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Topological states in a ladder-like optical
lattice containing ultracold atoms
in higher orbital bands
Xiaopeng Li1, Erhai Zhao2 & W. Vincent Liu1,3

Topological insulators are classified according to their symmetries. Discovery of them in

electronic solids is thus restricted by orbital and crystalline symmetries available in nature.

Synthetic quantum matter, such as the recent double-well optical lattices loaded with s and

p orbital ultracold atoms, can exploit symmetries and interaction beyond natural conditions.

Here we unveil a topological phase of interacting fermionic atoms on a two-leg ladder derived

from the above experimental optical lattice by dimension reduction. The topological band

structure originates from the staggered phases of sp orbital tunnelling, requiring neither

spin–orbit coupling nor other known mechanisms like p-wave pairing, artificial gauge field or

rotation. Upon crossing over to two-dimensional coupled ladders, the edge modes from

individual ladder form a parity-protected flat band at zero energy. Experimental signatures are

found in density correlations and phase transitions to trivial band and Mott insulators.
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N
ovel lattice geometries have been known to give rise to
interesting many-body phenomena including topological
states of quantum matter. In the context of ultracold

quantum gases, optical lattices engineered with interfering laser
beams can realize specific configurations of potentials of single
or multiple periods not found in nature. For instance, double-
well superlattices1,2 have matured into a powerful tool for
manipulating orbital degrees of freedom3–10. Controls of atoms in
the s and p orbitals of the checkerboard6 and hexagonal8 optical
lattices have also been demonstrated, and correlation between
these orbitals tends to give exotic quantum states6,8,11–13. The
spatial symmetry of the orbital wavefunction dictates the complex
hopping amplitudes between nearby sites. Under certain
circumstances, as for the uneven double wells, the orbital
hopping pattern is sufficient for producing topologically
nontrivial band structures14.

Motivated by these developments, here we consider a lattice of
uneven double wells where fermionic atoms are loaded up to the s
and p orbital levels of the shallow and deep wells, respectively.
This new configuration of orbitals beyond solid state materials
realizes a topological band insulator phase of interacting fermions
with edge states. Topological phase transitions to trivial band and
Mott insulators are predicted as a feature of the topological state.
Remarkably, the edge states persist upon dimensional crossover,
which makes it promising to realize in optical lattice experiments.
This route of achieving topological band insulators and super-
fluids is distinct from previous proposals that require rotation of
the gas15,16, artificial gauge fields17, spin–orbital coupling18–21 or
p-wave triplet pairing22.

Results
One-dimensional orbital ladder. We will first focus on a one-
dimensional (1D) ladder system illustrated in Fig. 1b,c. This
corresponds to the quasi-1D limit of a standard double-well

optical lattice, with the optical potential given by

Vðx; yÞ¼Vxsin
2ðkxÞþV1sin

2ðkyÞþV2sin
2ð2kyþ f

2
Þ ð1Þ

This optical lattice has a double-well structure in the y direc-
tion. For V1,244Vx, there is a large tunnelling barrier between
double wells in the y direction, so in low-energy physics the two-
dimensional (2D) system decouples into an array of dynamically
isolated two-leg ladders of A and B sub-wells (Fig. 1), with each
ladder extending in the x direction. The relative well depth of the
two legs is controlled by the phase f and further by the ratio
V2/V1. We will focus on a situation, similar to the setup in the
experiment6, where the s orbital of leg A has roughly the same
energy as the px orbital of leg B (other p orbitals have much
higher energy). For example, one can choose V1¼ 40ER,
V2¼ 20ER, Vx¼ 4.0ER and f¼ 0.9p in experiments, where ER
is the recoil energy �h2k2=2m, with m the mass of atom and k the
wave number of the laser. Such a setup will give the A (B) wells a
depth 2.7ER (8.1ER). The tunnelling rates of the various orbitals
illustrated in Fig. 1c are given as ts¼ 0.053ER, tp¼ 0.40ER and
tsp¼ 0.064ER in the tight binding approximation. The lattice
constant a¼p/k will be set as the length unit in this paper. We
now consider a single species of fermions occupying these
orbitals, with the low-lying s orbital of leg B completely filled.
Alternatively fermions can be directly loaded into the px orbital
of leg B, leaving the low-lying s empty, by techniques developed
in recent experiments4,6,10. With these techniques, long-lived
meta-stable states of atoms in high orbitals with life time on the
order of several hundred milliseconds are demonstrated
achievable6.

