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Cytotoxicity of botulinum neurotoxins reveals
a direct role of syntaxin 1 and SNAP-25
in neuron survival
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Eric A. Johnson4, Wei-Dong Yao3, Su-Chun Zhang2 & Min Dong1

Botulinum neurotoxins (BoNT/A–G) act by blocking synaptic vesicle exocytosis. Whether

BoNTs disrupt additional neuronal functions has not been addressed. Here we report that

cleavage of syntaxin 1 by BoNT/C, and cleavage of SNAP-25 by BoNT/E both induce

degeneration of neurons. Furthermore, although SNAP-25 cleaved by BoNT/A still supports

neuron survival, it has reduced capacity to tolerate additional mutations. We demonstrate

that syntaxin 1 and SNAP-25 cooperate as SNARE proteins to support neuron survival.

Exogenous expression of other homologous SNARE proteins, syntaxin 2/3/4 and SNAP-23,

which are resistant to BoNT/C and E in neurons, can substitute syntaxin 1/SNAP-25 and

prevent toxin-induced neuron death. Finally, we find that neuronal death is due to blockage of

plasma membrane recycling processes that utilize syntaxin 1/SNAP-25, independent of

synaptic vesicle exocytosis. These findings establish neuronal cytotoxicity for BoNTs and

reveal syntaxin 1/SNAP-25 as the ubiquitous and essential SNARE proteins mediating mul-

tiple fusion events on neuronal plasma membranes.
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B
otulinum neurotoxins (BoNTs) are the most potent toxins
known to humans and are one of the six high-risk
bioterrorism agents1,2. These toxins are produced by

anaerobic Clostridium bacteria and include seven serotypes
(BoNT/A–G). BoNTs are composed of a light chain (LC,
B50kDa) and a heavy chain (B100 kDa) connected via a disu-
lphide bond. The heavy chain contains a receptor-binding domain
that targets neurons and a membrane translocation domain that
translocates the LC into the cytosol. LCs act as proteases cleaving
proteins required for synaptic vesicle exocytosis1,2.

Specifically, BoNT/B, D, F and G cleave a vesicle protein
synaptobrevin (Syb). BoNT/A, C and E cleave a peripheral
plasma membrane protein SNAP-25. BoNT/C also cleaves a
plasma membrane protein syntaxin 1 (Syx 1) (Fig. 1a). These
three toxin substrates form the core complex essential for fusion
of synaptic vesicle membranes to plasma membranes, known as
SNARE proteins (soluble NSF attachment protein receptor)3.
Cleavage of SNARE proteins blocks synaptic vesicle exocytosis
and paralyzes humans and animals.

BoNT’s ability to block synaptic vesicle exocytosis is also the
basis for their medical applications: local injections of minute
amounts of toxins can attenuate neuronal activities in targeted
regions, which can be beneficial in many medical conditions. The
unprecedented expansion of BoNTs in medical applications in
recent years raises the pressing need to understand whether
BoNTs can disrupt additional cellular functions beyond synaptic
vesicle exocytosis.

Indeed, it has been well documented that exposure to BoNT/C
can cause degeneration of neurons in vitro and in vivo in mice4–9.
If BoNTs only block synaptic vesicle exocytosis, they should not
affect neuron viability, as synaptic vesicle exocytosis is not
required for development and survival of neurons. For instance,
tetanus neurotoxin, which blocks synaptic vesicle exocytosis by
cleaving Syb, does not affect survival of cultured neurons6,10.
Furthermore, lacking the presynaptic protein Munc13 completely
abolishes synaptic vesicle exocytosis, yet Munc13-knockout (KO)
mice develop normal brain structures, and neurons cultured from
these mice grow normally in vitro11. Therefore, BoNT/C must
disrupt additional functions in addition to blocking synaptic
vesicle exocytosis.

Why BoNT/C is toxic to neurons remains unknown, nor do we
know whether any other BoNTs can induce death of neurons.
Here we sought to address which BoNTs induce neurodegenera-
tion, what toxin substrates are required for neuron survival and
what cellular function via the action of BoNTs causes neurode-
generation. Our studies confirmed previous observations on
BoNT/C cytotoxicity and revealed BoNT/E as the second BoNT
to have cytotoxic effects on neurons. We established that cleavage
of Syx 1 by BoNT/C and SNAP-25 by BoNT/E results in neuro-
degeneration. We further demonstrated that Syx 1/SNAP-25 act
as SNARE proteins for supporting neuron survival, and the role
of Syx 1/SNAP-25 can be substituted with any pairs of plasma
membrane SNARE proteins. Finally, our data suggest that
cytotoxicity is due to disruption of essential plasma membrane
recycling processes, independent of blockage of synaptic vesicle
exocytosis.

Results
BoNT/C and E induce degeneration of cultured neurons. Using
cultured rat hippocampal neurons as a model, we first developed an
axon fragmentation assay to visualize and quantify BoNT/C-
induced neuronal death (Fig. 1b, Supplementary Fig. S1). Axon
fragmentation is detected via immunostaining of axon-specific
cytoskeleton protein neurofilament, and the percentage of frag-
mented axons is quantified using ImageJ software (Fig. 1b,
Supplementary Fig. S1b). Consistent with previous characterizations

by Berliocchi et al.,8 we found that sub-nanomolar levels of BoNT/
C induced fragmentation of both axons and dendrites, and
subsequent apoptosis of cell bodies, measured by multiple
approaches (Supplementary Fig. S1).

