity, which is in best agreement with the noisy
experimental data10,11.

A remarkable alternative, which exploits the same features of
XFEL radiation, is the method proposed already in 1977 by
Kam13, who suggested evaluating the cross-correlations (CCs) of
the scattered intensity from identical particles in solution. These
correlations are sensitive to angular fluctuations, which are
averaged out in the traditional SAXS analysis. The disadvantage
of the CC method, that the single-particle diffraction pattern
must be derived indirectly, is largely compensated by the fact that
multiparticle scattering is implicitly allowed, that experimental
complications such as background scattering and non-uniform
beam profile are easily accounted for, and, most importantly, that
dealing with the large number of scattering images necessary to
counteract the low photon count rates is absolutely
straightforward.

For our demonstration experiment at a synchrotron source, the
reduced X-ray beam fluence was made up for by using strongly
scattering nanostructures, and by immobilizing them to permit
arbitrarily long acquisition. Liquid-state behaviour was mimicked
by illuminating different random configurations of particles.
Reducing the number of effective dimensions in the problem
from three to two simplified both sample preparation and CC
data analysis. Such an experiment was recently proposed14,15 and
realized with nanocylinders16. However, the reconstructed
structure is obscured by a prominent ball-shaped feature, and
the claimed resolution is of the order of the small cylinder
dimension, both of which limit the image quality. We report here
2D structural determinations of gold nanoparticles exhibiting
threefold symmetry, using a rigorous CC-based protocol. Several
innovations allow for the first time the full and model-
independent calculation of the single-particle X-ray diffraction
patterns, and the resulting reconstructions fit extremely well to
scanning electron microscopy (SEM) images of the particles. We
also confirm experimentally the key prediction, that the CC
signal-to-noise ratio is essentially independent of the average
number of scatterers17.

Results
CC method in 2D. The workflow of the CC method is illustrated
schematically in Fig. 1. The input consists of a large set of

scattering images with intensities I acquired on a 2D liquid,
meaning that each exposure is taken on a random ensemble of
multiple identical particles. The crucial step is the indirect
determination of the diffraction pattern of a single particle in
reciprocal space

Sðq;fÞ¼
X
n2N

snðqÞe� inf; ð1Þ

from which the 2D electron density of the particle is recon-
structed, via phase retrieval, as in standard coherent diffractive
imaging18,19. A polar coordinate system (q,f) centred at the
reciprocal space origin is the natural choice for the CC analysis.
snðqÞf g � F� 1

f ½Sðq;fÞ� are azimuthal Fourier components,
which vanish for odd n due to Friedel’s law, and for which
s�n ¼ s� n, because S is a real quantity.

We define the SAXS or powder pattern as the 1-point CC,

Cð1ÞðqÞ¼ hIðq;fÞfi; ð2Þ
which depends only on the absolute value of the momentum
transfer q. With /...S we denote an average over the images, and
with � � �f the rotational average over the azimuthal angle
(Fig. 2a). The 1-point CC is related to the single-particle
scattering intensity by

Cð1ÞðqÞ¼N s0ðqÞ; ð3Þ
where N is the effective average number of particles in the X-ray
beam, and, at this point, is simply a scaling factor.

Additional structural information can be extracted from
higher-order correlations. The 2-point CC results from the
average of the product of two scattering intensities. It depends
only on the absolute values of the two momentum transfers and
the angle between them (Fig. 2b). The definition is14–16

Cð2Þðq1; q2;cÞ¼ hdIðq1;fþcÞdIðq2;fÞ
fi; ð4Þ

where dI(q,f)¼ I(q,f)�C(1)(q) is the difference of the measured
intensity from its average value. The Fourier components
cð2Þn ðq1; q2Þ � F� 1

c Cð2Þðq1; q2;cÞ
� �

are related to the single-
particle scattering intensity by

cð2Þn ðq1; q2Þ¼N snðq1Þs�nðq2Þ � kð2Þ ðn 6¼ 0Þ: ð5Þ

k(2)r1 is a factor that depends only on the X-ray beam shape
(see Methods). Equation (5) forms the basis of the CC method.
Provided that the experimental data on the left-hand side are
undisturbed, one can find solutions sn(q) that are unique to
within the scaling factor 1=

ffiffiffiffi
N

p
and phasors exp(� iwn) (see

Methods). In contrast to previous works15,20, to resolve these
ambiguities we use the 3-point CC, which is defined in an
analogous way as the 2-point CC and represents a generalization
of previous suggestions21,22,

