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Critical fictive temperature for plasticity
in metallic glasses
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A long-sought goal in metallic glasses is to impart ductility without conceding their strength

and elastic limit. The rational design of tough metallic glasses, however, remains challenging

because of the inability of existing theories to capture the correlation between plasticity,

composition and processing for a wide range of glass-forming alloys. Here we propose a

phenomenological criterion based on a critical fictive temperature, Tfc, which can rationalize

the effect of composition, cooling rate and annealing on room-temperature plasticity of

metallic glasses. Such criterion helps in understanding the widespread mechanical behaviour

of metallic glasses and reveals alloy-specific preparation conditions to circumvent brittleness.
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D
espite their similar inherent amorphous structure,
which endows metallic glasses with high strength and
elasticity1–4, they exhibit a broad range of damage

tolerance, from ideal brittle to remarkably tough5–8. Such wide
spectrum of mechanical properties is in stark contrast to oxide
glasses, and understanding the origin has been the focus of the
metallic glass community for the last decade6–12. Mechanical
response of a metallic glass is further influenced by extrinsic
effects, such as cooling rate13, sample size14,15 and testing
conditions (temperature and strain rate)16,17. Besides these
extrinsic factors, the understanding of composition-dependent
plasticity in metallic glasses continues to defy proposed theories.
For example, Pd-based metallic glass is significantly more brittle
compared with Pt-based metallic glass prepared at a similar
cooling rate18. Plasticity of Zr-Cu-Al metallic glasses is very
sensitive to composition, whereas their microstructure and elastic
constants are largely unaffected19,20. The atomic-level structure
underlying this different mechanical response of metallic glasses
is difficult to characterize. Computational modelling offers
some insight about the composition–structure–property
relationship; however, the lowest achievable cooling rates in
simulation are still several orders of magnitude higher than
experimental cooling rates11.

Following the analogy from crystalline metals, the toughness of
metallic glasses has been correlated with their elastic con-
stants6,9,21,22. Higher Poisson’s ratio or lower G/B (G: shear
modulus, B: bulk modulus) ratio is predicted to result in higher
toughness in metallic glasses, mechanistically by increasing the
resistance for crack opening compared with shear band formation
and extension. Therefore, a high Poisson’s ratio or low G/B has
been often used as an indicator for designing tough metallic
glasses6,9. In recent years, increasing experimental evidence has
mounted about the limited applicability of G/B in predicting
the mechanical response of metallic glasses18,23–25. In particular,
a marginal change in elastic constants cannot account for
the sever annealing-induced embrittlement observed in metallic
glasses23. These findings suggest that a simple, elastic moduli-
based approach does not capture the essential features
of the multifaceted plasticity problem in amorphous metals.
A comprehensive description for the mechanical behaviour of
metallic glasses requires the understanding of the complex
interplay between their composition, processing, structure and
properties.

In polymer and oxide glasses, it has been widely observed that
the properties of a glass at room temperature are reminiscent of
its supercooled liquid at the fictive temperature (Tf)26–28. For
metallic glasses, it has been shown that the room-temperature
elastic constants can be directly correlated with the values of the
supercooled liquid through the linear Debye-Grüneisen thermal
expansion29. Therefore, knowledge of the supercooled liquid state
and the fictive temperature can provide a key insight about the
room-temperature properties of metallic glasses.

In this work, we study the effect of fictive temperature on the
room-temperature plasticity of bulk metallic glasses (BMGs).
Samples that are brittle at room temperature may deform
plastically at higher temperatures as reported earlier17.
However, the goal of the present study is to understand the
room-temperature mechanical response and its correlation
with the properties of their supercooled liquids among different
glass-forming alloys. Three BMG formers are considered:
Pt57.5Cu14.7Ni5.3P22.5 (Pt-BMG), Pd43Cu27Ni10P20 (Pd-BMG)
and Zr44Ti11Cu10Ni10Be25 (Zr-BMG). In this study, 2.5% strain
to failure is set as the ductile–brittle transition to accommodate
±0.5% measurement error, because even the most brittle
metallic glasses still exhibit approximately 2% elastic strain4.
Our results show that the room-temperature plasticity of BMGs

decreases with lowering the fictive temperature, and falls
below the ductile–brittle transition at a critical fictive
temperature, Tfc, which is characteristic of the BMG former.
We demonstrate that Tfc is a key parameter that defines
the mechanical behaviour of BMGs and its sensitivity to
cooling rate and annealing.