Using the axon fragmentation assay, we first screened the other
six BoNTs, which all can enter hippocampal neurons and cleave
their target SNARE proteins (Fig. 1c). Of the six toxins screened, we
found that BoNT/E induces axon degeneration and neuronal death
(Fig. 1d, Supplementary Fig. S2). BoNTs that cleave Syb (BoNT/B,
D, F and G), as well as BoNT/A, do not affect axons and survival of
neurons (Fig. 1d), demonstrating that blocking synaptic vesicle
exocytosis is not the reason for neurodegeneration. Pre-incubation
of BoNT/C and BoNT/E with their respective antibodies prevented
axon degeneration (Fig. 1e), confirming that it is BoNT/C and E in
toxin solutions that induce degeneration of neurons.

In addition to hippocampal neurons, BoNT/C and E also
induced degeneration of cultured rat motor neurons as well as
human motor neurons derived from embryonic stem cells
(Fig. 1f), demonstrating that these physiologically relevant
target neurons are susceptible to cytotoxicity of BoNT/C and
E. The other five BoNTs did not cause degeneration of rat or
human motor neurons (Supplementary Fig. S3).

The BoNT/C and E protease domains induce death of neurons.
We next examined whether cytotoxicity of BoNT/C and E is due
to the protease activity of their LCs (Fig. 2a). We expressed LCs of
BoNT/C and E directly in neurons via lentiviral transduction.
BoNT/A-LC was also assayed as a control. These LCs cleaved
their target SNARE proteins in neurons (Fig. 2b). We found that
both BoNT/C-LC and BoNT/E-LC induced axon degeneration
and neuron death (Fig. 2c), whereas BoNT/A-LC did not affect
neurons (Fig. 2c).

We further found that expressing LCs of BoNT/C and E in
only a few neurons by transfection resulted in degeneration of
transfected neurons, suggesting that the cytotoxicity of BoNT/C
and E is cell autonomous (Fig. 2d). The cytotoxicity is also likely
specific to neurons, as LCs of BoNT/C and E did not affect
survival of Neuro-2A cells, a neuroblastoma cell line that
expresses Syx 1/SNAP-25, or primary glial cells (Supplementary
Fig. S4).

Cleavage of Syx 1 by BoNT/C causes degeneration of neurons.
We next sought to identify the toxin substrate proteins whose
cleavage leads to neurodegeneration. BoNT/C is known to cleave
Syx 1 and SNAP-25 (Fig. 1a)12–14. Because BoNT/A cleaves one
more residue from SNAP-25 than BoNT/C does (Fig. 1a), yet
BoNT/A does not induce degeneration of neurons (Figs 1d and
2c), cleavage of SNAP-25 by BoNT/C is not the reason for its
cytotoxicity. Therefore, we focused on Syx 1, which has two
redundant isoforms, Syx 1A and 1B, in neurons. To test the role
of Syx 1, we created toxin-resistant mutants, designated as Syx
1A/BoNT/C resistant (CR) and Syx 1B/CR, by changing four
residues at the toxin cleavage site. The same mutations were used
to create a mutant Syx 2 as a control, which is one of the four
plasma membrane Syx family members (Syx 1–4)3. These CR
mutants are resistant to BoNT/C in neurons (Fig. 3a). We found
that Syx 1A/CR and Syx 1B/CR, but not Syx 2/CR, fully prevented
BoNT/C-induced axon degeneration and neuron death (Fig. 3b,
Supplementary Fig. S5a,c). Furthermore, expression of these CR
mutants did not affect cleavage of endogenous Syx 1 and SNAP-
25 by BoNT/C (Fig. 3a, left panel), indicating that these toxin-
resistant substrates did not protect neurons by deactivating
BoNT/C. Instead, they likely replaced endogenous Syx 1.
Together, these data demonstrate that cleavage of Syx 1 by
BoNT/C causes neurodegeneration.
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Cleavage of SNAP-25 by BoNT/E causes degeneration of
neurons. BoNT/E is known to cleave SNAP-25 (Fig. 1a)15,16. We
next created a BoNT/E-resistant SNAP-25 mutant, designated as
SNAP-25/ER, by replacing four residues at the BoNT/E cleavage
site (Fig. 3c). We also used SNAP-23 as a control, which is the
other SNAP-25 family member. SNAP-23 is expressed in non-
neuronal cells and developing neurons17, but its expression in
mature hippocampal neurons is not detectable (Fig. 3d,
Supplementary Fig. S6a). When expressed in neurons via
lentiviral transduction, SNAP-23 was not cleaved by nanomolar
levels of BoNT/E added to media (Fig. 3d), despite that it contains
the toxin cleavage site and can be cleaved by high levels of BoNT/
E-LC co-expressed in HEK293 cells (Supplementary Fig. S6b).

These results indicate that SNAP-23 is not an effective substrate
for BoNT/E in neurons. This finding allows us to test whether
wild type (WT) SNAP-23 can prevent BoNT/E cytotoxicity.