The Hamiltonian of the sp orbital ladder is then given by

H0 ¼
X
j

Cw
j

� ts � tsp
tsp tp

� �
Cjþ 1 þ h:c:�

X
j

mCw
j Cj ð2Þ

where Cw
j ¼ ½aws ðjÞ; awpx ðjÞ�, with aws ðjÞ and awpxðjÞ being fermion

creation operators for the s and px orbitals on the A and B leg,
respectively. The relative sign of the hopping amplitudes is fixed
by parity symmetry of the s and px orbital wavefunctions. As
depicted in Fig. 1c, the hopping pattern has a central role in
producing a topological phase. With a proper global gauge choice,
ts, tp and tsp are all positive. The rung index j runs from 0 to L� 1
with L the system size. We consider half filling (one particle per
unit cell), for which the chemical potential m¼ 0, and the
Hamiltonian is particle-hole symmetric under transformation
Cj ! ð� 1ÞjCw

j . Topologically nontrivial band structure of this sp
orbital ladder, which shall be shown analytically next, may be
heuristically speculated from the following comparison: the
staggered quantum tunnelling tsp

P
j½C

w
j ð� isyÞCjþ 1 þ h:c:�

resembles spin–orbit interaction18–21,23, when the s and p
orbital states are mapped to pseudo-spin-(1/2) states. Such a
staggered tunnelling can also naturally arise in the checkerboard
optical lattice already engineered in the experiment6 by increasing
the laser strength in one direction to reach the quasi-1D limit.
The physics of the sp orbital ladder is also connected to the more
familiar frustrated ladder with magnetic flux24, but the sp orbital
ladder appears much easier to realize experimentally.
Topological band structure and zero energy edge states. In the
momentum space the Hamiltonian takes a simple and suggestive
form,

HðkÞ¼ h0ðkÞIIþ~hðkÞ �~s ð3Þ
where h0(k)¼ (tp� ts)cos(k), hx¼ 0, hy(k)¼ 2tspsin(k) and
hz(k)¼ � (tpþ ts)cos(k). Here, II is the unit matrix, sx, sy and sz

s

–ts

–ts

A

x

y

–� +�

B
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–tsp
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Figure 1 | The sp orbital ladder reduced from a 2D double-well optical

lattice. (a) An optical lattice of uneven sub-wells (light and dark blue), with

parameters Vx/V1¼0.3, V2/V1¼ 1 and f¼0.6p, develops high barriers

(red ridges) in the y direction, slicing the lattice into dynamically decoupled

uneven two-leg ladders. (b,c) Schematic side and top views, respectively, of

the ladder illustrate tunneling (t0s) of fermions prepared in the degenerate

s and px levels. (d) Topological winding of Hamiltonian across the

Brillouin zone.
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are Pauli matrices in the 2D orbital space. The energy spectrum
consists of two branches,

E� ðkÞ¼ h0ðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2yðkÞþ h2zðkÞ

q
ð4Þ

with a band gap Eg¼min(2tpþ 2ts, 4tsp), which closes at either
tsp¼ 0 or tsþ tp¼ 0. An interesting limit that highlights the
nontrivial band structure of our model is that when tp¼ ts¼ tsp ,
the two bands are both completely flat. To visualize the topolo-
gical properties of the band structure, one notices that as k is
varied from �p through 0 to þ p, crossing the entire Brillouin
zone, the direction of the ~hðkÞ vector winds an angle of 2p
(Fig. 1d). The corresponding Berry phase is half of the angle,
g¼p (see Supplementary Note 1). The orbital ladder Hamilto-
nian H0 belongs to the symmetry group G� þ

þ þ ðU ; T; CÞ in the
notation of ref. 25, as it has both particle-hole and time-reversal
symmetry, in addition to the usual charge U(1) symmetry.
Therefore, at half filling, it is a topological insulator characterized
by an integer topological invariant, in this case the winding
number 1, according to the general classification scheme of
topological insulators and superconductors25,26.