Results
Bending strain and elastic constants. Room-temperature strain
to failure corresponding to different fictive temperatures for the
considered BMG formers is shown in Fig. 1a. The temperature
scale is normalized to the calorimetric glass transition tempera-
ture, Tg, listed in Table 1. A common feature of all three BMGs is
that their strain to failure decreases with lowering Tf and it drops
below the ductile–brittle transition for TfoTfc. The plastic strain
appears to correlate with Tf�Tfc, which is remarkably similar to
the temperature dependence of free volume (vfBT�T0, vf is free
volume and T0 is Vogel–Fulcher–Tammann temperature) pre-
dicted by the Vogel–Fulcher–Tammann equation30. Besides this
common trend, there are several notable distinctions among three
BMGs. The strain to failure for the Pt-BMG remains significantly
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Figure 1 | Effect of fictive temperature on strain and elastic constants.

(a) Room-temperature bending strain to failure as a function of normalized

fictive temperature for Pt-BMG, Zr-BMG and Pd-BMG. The critical fictive

temperature for ductile–brittle transition is 0.89Tg, 0.96 Tg and 1.02 Tg for

Pt-BMG, Zr-BMG and Pd-BMG, respectively. The open triangle is the

strain to failure for Pt-BMG annealed at 0.89 Tg for 30 days. (b) G/B

ratio shows a weak dependence on fictive temperature. The G/B ratio

for the embrittled BMGs is well below the proposed critical value for

ductile–brittle transition.
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higher than that for the Zr-BMG and the Pd-BMG after
annealing at the same normalized fictive temperatures. The Tfc
for the Pd-BMG former is highest among considered BMG
formers and occurs above calorimetric Tg, whereas for the
Zr-BMG former and the Pt-BMG this transition is below Tg.
Figure 1b shows the variation in G/B values as a function of
normalized fictive temperature. The G/B values for the as-
quenched BMGs are listed in Table 1. The change in G/B with
fictive temperature is small even though plasticity changes
significantly. For all three BMG formers, the G/B ratio
corresponding to the critical fictive temperature Tfc is far below
that of the previously proposed lower limit of 0.41 for brittleness9.

Thermal embrittlement of metallic glasses, as displayed in
Fig. 1a, is typically attributed to reduction in free volume through
structural relaxation31,32. The structural relaxation time at Tg is
approximately 100 s and increases exponentially with decreasing
temperature33. At temperature far below Tg, it is impractical to
attain completely relaxed glassy state. This suggests that a metallic
glass exhibiting Tfc far below Tg should not become brittle during
experimental annealing time. To test this correlation, Pt-BMG
was annealed for 30 days at its estimated Tfc of 446K, which is
57 K below the Tg. The sample remained ductile and displayed a
bending strain of 6% (open triangle in Fig. 1a). According to the
relaxation kinetics, it would take about 30 years to structurally
relax Pt-BMG at 446K (ref. 34). In contrast, the Zr-BMG with a
Tfc of only 25K below its Tg, is sensitive to embrittlement
during annealing near Tg (ref. 23). The Pd-BMG is even more
susceptible to annealing-induced embrittlement because
of its Tfc above Tg, which corresponds to a relaxation time
of only 50 s. Consequently, the difference between Tg and Tfc of a
metallic glass correlates with its resistance to annealing-induced
embrittlement.

Effect of cooling rate. Mechanical properties of some BMGs
strongly depend on the cooling rate during vitrification, whereas
others show little or no variation13,18,21. The degree of cooling-
rate sensitivity among BMG formers can be rationalized based on
their Tfc values. If the cooling rate is sufficiently fast, the resulting
Tf is higher than Tfc, and the BMG is ductile. A slower cooling
rate will result in lower Tf, and the glassy state will become
brittle if Tf drops below Tfc. Typical cooling rates that result
in bulk metallic glass formation (thickness 41mm) span
over four orders of magnitude ranging from 0.1 to 1,000K s� 1

(ref. 35). Experimental measurements in a wide range of glass-
forming liquids reveal that Tf decreases by 5–10K for every order-
of-magnitude decrease in cooling rate28,36,37. The maximum
variation in Tf, as a result of cooling rate, can be approximated to
40K for BMG formers (Fig. 2). This implies that for a BMG whose
Tfc differs from its Tf by more than 40K, its ductile or brittle
behaviour will remain essentially unaffected by the cooling rate.
BMG formers with Tf�Tfc440K will be ductile and the ones with
Tf�Tfcr40K will be brittle for typical cooling rates used in BMG

formation. In contrast, the BMG formers with Tfc in the proximity
of Tf (Fig. 2) will be sensitive to the cooling rates.