We found that both SNAP-25/ER and WT SNAP-23 fully
prevented BoNT/E-induced axon degeneration and neuron death
(Fig. 3e, Supplementary Fig. S5b,c), suggesting that SNAP-25 and
SNAP-23 are functionally redundant in supporting neuron
survival. Expression of these BoNT/E-resistant substrates did
not affect cleavage of endogenous SNAP-25 by BoNT/E
(Fig. 3c,d), indicating that SNAP-25/ER and SNAP-23 protected
neurons by restoring essential cellular functions instead of
deactivating BoNT/E. Because SNAP-23 is not expressed in
mature neurons and it is not cleaved by nanomolar BoNT/E, we
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Figure 1 | BoNT/C and E can induce degeneration of cultured rodent and human neurons. (a) Schematic drawings of the cleavage sites on neuronal

SNAREs for the seven BoNTs. BoNT/B, D, F and G cleave Syb. BoNT/A and E cleave SNAP-25. BoNT/C cleaves both Syx 1 and SNAP-25. (b) Cultured rat

hippocampal neurons were exposed to BoNT/C (0.3 nM, 48 h). Axons were detected by immunostaining with an antibody specific for axonal neurofilament

(SMI 312). Hippocampal neurons normally display continuous intact axons, whereas degenerated axons show severe beading and fragmentation. The

percentage of degenerated axons was quantified (right panel), as described in Supplementary Fig. S1b. The same method was utilized to assay axon

degeneration in all applicable figures. Cultured rat hippocampal neurons were used in all experiments, unless otherwise indicated in the figure legends.

Scale bar, 20mm. (c) Neurons were exposed to the seven BoNTs, respectively, for 12 h in media. Cell lysates were collected for immunoblot analysis

detecting the indicated proteins. Actin served as the internal control for loading. Cleavage of SNAP-25 by BoNT/A, C and E generated fragments with

smaller molecular weight. The Syx 1 fragment generated by BoNT/C was degraded within cells, resulting in multiple weak bands. Cleavage of Syb by BoNT/

B, D, F and G resulted in loss of its immunoblot signals. (d) Neurons were exposed to the indicated six BoNTs for 48 h. BoNT/E, but not other toxins,

induced axon degeneration. (e) Neurons were exposed to BoNT/C or BoNT/E that had been pre-incubated with control immunoglobulin G (IgG), a

polyclonal anti-BoNT/C antibody (Ab, antibody, 1:200) or a polyclonal anti-BoNT/E antibody (1:200) as indicated. Cells were fixed 48 h later for assaying

axon degeneration. (f) BoNT/C and E induced axon degeneration of both cultured rat motor neurons (upper panel) and human motor neurons derived from

embryonic stem cells (lower panel). Error bars in all applicable panels represent s.e.m.
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conclude that cleavage of endogenous SNAP-25 is the reason for
BoNT/E-induced neurodegeneration.

Consistent with our studies using active full-length toxins, co-
transfecting toxin-resistant Syx 1A/CR with BoNT/C-LC, and
SNAP-25/ER or SNAP-23 with BoNT/E-LC, respectively,
prevented degeneration of transfected neurons (Supplementary
Fig. S7). In addition to hippocampal neurons, we found that Syx
1A/CR and SNAP-25/ER also rescued rat motor neurons and
human motor neurons from BoNT/C and E, respectively
(Supplementary Fig. S8). As it has been argued whether
inhibitory neurons express SNAP-25 (refs 18–20), we further

examined the effect of BoNT/E on inhibitory neurons and found
that BoNT/E can induce degeneration of both excitatory and
inhibitory neurons (Supplementary Fig. S9). These data support
that SNAP-25 is expressed in inhibitory neurons.

Cytotoxicity requires cleavage of nearly all Syx 1/SNAP-25. We
next titrated BoNT/C and E to determine the minimal toxin
concentrations that can induce degeneration of neurons. We
found that BoNT/C at 10 pM and BoNT/E at 100 pM do not
induce degeneration of cultured hippocampal neurons
(Supplementary Fig. S10). We then examined the residual Syx 1/
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SNAP-25 levels after neurons were exposed to BoNT/C and E at
these concentrations. We found that BoNT/C at 10 pM eventually
cleaved the majority of Syx 1 after 5 days (Fig. 3f). Syx 1 levels
start to recover by day 6 (Fig. 3f), indicating that the toxin activity
has started to decrease after 5 days. Because BoNT/C at 10 pM
does not induce neurodegeneration, we conclude that the residue
low level of Syx 1 at day 5 is still sufficient to support neuron
survival.

Similarly, we found that BoNT/E at 100 pM cleaved the
majority of SNAP-25 by 24 h (Fig. 3g). Because BoNT/E has a
shorter half-life than BoNT/C in neurons21, SNAP-25 starts to
rise by 48 h after exposure to BoNT/E (Fig. 3g). Therefore, the
residue low level of SNAP-25 at 24 h after exposure to BoNT/E is
still sufficient to support neuron survival.

To further confirm these conclusions, we used a different
approach: knocking down (KD) endogenous SNAP-25 using
lentiviral-mediated short hairpin RNA (shRNA) (Fig. 3h). The
expression of SNAP-25 was reduced significantly (Fig. 3h, left
panel), yet we did not observe axon fragmentation and
neurodegeneration (Fig. 3h, right panel), suggesting that the
residue level of SNAP-25 is still sufficient. Therefore, we conclude

that only a minute percentage of endogenous Syx 1/SNAP-25 is
needed to maintain neuron survival, and neurodegeneration only
occurs when nearly all Syx 1/SNAP-25 are cleaved by toxins.