Cð3Þðq1; q2; q3;c1;c2Þ¼ hdIðq1;fþc1ÞdIðq2;fþc2ÞdIðq3;fÞ
fi ;
ð6Þ

and whose Fourier components cð3Þnmðq1; q2; q3Þ �
F� 1

c1;c2
Cð3Þðq1; q2; q3;c1;c2Þ
� �

yield

cð3Þnmðq1; q2; q3Þ¼N snðq1Þsmðq2Þs�nþmðq3Þ � kð3Þ
ðn;m; nþm 6¼ 0Þ:

ð7Þ

k(3) is an analogue of k(2). These equations are used to fix the
values of N and wn. Thus the remaining ambiguity in the Fourier
coefficients s0(q) and {sn(q)}na0 is eliminated, and the single-
particle diffraction pattern S(q,f) can be fully determined.
Moreover, the number of independent equations (7) is much
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larger than the number of unknowns, which allows validation of
the computed set of Fourier coefficients.

Experimental 2D structure determinations. The samples for the
2D CC demonstration experiment consisted of a large number of
nominally identical 2D gold nanostructures, anchored to a
membrane, with random positions and orientations (Fig. 1d). The
membrane was scanned through a focused X-ray beam of 2Å
wavelength, and the scattering patterns were recorded with a low-
noise pixel detector23 positioned 7.2m from the sample. We
measured samples with threefold symmetric particles, with either
350 (Fig. 1e) or 200 nm size, and three different densities of 1.25,
10 or 40 particles per 100 mm2 area. For each sample, 3,751
scattering images were acquired at different positions on the
membrane, simulating instantaneous exposures of a 2D liquid.
Such a set of images was analysed following the CC protocol,
and an example of the final 2D nanoparticle structure is shown
at the end of the workflow diagram in Fig. 1c, for 350 nm
nanostructures and reconstructed from the data set taken on the
sample with an average density of 10 particles per 100mm2. Panel
(e) of the figure demonstrates the excellent agreement of the

recovered 2D shape with the shape from an SEM micrograph of
an individual nanostructure.

In the following, we go through the steps described in the
previous section that lead to the final reconstruction, presenting
the intermediate results in more detail. Figure 2 shows three
examples of scattering images. The inset in (a) shows the 1-point
CC after subtraction of the background signal taken from
exposures of an empty membrane. In all three images, subtle
azimuthal intensity fluctuations are visible. They are filtered out
by the C(1)-azimuthal averaging, but they provide precisely the
additional information that contributes to the higher-order
correlations. Figure 3 is devoted to the 2-point CCs. Panels (c)
and (d) show examples of C(2)(q1,q2,c), while panels (a) and (b)
display the coefficients cð2Þ6 ðq1; q2Þ and cð2Þ12 ðq1; q2Þ, respectively,
where the 2D representation as a function of q1 and q2 serves to
emphasize the importance of the non-diagonal (q1aq2) CCs in
our protocol. The encoded information was then used, in
combination with that from the 3-point CC, to extract the
Fourier components {sn(q)}na0 of the single-particle diffraction
intensity. In the analysed range of transferred momentum
(0.009rqr0.24 nm� 1), only the coefficients with n¼ 6, 12, 18,
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Figure 1 | Overview of the cross-correlation based method applied to the 2D structure determination. The flow of the protocol follows the magenta

arrows: (a) the membrane carrying the gold nanostructures is scanned by the X-ray beam, and a number of scattering images, with intensities I, is acquired

at different positions. The CCs (C(1), C(2) and C(3)) are calculated as averages over all images, and (b) the single-particle diffraction pattern S is computed.

The red bar represents a reciprocal space momentum transfer of 0.1 nm� 1. (c) The 2D electron density r is finally reconstructed using a phasing

algorithm. The red bar corresponds to 100nm. (d) SEM image of a small part of the sample membrane, showing the particles in random orientations.

The magnification is an oblique view of a single nanostructure. The dashed orange rectangle covers an area of 14�6mm2, which corresponds

approximately to the X-ray beam illumination area (FWHM limit of the beam intensity in the two directions). (e) Top SEM view of a single particle,

on which the dashed orange contour of the reconstructed shape is superimposed. The red bar again corresponds to 100nm.