The nontrivial topology of the ladder system also manifests in
existence of edge states. It is easiest to show the edge states in the
flat band limit, ts¼ tp¼ tsp�t, by introducing auxiliary operators,
f� ðjÞ¼ ½apxðjÞ � asðjÞ�=

ffiffiffi
2

p
. Then the Hamiltonian only

contains coupling between fþ and f� of nearest neighbours,
but not among the fþ (or f� ) modes themselves,

H0 ! 2t
X
j

fw
� ðjÞfþ ðjþ 1Þþ h:c: ð5Þ

Immediately, one sees that the operators fþ (0) and f� (L� 1)
at the left and right ends are each dynamically isolated from the
bulk, and do not couple to the rest of the system (Fig. 2a). These
loners describe the two edge states at zero energy. They are the
bonding and anti-bonding modes of s and p orbitals, that is,
shared by the two rungs of the ladder. For general parameters

away from the flat band limit, the wavefunctions of the edge states
are found not to confine strictly at j¼ 0 or L� 1, but instead
decay exponentially into the bulk with a characteristic length scale
x¼ 2= logð j ð ffiffiffiffiffiffiffi

tstp
p þ tspÞ=ð

ffiffiffiffiffiffiffi
tstp

p � tspÞ j Þ. For the lattice strength
given above, the decay width is estimated to be two to three times
of the lattice constant. Only for tsp ¼

ffiffiffiffiffiffiffi
tstp

p
, which is potentially

reachable in experiments, x-0, the edge states are completely
confined at the edges. For tsp¼ 0, the bulk gap closes and x-N.
The analytical expression for the edge state wavefunctions in the
general case are discussed in Supplementary Note 2. The
existence of zero energy edge states is also confirmed by
numerical calculation as shown in Fig. 2b,c.
Fractional charge and topological anti-correlations. For a finite
ladder of length L with open boundary condition and populated
by L fermions (half filling), L� 1 fermions will occupy the valence
band (bulk states) and one fermion will occupy the edge states
(Fig. 2). As the two edge states are degenerate, the ground state
has a double degeneracy. The edge state is a fractionalized object
carrying half charge (cold atoms are charge neutral, here charge
refers to the number of atoms). This becomes apparent if we
break the particle-hole symmetry by going infinitesimally away
from half filling, for example, tuning chemical potential m¼ 0þ .
Then, the valence band and the two edge states will be
occupied. With a charge density distribution on top of the
half filled background defined as rðjÞ¼Cw

j Cj � 1, one finds
�0�jo dhrðjÞi j m¼ 0þ ¼�L� d� 1o j0 o Lhrðj0Þi j m¼ 0þ ¼ 1

2, where d
satisfies xoodooL (for example, take d¼ 5x). A characteristic
feature of the topological insulator (with the number of atoms
fixed) is the topological anti-correlation of
the charge at the boundaries,

lim
L!1

X
j;j0

hrðjÞrðj0Þi ¼ � 1
4

ð6Þ

In the sharp confinement limit, x-0, the edge states
are well localized at the two ends of the ladder. The topo-
logical anti-correlation simplifies as /r(0)r(L� 1)S¼ � (1/4),
and the half charge is also well localized, that is,
hrð0Þim¼ 0þ ¼ hrðL� 1Þim¼ 0þ ¼ 1

2. As the edge states are well
isolated from the bulk states by an energy gap, they are stable
against local Gaussian fluctuations. The coupling between the two
edge states vanishes in the thermodynamic limit (L-N),
because the hybridization induced gap scales as exp(� aL) as
L-N

(ref. 27).
Time-reversal symmetry breaking and topological phase
transition. An interesting topological phase transition to a trivial
insulator can be tuned to occur when rotating the atoms on
individual sites, for example, by applying the technique demon-
strated in ref. 28. Such an individual site rotation amounts to
addition of an imaginary transverse (along y) tunnelling between
s and px orbitals in our Hamiltonian,

dH¼Dy

X
j

Cw
j syCj ð7Þ

This term preserves particle-hole symmetry but breaks both
parity and time-reversal symmetries. The total Hamiltonian in
the momentum space now reads H0ðkÞ¼HðkÞþDysy . This
Hamiltonian belongs to the symmetry group Gþ (U, C) and
allows a Z2 classification of its topological properties25. Even
though time-reversal symmetry is absent, particle-hole symmetry
still ensures that Berry phase g is quantized, with g mod 2p¼ 0 or
p defining the trivial and topological insulator, respectively29.
For our model H0, the topological insulating phase with g¼ p is
realized as long as Dy oDc

y ¼ 2tsp. In another word, the Berry
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Figure 2 | Bulk and edge eigenstates of the orbital ladder. (a) A pictorial

representation of the simplified Hamiltonian in the flat band limit

ts¼ tp¼ tsp showing the emergence of isolated edge modes. The definition

of the f± operator is given in the main text. (b) The eigen energy of a

ladder with finite length L¼ 12 showing two degenerate zero energy states

inside the gap. (c) The probability distribution of the in-gap states

(equation (10)) for varying strengths of inter-orbital interaction Usp. The

in-gap states are shown localized on the edges and survive against finite

interaction. In b and c, we choose ts¼ tp¼ 2tsp (taken as the energy unit).
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phase quantization is robust against the time-reversal symmetry
breaking term Dy, and this topological phase is protected by
particle-hole symmetry. For Dy greater than Dc

y , Berry phase
vanishes and the system becomes a trivial band insulator. At the
critical point the band gap closes. Apart from the Berry phase, the
topological distinction between H0ðkÞ and HðkÞ can also be seen
from a gapped interpolation29 as discussed in Supplementary
Note 3. Besides probing the half charges on the boundaries,
another signature for the critical point of the topological phase
transition is the local density fluctuation, dr¼ 1