BoNT/A-cleaved SNAP-25 does not tolerate additional muta-
tions. The finding that SNAP-25 is required for neuron survival
raises a question: why does not BoNT/A induce neurodegenera-
tion? The likely explanation is that BoNT/A only cleaves 9 amino
acids, whereas BoNT/E cleaves 26 amino acids from the C ter-
minus of SNAP-25 (Fig. 4a)1. To test this hypothesis directly, we
constructed a SNAP-23 mutant that lacks the last nine amino
acids. We used human SNAP-23 instead of SNAP-25 because
human SNAP-23 is resistant to BoNT/E (Supplementary Fig.
S6c). This allows us to avoid the inclusion of additional mutations
at the BoNT/E cleavage site (an issue discussed further below).
We found that this truncated SNAP-23 mutant can support
neuron survival when endogenous SNAP-25 was abolished by
BoNT/E (Fig. 4b).

The next question is whether BoNT/A cleavage attenuates the
function of SNAP-25. One way to determine this is to introduce
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additional mutations to SNAP-25. If loss of the last nine amino
acids weakens the function of SNAP-25, additional mutations
that are tolerated in full-length SNAP-25 may cause loss of
function in the truncated form because of additive effects.

In fact, we already have a ‘perfect’ SNAP-25 mutant for this
experiment: SNAP-25/ER mutant (Fig. 3c,e). This mutant can
fully rescue neurons from BoNT/E, demonstrating that the
mutations in it are tolerated in full-length SNAP-25. To
determine whether SNAP-25/ER can afford to lose the last nine
amino acids, we exposed neurons expressing SNAP-25/ER to
both BoNT/E and BoNT/A. BoNT/E cleaved endogenous SNAP-
25, virtually creating neurons that expressed only SNAP-25/ER.
We found that cleavage of SNAP-25/ER by BoNT/A in these
neurons induced death of neurons (Fig. 4c–e). These results
demonstrate that SNAP-25 cleaved by BoNT/A has a reduced
capacity to tolerate additional mutations.

Syx 1/SNAP-25 act as SNARE proteins for neuron survival. We
next sought to determine whether Syx 1/SNAP-25 needs to form
functional SNARE complexes for maintaining neuron survival.
The pairing interfaces (layers � 7 to þ 8) of Syx 1 and SNAP-25
in SNARE complexes have been well established3,22,23. We first
examined two well-characterized point mutations in the SNARE
interfaces: Syx 1 (A240V, V244A) and SNAP-25 (M71A). Both
mutants lose the ability to mediate vesicle exocytosis24–26. When
expressed in neurons via lentiviral transduction, these two
mutants also failed to prevent toxin-induced degeneration of
neurons, respectively (Fig. 5a,b).

We further examined whether there are additive effects
between mutations in the same layer in Syx 1 and SNAP-25.
To do so, we mutated residues at layers þ 1/� 1 to alanines in
both Syx 1A/CR and SNAP-23 (Fig. 5c). SNAP-23 was used to
avoid additional mutations at the BoNT/E cleavage site. Syx 1A/
CR(þ 1/� 1) mutant prevented axon degeneration induced by
BoNT/C, and SNAP-23(þ 1/� 1) prevented axon degeneration
induced by BoNT/E (Fig. 5d). However, when Syx 1A/CR(þ 1/
� 1) and SNAP-23(þ 1/� 1) were expressed together, they failed

to prevent axon degeneration in the presence of both BoNT/C
and E (Fig. 5d). The likely explanation is that mutations at
þ 1/� 1 layers in Syx 1A and SNAP-23 are tolerated when
pairing with endogenous WT partners, but they cannot form
functional SNARE complexes with each other when endogenous
WT SNAREs are eliminated with toxins. This additive effect
demonstrates that Syx 1 and SNAP-25/23 need to pair with each
other as SNARE proteins to support neuron survival.

Other homologous SNARE pairs can support neuron survival.
In addition to mediating membrane fusion, Syx 1 and SNAP-25
have also been reported to interact with and regulate various ion
channels20,27–29. The membrane fusion function of Syx 1/SNAP-
25 is shared by other homologous plasma membrane SNARE
proteins, namely Syx 2/3/4 for Syx 1 and SNAP-23 for SNAP-25
(Fig. 6a), whereas interactions with ion channels are often specific
to Syx 1/SNAP-25. To further distinguish the role of Syx 1/SNAP-
25 and to determine whether Syx 1 is the solo target responsible
for BoNT/C-induced neuron death, we next examined whether
Syx 1 can be substituted by Syx 2/3/4. Similar to SNAP-23, we
found that Syx 2, 3 and 4 are not expressed at detectable levels in
mature hippocampal neurons (Fig. 6b–d). When expressed
exogenously via lentiviral transduction, Syx 2 and 3 were not
cleaved by sub-nanomolar levels of BoNT/C (Fig. 6b,c), despite
containing the BoNT/C cleavage sites. These findings indicate
that Syx 2/3 are not effective substrates for BoNT/C in neurons.
Syx 4 is known to be resistant to BoNT/C13 (Fig. 6d). Despite
being resistant to BoNT/C, we found that WT Syx 2/3/4 all failed
to prevent BoNT/C-induced axon degeneration (Fig. 6e).