102

101

100

103

ph./
pix.

log10C
(1)(q)

�
q �

q1 q2 q1
q2

q3

�2

�1

Figure 2 | Scattering images and cross-correlation definition. Three examples of the 3,751 different scattering images of the gold nanostructures of

Fig. 1d, on a logarithmic colour scale. Superimposed are parameters pertinent (a) to the definition of the 1-point CC (equation (2)), (b) to the 2-point CC

(equation (4)) and (c) to the 3-point CC (equation (6)). The red dashed circles indicate the azimuthal averages. The inset in a shows the experimental

C(1)(q), whereby the green dashed curve is the subtracted background signal. The red bars correspond to q¼0.1 nm� 1.
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24, 30, displayed in Fig. 4a, could be calculated consistently and
validated. Figure 4b displays ratios of 3-point CC components cð3Þnm

to the single-particle coefficients sn, as points in the complex
plane (see equation (13) in the Methods for a precise
formulation) and validity is inferred by the fact that almost all
such points fall at the same real-positive value, which is
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Figure 3 | Two-point cross-correlations. (a,b) Two-dimensional

representations of the experimentally derived 2-point CC Fourier

components cn
ð2Þðq1; q2Þ, as a function of q1 and q2. The data are normalized

with s0(q1)s0(q2), and are shown for n¼6 and n¼ 12. (c) Two-point CCs

C(2)(q1,q2,c) as a function of c. The (fixed) q1 and (variable) q2 values

follow the paths of the magenta arrows in a,b for the plots in the left

column, and of the black arrows in a,b for those in the right column. The

spikes observed for q1¼ q2 at c¼0, owing to noise and interparticle

interference, and at c¼p, owing only to interparticle interference, are

marked with orange and red dots, respectively. (d) Diagonal 2-point CC

C(2)(q1,q2,c), as a function of c, for different q values corresponding to the

differently labelled black dots on the diagonal in a,b. The spikes are marked

as described in c.
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Figure 4 | Single-particle diffraction pattern. (a) Fourier coefficient sn(q)

of the single-particle diffraction pattern, extracted from the experimental

CCs, as a function of q. The data are shown for n¼6, 12, 18, 24, 30, and

are rescaled with s0(q). The continuous and dashed curves correspond

to the real and imaginary parts, respectively. (b) Complex plane

representations of the ratios Rnm(qa,qb,qc) (equation (13)), for different

n and m multiples of 6, for fixed qa¼0.066 nm� 1 and qb¼0.115 nm� 1, and

for a large number of qc. The centroid point in orange is the median of

all points, and the orange circle encloses the area containing the closest

80% of all points. The imaginary part of the centroid point is negligible,

and its real part corresponds to 1=
ffiffiffiffi
~N

p
, with N¼ ~N � ðk2ð3Þ=k3ð2ÞÞ � 20.

(c) Single-particle diffraction pattern S(q,f), on a logarithmic colour scale,

and defined over a disk-shaped region with maximal reciprocal-space

frequency qmax¼0.24 nm� 1. The dark regions in the corners are deficient

of data. The red bar corresponds to q¼0.1 nm� 1.
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proportional to 1=
ffiffiffiffi
N

p
. This determines the effective average

number of scattering particles to be NE20. Other coefficients
were not considered further, because they could neither be
determined self-consistently nor validated (see Supplementary
Figs S1 and S2b–e). Their contribution is in any case negligible
(Supplementary Fig. S2a), with the exception of n¼ 2, and the
motivations for considering s2(q) as an artifact are described in
detail in the Supplementary Methods.

The single-particle diffraction intensity S(q,f), shown in
Fig. 4c, is obtained by merging the valid coefficients
{sn(q)}n¼±6,12,18,24,30 together with s0(q), and obviously shows
sixfold symmetry. Results from simulations suggest that the small
regions with negative intensity are owing to non-perfectly
identical scatterers (see Supplementary Fig. S3). S was
subsequently used as input to a phase retrieval algorithm for
reconstructing the 2D electron density r, shown in Fig. 5a,
normalized to be on average unity in the interior of the structure.
We estimate the spatial resolution to be B17.5 nm from the
average sharpness of the edge of the structure, defined as the
mean separation between the 0.1 and 0.9 contour levels. The high
reliability of the phase retrieval reconstruction was assessed from
the phase retrieval transfer function (PRTF)24, shown as a
function of the momentum transfer q in Fig. 5b, whose value is
well above 0.5 in the relevant range in reciprocal space
(qo0.18 nm� 1).