L

P
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrðjÞrðjÞi

p
.

dr is 1/O2 when Dy¼ 0, independent of other parameters ts, tp
and tsp, and decreases monotonically with increasing Dy (see
Supplementary Note 4). The peaks of ddr2/dDy reveal the critical
points (Fig. 3b) and provide a reliable tool of detecting the
topological phase transition in experiments.

It is feasible to prepare the ladder with phase separation: for
example, a topological insulator on the left half but a trivial
insulator on the right half. This can be achieved by rotating the
lattice sites on half of the ladder only. The system is now
described by:

HZ ¼Hþ Dy

2

X
j

1� cos ZðjÞ½ �Cw
j syCj ð8Þ

with a field configuration Z(j), which satisfies the boundary
conditions Z(j¼ �N)¼ 0 and Z(j¼ þN)¼ p, and Dy 4Dc

y .
The charge distribution induced by the domain wall (the phase
boundary) is calculated both numerically and from effective field
theory shown in Supplementary Note 5. Both approaches cross-
verify that the domain wall carries half charge (Fig. 3a). The half
charge can be detected30 by the single-site imaging technique in
experiments31,32.
Stability against interactions and transition to a Mott
insulator. We further examine the stability of the topological
phase and its quantum phase transitions in the presence of
interaction using exact diagonalization. For single-species fer-
mions on the sp orbital ladder, the leading interaction term is the

on-site repulsion between different orbitals,

Hint ¼
X
j

Usp nsðjÞ�
1
2

� �
npðjÞ�

1
2

� �
ð9Þ

We compute the fidelity metric g as function of the interaction
strength Usp (see the Methods section). A peak in the fidelity
metric indicates a quantum phase transition33. Our numerical
results (Fig. 4) show that the topological phase is stable for
Usp oUc

sp, with robust in-gap (zero energy) states33 localized on
the edges (Fig. 2c). For stronger interaction the ladder undergoes
a quantum phase transition to a Mott insulator phase. With ts¼ tp
the Mott state exhibits ferro-orbital order with order parameter
defined as hCw

j sxCji¼
ffiffiffiffiffiffi
lsp

p
(see discussions in Supplementary

Note 6). Such ferro-orbital order gets weaker as ts gets smaller.
A rich phase diagram of orbital ordering is expected and will be
investigated in the future.
Coupled ladders and flat band in two dimensions. Remarkably,
the zero-energy edge states of the sp orbital ladder survive even
when the system is extended to two dimensions with finite inter-
ladder coupling (for example, by reducing V1,2 relative to Vx in
the setup of Fig. 1a). The zero modes of individual ladder morph
into a flat band with double degeneracy (Fig. 5). The lack of
dispersion in the y direction is related to the inter-ladder hopping
pattern, which does not directly couple the edge states but only s
and p orbitals on different rungs (Supplementary Fig. 1). The
unexpected flat band in 2D is an exact consequence of the
p orbital parity and hence is protected by symmetry. The flat
dispersion can be rigorously proved using an unitary transfor-
mation, and arguments based on the quantization of Berry phase
in Supplementary Note 7. The flat band makes the edge states in
this 2D optical lattice distinct from that of quantum Hall effect
previously proposed with lattice rotation16,34, artificial gauge
field35 or optical flux36. Such a flat band is reminiscent of that at
the zigzag edge of graphene, but with the difference that the
present flat band is protected by the parity of the orbital
wavefunctions. The diverging density of states associated with the
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Figure 3 | Phase transition between topological and trivial band

insulators. (a) A domain wall between a topological insulator (ts¼ tp¼ tsp,

Dy¼0, left) and a trivial insulator (ts¼ tp¼ tsp¼0, right). The circle

represents the delocalized fermion shared by two neighbouring rungs as
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flat band provides a fertile ground for interaction-driven many
body instabilities. Future work will tell whether strongly
correlated topological states exist in such 2D interacting systems.