We next considered the possibility that the reason Syx 2/3/4
failed to rescue neurons is because BoNT/C also cleaves SNAP-25
and truncates eight residues from its C terminus (Fig. 4a). We
used two different approaches to address this issue. First, we
circumvented it by expressing exogenous SNAP-23 in neurons,
which is resistant to BoNT/C (Supplementary Fig. S6b)30. We
found that co-expressing SNAP-23 with Syx 2/3/4 prevented
BoNT/C-induced axon degeneration (Fig. 6f). Thus, the Syx 1/
SNAP-25 pair can be replaced by exogenous pairs of Syx 2/3/4
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with SNAP-23, which are plasma membrane SNARE pairs
commonly found in non-neuronal cells.

Second, we utilized a newly created mutant BoNT/C-LC
(BoNT/C-a51) that only cleaves Syx 1, but loses the ability to
cleave SNAP-25 (Fig. 6g)31. As expected, BoNT/C-a51 cleaved
Syx 1 and still induced axon degeneration in neurons (Fig. 6h).
Co-expressing exogenous Syx 2/3/4 in neurons prevented
neurodegeneration induced by BoNT/C-a51, without the need
to express SNAP-23 (Fig. 6h). These results demonstrate that Syx
2/3/4 can pair with full-length SNAP-25 to support neuron
survival. Therefore, all possible combinations of known plasma
membrane SNARE proteins, one from the Syx family, one from
SNAP-25/23, can be used to support neuron survival. These
findings demonstrate that the function of Syx 1/SNAP-25 for
neuron survival depends on their intrinsic property as SNARE
proteins for membrane fusion.

SNAP-25 cleaved by BoNT/A cannot pair with Syx 2/3/4. As
BoNT/A cleaves one more residue from SNAP-25 than BoNT/C,
we expect that Syx 2/3/4 will not be able to pair with SNAP-25
cleaved by BoNT/A. To directly examine this possibility, we
abolished Syx 1 in hippocampal neurons with BoNT/C-a51 while
co-expressing Syx 2/3/4, virtually creating neurons that express
Syx 2/3/4 instead of Syx 1. We found that BoNT/A readily
induced axon degeneration in these neurons that rely on Syx 2/3/
4 (Fig. 6i). Thus, the safety of BoNT/A depends on specific
plasma membrane SNARE isoforms expressed in target neurons.

Cytotoxicity is independent of synaptic vesicle exocytosis.
There are three major membrane fusion events at plasma mem-
branes: (1) regulated vesicle exocytosis such as synaptic vesicle
release; (2) constitutive exocytosis/secretion; and (3) exocytosis of
plasma membrane recycling. We next examined which of these
three routes is involved in toxin-induced neurodegeneration.

We first further examined regulated synaptic vesicle exocytosis
via sensitive electrophysiological recording of miniature excita-
tory postsynaptic currents (mEPSCs) (Fig. 7a). We confirmed
that BoNT/A blocked synaptic vesicle exocytosis and abolished
mEPSCs (Fig. 7a), yet it does not induce neurodegeneration
(Figs 1d and 2c). Furthermore, Syx 1A/CR and SNAP-25/ER both
failed to restore mEPSCs in neurons (Fig. 7a), despite their ability
to prevent toxin-induced neurodegeneration.

We also examined stimulated synaptic vesicle exocytosis by
depolarizing neurons with high Kþ buffers and monitoring
synaptic vesicle exocytosis using an antibody against the luminal
domain of the major vesicle protein synaptotagmin I (Syt I, Syt IN
Ab, Fig. 7b). We found that Syx 1A/CR and SNAP-25/ER both
failed to restore binding and uptake of Syt IN Ab in the presence
of BoNT/C or E, respectively (Fig. 7b). Therefore, these toxin-
resistant mutants separate two functions of Syx 1 and SNAP-25:
they can support neuron survival, but cannot mediate synaptic
vesicle exocytosis.

BoNT/C and E do not affect constitutive exocytosis. We next
adopted a secreted Gaussia luciferase (Gluc) assay to test whether
BoNT/C and E block constitutive exocytosis/secretion in neurons.
Gluc possesses a natural secretory signal. Once expressed in
neurons via lentiviral transduction, Gluc is released into media in
a linear increase over time (Fig. 7c). Furthermore, Gluc release is
fully blocked by brefeldin A (BFA), a potent blocker that disrupts
secretory vesicle biogenesis (Fig. 7c), confirming that Gluc is
released via constitutive secretion in neurons.

By measuring Gluc levels in media, we found that BoNT/A, C
and E did not affect Gluc secretion (Fig. 7d), indicating that these
BoNTs do not disrupt constitutive exocytosis/secretion. Further-
more, blocking constitutive exocytosis/secretion using BFA did
not induce axon fragmentation at the time point (36 h) when
BoNT/C and E already induced severe axon fragmentation
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(Fig. 7e). Thus, constitutive exocytosis/secretion is not involved in
toxin-induced neurodegeneration.

Blocking endocytosis delays degeneration of neurons. The third
event is the exocytosis step during plasma membrane recycling
processes. We reasoned that if cleavage of Syx 1 and SNAP-25
disrupts recycling processes by blocking the exocytosis step,
blocking endocytosis may forcefully restore the balance at the
plasma membrane temporarily. We first blocked clathrin-medi-
ated endocytosis using dominant-negative AP180 (AP180-C) or
EPS15 (EPS15-DIII)32, but both failed to affect toxin-induced
degeneration of neurons (Fig. 7f, Supplementary Fig. S11). We
then blocked a broad range of endocytosis including both
clathrin-dependent and clathrin-independent endocytosis using a
dominant-negative dynamin (K44A)32. We found that dynamin
(K44A) significantly delayed degeneration of neurons induced by
co-expressed BoNT/C-LC (Fig. 7f). As dynamin (K44A) did not
affect cleavage of Syx 1 by BoNT/C in cells (Fig. 7g), it is likely
that blockage of endocytosis temporarily compensated the defects
in exocytosis of plasma membrane recycling processes. Thus,
these data suggest that BoNT/C and E induce neurodegeneration
by disrupting exocytosis of essential dynamin-dependent
recycling processes.