For the smaller 200 nm particles, we obtained similar results,
illustrated in Fig. 6. In this case, the resolution is estimated to be
B13.5 nm (corresponding to q¼ 0.23 nm� 1). For both 350 and
200 nm particle sizes, the experimental data measured at the three
different surface densities imply average numbers of scattering
particles of NE2.5/20/80, which are consistent with the known
sample densities, beam size and beam shape (see Methods).
Moreover, as can be seen in Fig. 7a, the data taken on the
different samples demonstrate that the 2-point CCs scale properly
with N, as required by equation (5), with some deviations at larger
q. Equivalently, Fig. 7b,c show that the extracted s0(q) and sn(q)
are in general independent of N. Only at large q is there a
noticeable suppression of sn with decreasing N, an observation
that we cannot explain at present.

Discussion
In the framework of X-ray diffraction, the results obtained
represent the first model-independent experimental proof-of-
principle of the CC method applied to 2D structure determina-
tion. From the low single-particle signal-to-background ratio
highlighted in Fig. 7b, it is manifest that standard 2D structure
determination by phase retrieval from a unique single-particle
diffraction image would be unsuccessful. The difference between
the reconstructed shape and the real shape of one representative
particle is much smaller than the achieved resolution of B15 nm,
which is not an intrinsic limitation of the method, but rather
reflects the difficulty of fabricating identical but randomly
oriented nanostructures. Characteristic features of the protocol,
described in detail in the Methods, are the ‘diagonalization’
procedure to consistently solve the 2-point equation (5), and the
use of the 3-point equation (7) for validation of the single-particle
diffraction Fourier components. In this way, the single-particle
diffraction pattern is determined unambiguously and in a model-
independent fashion. This distinguishes our protocol from
previous work. Saldin et al.16 derived the phases of such
Fourier components from previous knowledge of the elongated
shape of the particles under investigation and did not explicitly
discuss how the overall ratio between s0 and {sn}n40 was
determined. We found this ratio to be decisive for the quality
of the reconstructed 2D structures. As s0 and {sn}n40 scale as

1/N and 1=
ffiffiffiffiffiffiffiffiffiffiffi
Nkð2Þ

p
, respectively (equations (3) and (7)),

underestimating the average number of scatterers N or setting
k(2)¼ 1, as for a flat-top beam profile, results in a decrease of
contrast in the calculated single-particle diffraction pattern. Using
such reduced contrast images as input for the phasing algorithm,
we were able to produce prominent, ball-shaped artefacts, of the
sort present in the final reconstruction presented in ref. 16.

The basic equations (5) and (7) are strictly valid in the limit of
an infinite number of scattering images, Nim, which is necessary
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Figure 5 | Two-dimensional structure. (a) Averaged 2D electron density r
from 50 reconstructions. r is normalized to be on average unity in the
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red bar corresponds to 100nm. The dashed white rectangle delimits the

region of compact support imposed during the iterative phase retrieval
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through the 2D electron density r, at the positions marked in cyan in a.
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for averaging out the contributions to the CCs arising from pairs
of particles in the same image (Supplementary Note 1). In
practice, this means that a ‘sufficient’ number of images has to be
acquired, which leads one to consider the fluctuations, or signal-
to-noise, of the CC at large Nim and as a function of the number
of scatterers N. The signal-to-noise of the 2-point CC was
evaluated analytically for the 3D case17, and found to be
independent of N, unless the background scattering is
comparable to that from an individual particle, in which case
increasing N becomes advantageous. These findings are
supported by an appropriate analysis of our data. We take the

coefficients {sn(q)}n40 to be the signal, which is N-independent,
hence estimating the signal-to-noise Dsn(q) becomes equivalent to
estimating the noise. Figure 7d displays Dsn(q) derived from the
experimental data for Nim¼ 100 (Methods), and for three
different N¼ 2.5, 20 and 80. For the 350 nm particles, Dsn(q) is
found to be independent of N, while for the case of the smaller,
200-nm-sized structures, which have a less favourable signal-to-
background scattering ratio (Fig. 7b), a decrease in Dsn(q) at large
q is evident as N is increased from 2.5 to 20.