Discussion
The mathematical description of the sp orbital ladder H0 is
similar to the celebrated Su-Schrieffer-Heeger (SSH) model37.
Although the two systems belong to the same symmetry class
G� þ

þ þ ðU ;T;CÞ of 1D topological insulators25, the orbital ladder
contains new physics beyond the SSH model. First, the edge states
of the sp orbital ladder have quite different spatial structures. For
example, the sharp confinement of the edge states only requires
tsp ¼

ffiffiffiffiffiffiffi
tstp

p
, rather than the energy spectrum being dispersionless.

In contrast, sharp confinement coincides with the flat band limit
in the SSH model, when one of its hoppings vanishes. Moreover,
the edge modes form flat bands in the presence of inter-ladder
coupling. The original SSH model does not have such a nice
property. Second and more importantly, tunnelling in the orbital
ladder can form p flux loops and allow time-reversal symmetry
breaking, as shown in H0 discussed above. This gives rise to an
interesting Z2 topological insulating state25. In contrast, breaking
time-reversal symmetry within the SSH model of spinless
fermions is impossible because the tunnelling is strictly 1D and
thus cannot form flux loops.

Finally, we discuss a potential connection of the orbital
ladder to Majorana physics38,39. The orbital ladder at half filling
maps to two decoupled Majorana chains (see Supplementary
Note 8)22. Note that the Majorana number is 1 for the double
Majorana chains22. Topologically protected Majorana fermions
with Majorana number � 1 (ref. 22) can be realized on the orbital
ladder using schemes similar to those proposed in refs 18–21, for
example, by inducing weak pairing of the formP

j DasðjÞapðjÞþ h:c: The staggered quantum tunnelling tsp
mimics the spin–orbit coupling. For the sp orbital ladder with
2tso|m|o2tp, we find that the Majorana number is � 1 and the
resulting Majorana zero modes are topologically protected. The
topologically protected Majorana state is a promising candidate
for topological quantum computing40,41.

Methods
Imaginary transverse tunnelling. By rotating individual lattice sites the induced
bare coupling term is O

P
j L̂zðjÞ, where the angular momentum operator is

L̂z ¼ � iðawpy apx � awpx apy Þ. This term couples the px to py orbitals of the B leg. One
can tune the rotating frequency to match O with the transverse tunnelling tsy from
the py orbital of the B leg to the nearby s orbital on the A leg. Despite the large
energy band gap (Ey) which separates the py orbitals from the degenerate s and px

orbitals (bear in mind that the s and px orbitals are from different legs of the
ladder), the low-energy effective Hamiltonian receives a standard second order
effect from virtual processes, in which a particle jumps from a px orbital to the on-
site py orbital and then to the nearby s orbital. The correction is given by O2

Ey
Cw
j syCj ,

which makes an imaginary transverse tunnelling between nearby s and px orbitals.

Interaction effects. To characterize the stability of the topological phase
against the inter-orbital interaction Hint (see equation (9)), we use the
exact diagonalization method to calculate the fidelity metric
g � 2½1� jhc0

LðUspÞ jc0
LðUsp þ dUspÞi j �=LðdUspÞ2, where j c0

N ðUspÞi is the
ground state wavefunction of the Hamiltonian H¼H0þHint for a finite chain of
length L with N¼ L fermions. In presence of interaction, the edge states survive as
in-gap states (zero energy single particle/hole excitations)33. The energy of single
particle (hole) excitation is defined as mp (mh) by mp¼ ELþ 1� EL (mh¼ EL� EL� 1),
where EN is the ground state energy of the ladder loaded with N fermions. The
spatial distribution of the in-gap states is defined as the density profile (Dnj) of a
hole created out of the ground state, which is

Dnj ¼hc0
L jrðjÞ jc0

Li� hc0
L� 1 jrðjÞ jc0

L� 1i ð10Þ

where jc0
N i is the ground state with N fermions. The density profile Dnj is found to

be localized on the edges when Usp � Uc
sp , and to delocalize when approaching

the critical point and finally disappear (Fig. 2c). The Mott state appearing at the
strong coupling regime has a ferro-orbital order hÔspðjÞi, with ÔspðjÞ¼Cw

j sxCj

(Fig. 4). In our numerical calculation of finite system size, the correlation matrix
½C�j1 j2 ¼hÔspðj1ÞÔspðj2Þi is calculated and the strength of the ferro-orbital order lsp
is defined as the maximum eigenvalue of [C]/L, extrapolated to the thermodynamic
limit.
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