Discussion
Our studies expanded the previous observations on BoNT/C
cytotoxicity and revealed BoNT/E as the second BoNT with
cytotoxicity to neurons. We found that cytotoxicity only occurs
when toxins can effectively cleave the majority of Syx 1 or SNAP-
25 in neurons, indicating that only a small percentage of
endogenous Syx 1/SNAP-25 is needed for supporting neuron
survival. We estimated that the threshold concentrations for
cytotoxicity to occur are 410 pM for BoNT/C and 100 pM for
BoNT/E in cultured hippocampal neurons. These concentrations
are far higher than the lethal dose in humans and animals, which
is usually below femtomolar levels. Therefore, it is not likely that
cytotoxicity has a significant role in pathogenesis of BoNT/C and
E. On the other hand, BoNTs are used to target neurons locally
via injections in therapeutic applications, and the same neurons
are often exposed to BoNTs repeatedly over a long period of time.
Because of this sustained toxin exposure, precautions should be
taken in the use of BoNT/C and E as therapeutic toxins.

Our studies establish that Syx 1/SNAP-25 are directly required
for neuronal survival as the plasma membrane SNAREs for
membrane recycling, independent of their well-known role for
synaptic vesicle exocytosis. The specific cognate vesicle SNARE
protein mediating essential membrane recycling processes
remains to be identified. We expect it to be different from Syb,
because BoNT/B, D, F and G that cleave Syb do not induce
degeneration of neurons (Fig. 1d).

The findings that exogenous SNAP-23 alone (Fig. 6f), or Syx 2/
3/4 alone (Fig. 6e), both failed to prevent BoNT/C-induced
degeneration of neurons, provide a functional readout, suggesting
that there is no significant endogenous Syx 2/3/4 and SNAP-23
expression in mature hippocampal neurons. Thus, Syx 1/SNAP-
25 are the predominant, if not the only, plasma membrane
SNAREs and may act as promiscuous acceptors on plasma
membranes in mature neurons. By limiting the expression to only
Syx 1/SNAP-25, mature neurons may avoid potential interfer-
ences on neurotransmission from homologous SNARE proteins
such as SNAP-23 that cannot support fast synaptic vesicle
exocytosis18. This model is further supported by previous findings
that Syx 1/SNAP-25 are broadly distributed along neuronal
surfaces33–35. This model also predicts that Syx 1/SNAP-25 may
act as the plasma membrane SNARE proteins for recycling of
possibly all postsynaptic receptors and surface proteins in mature

hippocampal neurons. This is supported by previous findings that
SNAP-25 mediates protein kinase C-enhanced post-synaptic
membrane insertion of NMDA (N-methyl-D-aspartate) receptors
and trafficking of kainate receptors35,36.

Consistent with our conclusions that Syx 1/SNAP-25 are
essential to neuron survival, it has been reported that hippo-
campal neurons cultured from SNAP-25 KO mice degenerate
gradually in vitro18,37, which can be rescued by expressing SNAP-
25, SNAP-23 or a SNAP-25 truncation lacking the nine residues
at the C terminus18,38. Interestingly, SNAP-25 KO neurons can
sustain the first few days of growth in vitro. This is likely because
SNAP-23 is still expressed in developing neurons and its
expression stops as neurons become mature (Supplementary
Fig. S6a). The compensation from SNAP-23 also explains why the
brain of SNAP-25 KO mice can develop normally until
embryonic day 18 in vivo37, and stochastic expression of
SNAP-23 may explain why a tiny percentage of SNAP-25 KO
neurons (1.3%) can still survive for over 14 days in culture18.

Syx 1 A/B double KO mice have not been generated because
Syx 1 might be essential for embryonic viability39–42. Genetic
studies in Drosophila have shown that Syx may mediate multiple
membrane fusion events in different cells throughout
development, including essential embryonic cellularization40–42.
Furthermore, genetic mosaic analysis in Drosophila has
demonstrated that lacking Syx causes cell lethality43. It is also
interesting to note that lack of Munc-18, a Syx-binding protein
essential for SNARE-mediated vesicle exocytosis in cells44, results
in cell-autonomous degeneration of neurons45. Thus, it is likely
that Munc-18 is also required for exocytosis in plasma membrane
recycling processes. This is consistent with the hypothesis that
both SNARE and SM (Sec1/Munc-18-like) proteins are required
to form the minimal machinery for membrane fusion in cells46.

Defects in CSPa, which is a co-chaperone for maintaining the
SNAP-25 folding and facilitating SNARE complex assembly47,48,
have been linked to neurodegenerative diseases49. In addition,
a-synuclein may also act as a non-enzymatic chaperone to
facilitate SNARE assembly50. Finally, changes of SNARE protein
expression levels have been reported in Alzheimer’s disease and
Huntington’s disease51–53. Our data establish a direct role for Syx
1/SNAP-25 in supporting neuron survival and suggest that
disruption of house-keeping plasma membrane recycling
processes might be a contributing factor in SNARE-related
neurodegenerative processes.