A multiparticle diffraction image is the sum of the images of
each particle plus an interference term from each pair of particles,
if these are closer to one another than the transverse coherence
length. As this term is phase-modulated by the interparticle
distance, random particle positions cause its contribution to
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C(2)(q1,q2,c) to average out in the limit of an infinite number of
images, with the exception at q1¼ q2 and c¼ 0 or c¼ p (see
Supplementary Note 2). This explains the two spikes of the same
height present in the diagonal CCs, which are proportional to the
square of the average number of particles in a coherence area and
which are marked with orange and red dots in Figs 3d and 7a.
The optimal size of the coherence area is thus twice the size of a
single particle, in order to achieve Nyquist sampling and at the
same time to minimize the number of interfering particles.

It is worth mentioning the other factors that modify the CC
identities. Poisson noise and (uncorrelated) background scatter-
ing result in a spike at c¼ 0 in C(2)(q1,q2,c) for q1¼ q2
(Supplementary Fig. S4 and Supplementary Note 3), marked
with orange dots in Figs 3d and 7a. Because perturbations from
noise and interference effects both appear as localized spikes, it is
not difficult to evaluate their importance, and in our case we
could also easily verify that they were filtered out during the
procedure to obtain the coefficients sn (Methods). A preferred
orientation of the identical particles also requires corrections of
(5) and (7) (Supplementary Note 1). Finally, a brief discussion
should be made of the general case of non-identical scattering
particles. If the situation can be reduced to a finite number of
2D particle species with uncorrelated orientation, the validity
of equation (5) is restored by replacing the right-hand side with
a sum over the species

P
A NA sA;nðq1Þs�A;nðq2Þ, and a similar

modification is necessary in (3) and (7). This opens the door to
studying systems of different 2D particle species in ‘chemical
equilibrium’, or of identical 3D particles presenting a finite
number of different 2D projections with respect to the incoming
beam. For the simplest case of a two-component particle/solvent
system, the separately measured contribution to the CCs of the
solvent alone can be subtracted. In our experiments, the solvent
is represented by the membrane on which the nanoparticles
were anchored, and thus we determined solvent contributions
using the scattering data from an empty membrane. The clear
contribution to the 1-point CC, which we attribute to membrane
thickness fluctuations, was taken into account by background
subtraction (inset of Fig. 2a). For the 2- and 3-point CCs,
however, we infer an effectively vanishing contribution.

There is a number of 2D static systems that are not strictly
included in the framework described above, and which are
studied or characterized by SAXS measurements at synchrotron
sources. Evaluating the higher-order CCs of the scattered images
is trivial, and could already at present disclose additional
information25,26, for example the average anisotropy of the
domains in magnetic storage media or of the pores in fuel cell
membranes. The CC analysis may also be useful to access short-
range structural properties in disordered, slowly changing
systems. Wochner et al.27 have used the diagonal 2-point CC,
derived from synchrotron X-ray coherent diffraction data from
highly concentrated suspensions of PMMA nanospheres, to
identify the preferential symmetry of 3D clusters25 that form
temporarily within the sample. Regarding possible future
investigations on 3D structural features of macromolecules or
other particles in solution, which exploit the brilliance of XFEL
radiation sources, it appears that applying the CC method in the
spirit of its original formulation13 is a suitable approach;
dynamical information may be accessed through the
straightforward generalization of the CC analysis to laser
pump/X-ray probe scattering images, or even to scattering data
obtained with X-ray split-and-delay data28,29. The present 2D
demonstration experiment and its discussion have direct
relevance to the 3D case, regarding the effects of interparticle
interference and of the unavoidably non-uniform beam intensity
profile, as well as the independence of the signal-to-noise from
the average number of scattering particles. Increasing the

dimensionality from 2D to 3D, however, calls for some
additional considerations. The 3D single-particle diffraction
pattern can be decomposed into spherical harmonics