Isothermal embrittlement diagrams. The existence of Tfc is
experimentally manifested in the cooling-rate-dependent
mechanical behaviour of BMGs. Several BMGs such as Fe-based
and Mg-based, which are known to be typically brittle, become
ductile when cooled at higher rates21,38. The cooling rate (Re) to
prevent embrittlement and its relation with the Tfc can be
understood from isothermal time–temperature–transformation
(TTT) diagrams for embrittlement (Fig. 3). The embrittlement
time is the annealing time required to decrease the bending strain
below the ductile–brittle limit. The embrittlement time decreases
with increasing temperature till Tfc and then increases abruptly
before decreasing again with further increase in temperature. The
discontinuity at Tfc is related to the change in embrittlement
mechanism from structural relaxation (TrTfc) to crystallization
(T4Tfc). The Tfc is the highest temperature at which a metallic
glass can embrittle by structural relaxation. Consequently, the
embrittlement of a glassy state through relaxation is fastest at Tfc
that corresponds to the ‘nose’ of embrittlement curves in Fig. 3.
The embrittlement time at the nose, te, determines the cooling
rate Re to vitrify a ductile glassy state. The te values for Pd-BMG,
Zr-BMG and Pt-BMG are 50 s, 5,000 s, and 9E–9 s, respectively.
These values scale with the difference Tg�Tfc (Pt-BMG4Zr-
BMG4Pd-BMG). The short te indicates that Re is highest for Pd-
BMG among the considered BMG formers. The critical cooling
rate (Rc) for glass formation, however, follows the opposite trend
and is lowest (0.09 K s� 1) for the Pd-BMG35. This suggests that
the critical cooling rates for avoiding crystallization and
embrittlement are not directly correlated.

Discussion
A comprehensive framework to account for the diverse mechan-
ical behaviour of metallic glasses can be constructed based on the
knowledge of Tf�Tfc. According to this criterion, all metallic
glasses can be broadly classified into two groups: Tf�Tfco0
(type I) and Tf�Tfc40 (type II). For type I metallic glasses, the
embrittlement nose time is shorter than the crystallization nose
time and, consequently, the critical cooling rate to prevent

Table 1 | Calorimetric Tg measured at a heating rate of
20Kmin� 1, Tfc, Tg�Tfc and G/B ratio for the considered
BMG formers.

BMG former Tg (K) Tfc (K) Tg�Tfc (K) G/B

Pt57.5Cu14.7Ni5.3P22.5 503 446 57 0.17
Pd43Cu27Ni10P20 568 580 � 12 0.21
Zr44Ti11Cu10Ni10Be25 623 598 25 0.31

Abbreviations: BMG, bulk metallic glass; G/B, shear modulus/bulk modulus; Tfc, critical fictive
temperature; Tg, glass transition temperature.
Tfc is experimentally determined from the bending plasticity of relaxed samples. G/B is
calculated from the ultrasonic measurements on the as-cast samples.
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Figure 2 | The predicted mechanical behaviour of BMG formers under
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result of critical cooling rate, which spans over four orders of magnitude

among BMG formers. BMG formers with Tfc out of the accessible

Tf range are either always ductile (Tf� Tfc440K) or brittle

(Tf� Tfcr40K). However, BMG formers with TfcBTf can change

from ductile–brittle within practical cooling-rate variations.
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embrittlement is higher than the critical cooling rate for glass
formation (Fig. 4a). Here Tf is the fictive temperature of a glass
vitrified at its critical cooling rate for glass formation. The
magnitude of Tf�Tfc determines their mechanical behaviour and
its sensitivity to cooling rate and annealing. Metallic glasses with a
small negative Tf�Tfc are sensitive to preparation conditions and
can change from ductile to brittle or vice versa with varying
cooling rates. For metallic glasses with large negative Tf�Tfc,
the embrittlement nose time is much shorter than the crystal-
lization nose time. Consequently, their bulk states are always
brittle. This explains why Fe-based and Mg-based metallic glasses
require high cooling rates, unachievable in bulk form, to vitrify
into a ductile state21.