Methods
Antibodies and toxins. Mouse monoclonal antibodies for Syx 1 (HPC-1), SNAP-
25 (C171.2), Syb (C169.1) and Syt I (Syt IN Ab, Cl604.4) were generously provided
by E. Chapman (Madison, WI). Rabbit polyclonal anti-BoNT/C and E were gen-
erated in E. Johnson’s lab (Madison, WI). The following antibodies were purchased
from indicated vendors: mouse monoclonal antibodies for axonal neurofilament
(SMI 312; Covance), actin (AC-15; Sigma-Aldrich), HA (16B12; Covance), NeuN
(Millipore), ChAT (AB144P; Millipore) and GAD67 (1G10.2; Millipore); rabbit
polyclonal antibodies against SNAP-23, Syx 2, Syx 4 (Synaptic Systems), synapsin
and MAP-2 (Millipore); goat polyclonal antibody for Syx 3 (SC-47436; Santa Cruz
Biotechnology).

BoNT/A (Hall-A), BoNT/B (Okra), BoNT/C (Brazil), BoNT/D (D1873), BoNT/
E (Alaska) and BoNT/F (Langeland) were purified in E. Johnson’s lab from the
indicated strains. BoNT/G (G89) was purchased from Metabiologics (Madison,
WI). The working concentrations in culture media are: BoNT/A (10 nM), BoNT/B
(20 nM), BoNT/C (0.3 nM), BoNT/D (1 nM), BoNT/E (3 nM), BoNT/F (10 nM)
and BoNT/G (20 nM), unless otherwise specified in the figure legends.

cDNA and constructs. The following cDNAs were generously provided by the
indicated groups: human SNAP-23 (P. Roche, NIH)17, dynamin WT and K44A
(S. Schmid, La Jolla, CA), AP180-C (L. Greene, NIH) and EPS15-DIII (A.
Benmerah, France). The cDNA encoding LCs of BoNT/A (residues 1-448,
M30196), C (residues 1-449, X53751), D (residues 1-445, AB012112) and E
(residues 1-422, X62683) were synthesized by GenScript (New Brunswick, NJ) with
codon optimized for eukaryotic cell expression. The cDNA encoding Gluc was
purchased from NEB (Ipswich, MA).
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Syx 1A/CR, 1B/CR and 2/CR were generated by replacing residues at P2P1P1’P2’
of the BoNT/C cleavage site (KKAV in Syx 1A/1B, KKAI in Syx 2), with
corresponding residues in Syx 5 (LIYF). SNAP-25/ER was generated by replacing
residues at P3P2P1P1’ of the BoNT/E cleavage site (IDRI) in rat SNAP-25B with
residues ‘NARE’. Other point mutations and deletions are specified in the figure
legends. All constructs were sub-cloned into Lox-Syn-Syn lentiviral vectors, which
contain two separate neuronal specific synapsin promoters. For constructs
expressing toxin LCs, DsRed was co-expressed by the second synapsin promoter.
For all other constructs, green fluorescent protein (GFP) was co-expressed. In
Supplementary Figs. S4 and S6b, toxin LCs were sub-cloned into pcDNA3.1 vector
with CMV promoters for overexpression in non-neuronal cells.

Primary neuron and glial cell culture. Dissociated rat hippocampal neurons were
prepared from E18-19 embryos using a papain dissociation kit (Worthington
Biochemical, NJ), as described previously54. Experiments were carried out using
mature neurons after 14 days in vitro (DIV), unless otherwise indicated in the
figure legends.

Rat motor neurons were prepared from ventral spinal cords of E13 rats and
dissociated with papain. Dissociated cells were loaded on the top of 7.05%
NycoPrep (Accurate Chemical, NY) solutions and centrifuged (500 g, 20min). Cells
on the top of the solution were collected, re-suspended in a 3-ml Neurobasal
medium and centrifuged (300 g, 5min). Cell pellets were re-suspended and plated
on poly-D-lysine-coated coverslips with a mono-layer of glial cells as described in
detail below, at a density of 4� 104 cells per well (24-well plate). Motor neurons
were grown in a Neurobasal medium containing B27 supplement (Invitrogen)
under 7% CO2.

Glial cells were isolated from postnatal day 1 (P1) rat brain. Meninges were
removed, cells were dissociated with trypsin (0.25%, 30min) and cultured in the
cell culture media (DMEM, 10% fetal bovine serum, 2mM glutamine and 1%
penicillin/streptomycin). After 7–9 days, cells were dissociated again with trypsin
and plated onto coverslips at 20% confluence in the cell culture media.
Arabinofuranosylcytosine was added to the media when the cells reached 100%
confluence to inhibit cell proliferation.

Transfection and lentiviral transduction. Transfection of neurons was performed
between DIV8 and DIV12 using the calcium phosphate method. HEK293 cells and
a mouse neuroblastoma cell line Neuro-2A were transfected using Lipofectamine
2000 (Invitrogen). Lentiviral particles were generated using packaging vectors
VSV-G and D8.9 as described previously54. Viruses were added to neurons at
DIV5.

Axon immunostaining and axonal degeneration quantification. Culture neurons
were fixed with 4% paraformaldehyde, permeabilized with 0.25% Triton X-100 and
subjected to immunostaining using an antibody specific for axonal neurofilament
(SMI 312, 1:1000). An Alexa-546 conjugated secondary antibody was usually uti-
lized because many constructs co-express GFP. Images were collected using a
confocal microscope (Leica TCS SP5; � 40 oil objective, Zoom 2).