Sðq; y;fÞ¼
X
n;m

snmðqÞYnmðy;fÞ; ð8Þ

and there are clearly more components than for the 2D case. In
contrast, the number of 2-point CC identities13,30 in 3D is the
same as in 2D:

cð2Þn ðq1; q2Þ¼N
X
m

snmðq1Þs�nmðq2Þ; ð9Þ

Here, cð2Þn ðq1; q2Þ are the components of C(2)(q1,q2,c) with
respect to the n-th order Legendre polynomials in cosc. Elser31

has recently shown that without additional assumptions, these
equations cannot be solved for the coefficients snm(q) to the same
extent as in 2D (that is, to within the parameters N and wn). These
assumptions may include a priori knowledge of the particle
symmetries, which reduce the number of independent parameters
in S(q,y,f). For axially symmetric particles, only the sn0
coefficients are non-vanishing13. Similarly, if the particles
exhibit icosahedral symmetry, as is often the case in viruses21,
for each n there is at most one component proportional to an
icosahedral harmonic32. In both cases, the problem becomes
equivalent to the 2D case. In general, equation (9) may be
interpreted as constraints on S, to be used in addition to the 3D
equivalent of (3):

Cð1ÞðqÞ¼N s00ðqÞ; ð10Þ

for modelling a 3D electron density of the particles at higher
resolution than is possible with equation (10) alone. Regarding
the use of the 3-point CC, the definition (6) is applicable also in
the 3D case. It represents a generalization of that put forward in
ref. 21, in that it implies access to three instead of two reciprocal
space vectors. Although the experimental geometry in X-ray
diffraction experiments limits these triples to be coplanar, the
new definition provides additional constraints that can be
exploited for fixing the snm(q) coefficients, in a similar manner
to that described in ref. 21.

At large scattering angles, straightforward corrections are
necessary for the anisotropic scattering owing to linear polariza-
tion33 of the incoming beam and for the curvature of the Ewald
sphere. However, the bottleneck to achieving subnanometer
resolution is that the key parameter determining the precision of
the CC method is the number of scattered photons per coherent
pixel and per particle17, which especially for macromolecules may
be well below unity. There is no doubt that the method, as any
other single-particle approach, would greatly profit from
increases in the X-ray beam fluence. The adavantage of using
CCs is that the low scattering power can be compensated simply
by drastically increasing the number of acquired images, although
even weak solvent scattering may become a significant, additional
issue. For this reason, the next round of experiments, which will
attempt to identify nm-scale features of 3D molecules in liquid or
aerosol jets, is considered crucial for the development of the CC
method.

Methods
Samples. The samples were prepared on a 2� 2mm2 Si3N4 membrane of 200 nm
thickness, held by a Si wafer and coated with a Cr/Au (5/20 nm) seed layer. The
gold nanoparticles were fabricated by electroplating into a 500-nm-thick PMMA
resist mould, patterned by electron beam lithography. More details on the nano-
fabrication procedures can be found elsewhere34. The particles with designed
threefold symmetry were randomly oriented about the axis perpendicular to the
membrane, and placed in random positions within an 800� 800mm2 field, with the
restriction of a 500 nm minimum interparticle distance. The measurements were
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performed on several samples, which differed in the diameter/thickness of the
nanostructures (350/350 nm, respectively, 200/250 nm), and in the average particle
surface density (1.25/10/40 particles per 100 mm2 area).

Beamline setup and data acquisition. The X-ray measurements were performed
at the cSAXS beamline (X12SA) of the Swiss Light Source synchrotron at the Paul
Scherrer Institute. The beamline was set to a photon energy of 6.2 keV, with a
relative bandwidth of B10� 4 obtained with a Si(111) double-crystal mono-
chromator, and with a flux ofB2 � 1011 photons per second. The beam was focused
onto the sample; the horizontal and vertical focusing were achieved by bending
appropriately the second monochromator crystal and the higher-harmonic rejec-
tion mirror, located 5.5 and 4.5m upstream of the sample, respectively. The beam
size was 14� 6 mm2 FWHM (see below), and the transverse coherence length was
at least twice the dimension of a nanostructure, that is, at least 700 nm. The
scattered X-rays were transported through an evacuated flight tube to the detector,
which was placed 7.2m behind the sample. The detector23 was a Pilatus 2M, with
1675� 1475 square pixels of 172 mm size, and was protected from the direct beam
by a central beamstop. The X-ray beam diameter at the detector position, measured
with an attenuated beam and without inserted sample, corresponded to 3–4
detector pixels. For each sample, 3,751 scattering images of 1 s acquisition time
were taken, scanning the membrane on a 121� 31 point rectangular grid, which
covered an area of 600� 600 mm2.

X-ray beam shape parameters and beam shape assessement. The correction
parameters k(2) and k(3) and the relation between the effective parameter N and the
particle density are determined by the 2D intensity illumination function at the
sample, O(x,y), according to k(j)¼ (

R
dxdyOj)/(

R
dxdyO) (Supplementary Note 4).