Type II metallic glasses (Tf�Tfc40) exhibit an embrittlement
nose time that is longer than the crystallization nose time
(Fig. 4b). Hence, their critical cooling rate for embrittlement is
lower than the critical cooling rate for glass formation. These
metallic glasses are always ductile in the as-cast bulk state
and the magnitude of Tf�Tfc indicates their resistance to
annealing-induced embrittlement. Metallic glasses with a large
positive Tf�Tfc (for example, Pt-BMG) do not become
brittle under practical annealing conditions, because their
embrittlement time (Erelaxation time) at Tfc is extremely long.
In contrast, metallic glasses with a small positive Tf�Tfc

(for example, Zr-BMG) are ductile in the as-cast state but are
susceptible to annealing-induced embrittlement because of their
fast relaxation at Tfc.

According to this critical fictive temperature viewpoint, the
knowledge of Tfc and Tf is sufficient to understand a BMG’s
resistance to annealing-induced embrittlement, cooling rate
sensitivity and critical cooling rate for plasticity. In practice, Tf

measured by method of integration from differential scanning
calorimeter (DSC) heating curves is typically few degrees lower
than the Tg (ref. 39). Therefore, calorimetric Tg values can be used
as a good approximation of Tf for the practical application of
plasticity criteria outlined here. Our experimental results validate
the use of calorimetric Tg for prediction of mechanical response
of BMG formers. Pt-BMG with Tg�TfcB57K is ductile at any
cooling rate and exhibits higher resistance to annealing
embrittlement. Zr-BMG with Tg�TfcB25K is ductile in the
as-cast state, but becomes brittle during sub-Tg annealing23.
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Pd-BMG with Tg�TfcB� 12K changes from ductile to brittle
when the cooling rate is decreased below 50K s� 1 (ref. 18).

The absolute values of Tfc and hence Tg�Tfc are a function of
sample size because of the size-dependent plasticity of BMGs13,15.
Figure 5 shows Tg�Tfc for Zr-BMG samples of different
thicknesses. Tg�Tfc increases with decreasing temperature.
However, this size dependence is much smaller than the effect
of composition on Tg�Tfc. For Pt-BMG of 0.6mm thickness, the
Tg�Tfc is larger than that of the 0.3-mm thick Zr-BMG.
Similarly, the Tg�Tfc of 0.8-mm thick Zr-BMG is larger than
that of the 0.6-mm thick Pd-BMG. Thus, Tg�Tfc values
measured for any sample size allow to predict the mechanical
behaviour of different glass-forming alloys.

In summary, we propose Tg�Tfc criterion to predict the
room-temperature mechanical behaviour and its sensitivity to
cooling rate and annealing-induced embrittlement for metallic
glasses. We envision that application of structural models40,41 can
reveal the microscopic origin of such a critical fictive temperature
to design tough metallic glasses.

Methods
Sample preparation. Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20 alloys were pre-
pared by induction melting the constituents in vacuum-sealed quartz tube. The
alloys were subsequently fluxed with B2O3 at 1,000 �C for 600 s. The fluxed alloys
were re-melted and water-quenched in 3-mm diameter quartz tubes to prepare the
bulk amorphous samples. Amorphous Zr44Ti11Cu10Ni10Be25 was acquired from
Liquidmetal Technologies. Rectangular beams of 0.6±0.05mm thickness were
machined from the bulk amorphous samples. To achieve the desired Tf, the beams
were annealed at various temperatures (annealing temperature¼Tf). Annealing
times were chosen two times longer than the relaxation time, to ensure that the
equilibrium had been reached at Tf. Crystallization can be ruled out, because the
annealing times are at least an order of magnitude shorter than the crystallization
times. After annealing, the samples were water-quenched to obtain the glassy state
corresponding to different fictive temperatures.

Characterization. The samples were characterized thermally by DSC and struc-
turally by X-ray diffraction. The glass transition temperature, Tg, was measured
from DSC heating curves recorded at a heating with 20Kmin� 1. Elastic constants
were calculated from the shear and longitudinal sound velocities measured at room
temperature by an ultrasonic technique. The bending strain to failure was mea-
sured by bending the beams around mandrels of different radii at room tem-
perature14. The samples were mirror polished before the bending tests. The
bending strain corresponds to t/2r (t is the thickness of the samples and r is the
radius of the mandrel). The average bending strain and error bars were calculated
by testing five samples for each fictive temperature.

Construction of TTT diagrams for embrittlement. The samples were iso-
thermally annealed at various temperatures followed by water quenching to room
temperature. The embrittlement time corresponds to the annealing time for which
the room-temperature bending strain to failure reduces to 2.5% or lower. TTT
diagrams for embrittlement were constructed by plotting the log of isothermal
embrittlement times as a function of temperature.
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