Quantification of axonal degeneration was carried out using ImageJ (NIH).
Briefly, the axon immunostaining images were first converted into 8-bit black/
white images and inverted, so axons display in black, then threshold was set to 180.
The total axonal area was determined by measuring all pixels above threshold,
including both intact and fragmented axons. Degenerated axons were detected
using the Particle Analyzer module in ImageJ, by defining particle size between 10
and 500 pixels. This range of particle size covers the majority of observed beads and
fragments of axons. The total area of particles divided by the total area of pixels is
defined as the percentage of degenerated axons. Each experiment was repeated
three times. Error bars in all figures represent s.e.m.

Immunoblot analysis. Cells were washed and lysed with RIPA buffer (50mM Tris,
1% NP40, 150mM NaCl, 0.5% sodium deoxycholate and 0.1% SDS) plus a protease
inhibitor cocktail (Sigma-Aldrich). Lysates were centrifuged for 10min at max-
imum speed using a microcentrifuge at 4 �C. Supernatants were subjected to
SDS–polyacrylamide gel electrophoresis and immunoblot analysis using the
enhanced chemiluminescence method (Pierce).

Quantifying the survival rate of transfected neurons. GFP was co-transfected
with toxin LCs in neurons to assist cell morphology analysis. Twenty-four hours
after transfection, GFP-positive neurons were counted as total transfected neurons
using an epifluorescence microscope (Olympus IX 51; � 20 objective). Degener-
ated neurons were identified by their round cell bodies and fragmented neurites.

Lentiviral-mediated shRNA KD of SNAP-25. SNAP-25 shRNA KD constructs
were generated using the following primer: 50-TGCTTAAATCCAGTGATGCT
TTCAAGAGAAGCATCACTGGATTTAAGCTTTTTTC-30 , targeting the base
pair 282–300 of rat SNAP-25. Annealed primers were cloned into the lentiviral
vector pLL3.7 using HpaI and XhoI sites. Expression of shRNA is driven by a U6
promoter, whereas a separate CMV promoter drives the expression of EGFP.

Lentiviruses were added to neurons on DIV5. Experiments were carried out on
DIV12–14.

Constitutive secretion of Gluc. Gluc was expressed in neurons via lentiviral
transduction. The neurons were washed and 2ml fresh media were added. Gluc
secreted into the media was measured by taking 50 ml media and subjecting it to a
luciferase activity assay using a kit following the manufacturer’s instructions (NEB,
Ipswich, MA). To block constitutive secretion, cells were pre-treated with BFA
(1 mgml� 1; Sigma-Aldrich) for 2 h before changing media and then further
incubated in the presence of BFA for the indicated times.

mEPSC recording. Whole-cell patch-clamp recordings were performed at ambient
temperature using a Multiclamp 700B amplifier (Molecular Devices). Cultured
hippocampal neurons were bathed with an external solution containing (in mM)
126 NaCl, 2.5 KCl, 2.5 CaCl2, 1.2 MgCl2, 25 NaHCO3, 1.2 NaH2PO4 and 11
D-glucose (pH 7.4, 300mOsm). The patch electrodes were filled with (in mM): 130
K-gluconate, 8 NaCl, 10 Hepes, 0.4 EGTA, 5 QX-314 (lidocaine N-ethyl bromide), 2
Mg-ATP and 0.25 GTP-Tris (pH 7.25). The mEPSCs were recorded at the holding
potential of � 60 mV, with the presence of 1mM tetrodotoxin blocking action
potentials, 50mM D-AP5 (D-2-amino-5-phosphonopentanoate) blocking NMDA
receptors and 100mM picrotoxin blocking GABA (g-aminobutyric acid) receptors.
Data were analysed with pClamp 10 (Molecular Devices) and Mini Analysis 6
(Synaptosoft). The threshold for detecting mEPSC events was set at 9 pA.

Human motor neuron differentiation. Human embryonic stem cells (lines H9,
passages 19–35) were used to generate neuroectodermal cells. Motor neuron
induction was carried out as previously described55. Briefly, human embryonic
stem cell-derived neuroectodermal cells were treated with retinoic acid (0.1 mM;
Sigma-Aldrich) for caudalization for 1 week in a chemically defined neural medium
(NM: DMEM/F12, nonessential amino acids, 2 mgml� 1 heparin and the neural cell
supplement N2 (Gibco)). The neuroepithelial clusters were isolated and suspended
in the NM in the presence of both retinoic acid and purmorphamine (1 mM;
Calbiochem). Purmorphamine was removed from the NM 1 week later. The
formed progenitor spheres were subsequently cultured on glass coverslips coated
with polyornithine and laminin (2–4 clusters per coverslip in a 24-well plate) in the
presence of 0.5ml NM, supplemented with brain-derived neurotrophic factor
(10 ngml� 1; Peprotech), glial cell-derived neurotrophic factor (10 ngml� 1; R&D
Systems), insulin-like growth factor 1 (10 ngml� 1; Peprotech), cyclic adenosine
monophosphate (1 mM), ascorbic acid (200 ngml� 1; Innovative Cell Technology)
and 50 nM retinoic acid. Cell media were changed every other day for long-term
differentiation.
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