O(x,y) was determined experimentally as described in Supplementary Fig. S5 and
the Supplementary Methods, and resulted in k(2)E0.26, k(3)E0.14 and N/NFWHM

Ep2/4, where NFWHM is the number of particles in the FWHM area of the beam.

Discretization of the diffracted intensity. The position of the scattering centre on
the pixel detector was established by averaging a number of centre-of-gravity
points of pairs of opposite Bragg reflections produced by a 2D hexagonal periodic
array (Supplementary Fig. S5c). A polar ‘spider-web’ grid was defined around this
centre as (qa,fk), with aA{1,y,Nq} and fk¼ k 2p k/Nf, for kA{0,y,Nf� 1},
which also prescribes the binning of the detector pixels. The scattering intensities in
polar coordinates I(qa,fk) were then calculated as the average over the pixels
belonging to the same polar bin. For the 350-nm-sized structures, qa was defined to
be spaced by the equivalent of two detector pixels (0.0015 nm� 1), and three dif-
ferent qa ranges were considered: 0.009–0.006 nm� 1 (Nq¼ 35), 0.015–0.12 nm� 1

(Nq¼ 71) and 0.03–0.24 nm� 1 (Nq¼ 141), with Nf¼ 32, 64 and 128 azimuthal
sectors, respectively. For the 200 nm structures, qa was defined to be spaced by
the equivalent of four detector pixels (0.003 nm� 1), and four different qa ranges
were considered: 0.009–0.06 nm� 1 (Nq¼ 18), 0.015–0.12 nm� 1 (Nq¼ 36),
0.03–0.24 nm� 1 (Nq¼ 71) and 0.06–0.37 nm� 1 (Nq¼ 106), with Nf¼ 32, 64,
128 and 256 azimuthal sectors, respectively.

Computation of the single-particle diffraction pattern: theory. The core of the
presented work concerns the calculation of the single-particle diffraction pattern
S(q,f) from the CCs, that is, the solution of equations (3), (5) and (7) for sn(q). Let
qa be a finite, discrete set of q values. Inspired by Kam and coworkers22, and also by
Saldin and coworkers30, for na0 we use the 2-point CC coefficients to define the
Hermitian matrix Cn;ab ¼ cð2Þn ðqa; qbÞ, which can be diagonalized to yield real
eigenvalues ln,i (iA{1,y,Nq}). We designate ln,1 to be the largest positive
eigenvalue and write the eigenvector decomposition as

Cn;ab ¼ sn;a � s�n;b þ
X
i	2

ð� 1Þsgnðln;iÞ ~sn;i;a �~s
�
n;i;b ð11Þ

with j sn j ¼
ffiffiffiffiffiffiffiffi
ln;1

p
and j ~sn;i j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ln;i j

p
(iA{2,y,Nq}). Note that the vector

sn is defined to within an overall phase wn. According to (5), one expects a single
non-vanishing, positive eigenvalue ln,1. Therefore, a signature of the various
perturbations, such as finite number of images, shot noise, uncorrelated
background noise, interparticle interference, preferred particle orientation and
inequivalent particles, being small is that

ln;1 
 j ln;i j ði 	 2Þ; ð12Þ

which is equivalent to requiring the second term on the right-hand side of (11)
to be negligible. If this is the case, one uses the eigenvectors sn to compute
the ratios

Rnmðqa; qb; qcÞ � cð3Þnmðqa; qb; qcÞ
sn;a sm;b s�nþm;c

¼ 1ffiffiffiffi
N

p �

ffiffiffiffiffiffiffiffi
k2ð3Þ
k3ð2Þ

vuut : ð13Þ

The last equality arises from the 3-point CC equation (7) in combination with
equation (15) below, and enables fixing wn and the effective number of particles N.

These parameters are actually overdetermined, which allows for an additional
validation. Finally, the desired single-particle diffraction components are set to

s0ðqaÞ¼
1
N

Cð1ÞðqaÞ ð14Þ

and

snðqaÞ¼
1ffiffiffiffi
N

p sn;a � 1ffiffiffiffiffiffiffiffikð2Þ
p : ð15Þ

Computation of the single-particle diffraction pattern: practice. The 2D reci-
procal space discretization described above was used for all calculations, whereby
each relevant equation translates in a straightforward way to the discretized form.
Before the computation of the CC, the average intensity was subtracted from each
individual diffraction image, in order to eliminate eventual beamline artefacts
that result in configuration-independent contributions to the scattering intensity.
Diagonalization along the lines of equation (11) was performed for even n in the
three or four qa ranges for 350 or 200 nm structures, respectively (Supplementary

Methods). Requirement (12) was translated into l1=
ffiffiffiffiffiffiffiffiffiffiffiffiP

i l
2
i

q
4 0:2, and, if not

fulfilled, the lower limit of the qa range was raised (due to the high sensitivity to
disturbances of Cn,ab, when snE0 at low qa). The sn from the qa ranges were then
merged by matching their phase at overlapping qa intervals. The phase relations of
equation (13), for the relevant n and m and for a number of different qa, qb and qc,
represent an overconstrained system of first-order equations in the overall
correction phases wn, which is straightforwardly solved following the procedure
described in the Supplementary Methods. Because of the mirror symmetry of the
nanostructures considered in the experiments, the sn can be chosen real, so that
the phase ambiguity is effectively only a sign ambiguity. However, the method
to fix the overall phases of the sn is absolutely general, as demonstrated in
Supplementary Fig. 6. Finally, the parameter N was chosen to best fulfill the
amplitude relation of (13), for various n, m. The final values of s0(qa) and sn(qa)
were then determined using (14) and (15), and the coefficients with nA6N were
used to calculate the single-particle diffraction pattern S(q,f) with equation (1) on
a polar grid with Nf¼ 128 azimuthal points for the 350 nm structures (7n7r30)
and Nf¼ 256 for the 200 nm structures (7n7r48).

Phase retrieval. For reconstruction of the structures, the polar expressions for
single-particle diffraction intensities S(q,f) were interpolated onto a Cartesian grid
(qx,qy), suitable for fast Fourier transform algorithms. For the 350 nm particles, the
grid was 512� 512 points with qmax¼ 0.24 nm� 1, which corresponds to a real-
space pixel size of 13.0 nm. For the 200 nm structures, the grid was 500� 500
points with qmax¼ 0.37 nm� 1, giving a real-space pixel size of 8.4 nm. A high-pass
version of the structure autocorrelation35, given by the inverse Fourier transform of
S(qx,qy), was used to determine the size of the autocorrelation support. The support
region of the 2D electron density was then defined as a rectangle of half that size,
enlarged by one pixel in each direction to avoid artificial sharpening of the
reconstruction edges. The reconstruction of the 2D structures was performed with
an iterative transform algorithm using the above-mentioned support as real-space
constraint and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðqx ; qyÞ

p
as reciprocal space modulus constraint. The procedure36

consisted of a series of 45 hybrid input–output37 iterations followed by five
error-reduction steps, repeated until a total of 1,000 iterations was reached. In the
reciprocal space projection steps, the algorithm was allowed to fill the regions
obscured by the beamstop (qo0.009 nm� 1) and those with negative S(qx,qy)
values. As the polar reconstruction of S(q,f) is limited to a disk-shaped region, the
Cartesian representation has large regions of missing data at the corners. To avoid
artifacts from the abrupt interruption of data at the boundary of this disk, we used
Fourier-weighted projections36 with a non-binary mask, suitable to allow the
algorithm to slightly extrapolate the measured data by a few pixels without
introducing a large number of free parameters in the reconstruction. Starting
with different random phase sets, 50 reconstructions were performed, which
were then registered within a small fraction of a pixel38, and averaged to obtain
the final 2D structure shown in Fig. 5a. The reliability of the reconstruction
was evaluated from the azimuthal average of the PRTF24, calculated from the
50 reconstructions.

Signal-to-noise estimates. For a given number of scattering images, Nim, we
estimate the noise Dsn(q) of the Fourier coefficients of the single-particle diffraction
pattern as follows:

DsnðqÞ¼
1

Nsets � 1

XNsets

s¼ 1

ss;nðqÞ� sref ;nðqÞ
� �2 !1

2

ð16Þ

Here, Nsets is the number of sets of scattering images used for the estimate, each
consisting of Nim randomly chosen images from the full set of 3,751. ss,n is the
coefficient calculated from the images in the set s, and sref,n is the reference value,
calculated from all 3,751 images.
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