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Extensive diversification of IgH subclass-encoding
genes and IgM subclass switching in crocodilians
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Crocodilians are a group of reptiles that are closely related to birds and are thought to

possess a strong immune system. Here we report that the IgH locus in the Siamese crocodile

and the Chinese alligator contains multiple m genes, in contrast to other tetrapods. Both the

m2 and m3 genes are expressed through class-switch recombination involving the switch

region and germline transcription. Both IgM1 and IgM2 are present in the serum as polymers,

which implies that IgM class switching may have significant roles in humoural immunity. The

crocodilian a genes are the first IgA-encoding genes identified in reptiles, and these genes

show an inverted transcriptional orientation similar to that of birds. The identification of both

a and d genes in crocodilians suggests that the IgH loci of modern living mammals, reptiles

and birds share a common ancestral organization.
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I
mmunoglobulins (Igs) are essential components of the
adaptive immune system and are expressed only in jawed
vertebrates, including cartilaginous fish, bony fish, amphi-

bians, reptiles, birds and mammals1–3. These defence molecules
emerged B500 million years after the divergence of jawed
vertebrates from jawless vertebrates (cyclostomes such as
lampreys and hagfish)2. No Igs are found in cyclostomes, which
were recently shown to have developed a distinct recombinatorial
adaptive system4–7.

Antigen-binding regions (variable regions) and effector regions
(constant regions) are pivotal to Ig functions. From an
evolutionary perspective, comparative studies have proven to be
useful in understanding how the Ig-gene variable regions have
diversified and how the effector regions have multiplied (that is,
the diversification of the Ig classes and subclasses) in different
species1. A number of molecular mechanisms that are involved in
shaping the IgV (V: variable) repertoire, such as V(D)J (D:
diversity segments; J: joining segments) recombination, somatic
hypermutation (SHM) and gene conversion, have been
intensively studied. Both V(D)J recombination and SHM are
utilized by all of the species that have been examined, whereas
gene conversion has a major role only in birds1,8,9. Additionally,
more than 10 genes encoding different Ig classes, such as IgM,
IgD (IgW), IgNAR, IgZ (IgT), IgA (IgX), IgY, IgF, IgO, IgG and
IgE, have been identified in various species3,10–20, and IgG and
IgA are further diversified into a variable number of subclasses in
mammalian species. Differential diversification of the Ig classes or
subclasses may have arisen from a long evolutionary period of
environmental selection pressure, thus conferring survival
advantages. IgM and IgD are thought to be the most primitive
Ig classes17,21, as IgM has been identified in all species examined
to date and IgD is found in most species except for birds and
certain mammals22. Logically, other IgH (H: heavy-chain genes)
classes should be evolutionarily derived from IgM and IgD, likely
through various mechanisms such as gene duplication, gene
conversion or recombination. These processes led to the origin of
IgNAR in cartilaginous fish and IgZ(T) in bony fish13,14,23.
Although both IgY and IgA(X) appeared only after the emergence
of tetrapods, the former likely preceded the latter in evolution
based on the evolutionary evidence that IgA (X) resulted from a
genetic recombination between IgM and IgY24,25. From lower
tetrapods to mammals, IgY has been functionally diversified into
IgG and IgE26.

In addition to the insightful clues regarding Ig evolution,
comparative studies have provided unexpected observations in
recent decades, particularly in reptiles and birds. For example,
IgD is absent in all birds examined to date27, although it has been
identified in all other groups of jawed vertebrates, including
reptiles22,25,28. Furthermore, although IgA (or IgX) is expressed
in mammals, birds and amphibians1, this Ig class, which is
involved in mucosal immunity, is missing in several reptiles25,28.
This absence is surprising considering that even bony fish express
a special Ig class, IgT, that is dedicated to mucosal immunity15.
Notably, the a gene in birds shows a reverse transcriptional
orientation to the m and u genes27. Together, these observations
suggest that the IgH locus in birds and reptiles has experienced
genetic rearrangements, resulting in either the deletion or
inversion of certain genes.

Crocodilians (including Alligatorinae, such as caimans and
alligators, Crocodylinae, such as crocodiles and false gavials, and
Gavialinae, such as gavials) are thought to be the closest relatives
of living birds29. As these species provide a phylogenetic link to
other reptiles and birds, analysis of their Ig genes may provide
significant clues to understanding Ig evolution. Crocodilians are
thought to have a strong immune system, as they are rarely
subject to infection despite harsh living conditions30,31. In this

study, we have therefore performed a thorough analysis of the
IgH genes in two species of crocodilians: the Siamese crocodile
(Crocodylus siamensis) and the Chinese alligator (Alligator
sinensis). We found that the IgH locus in these species contains
multiple m genes, and that IgM subclasses can be expressed
through class-switch recombination.

Results
Construction of IgH-specific mini-cDNA libraries. To analyse
the IgH isotypes expressed in the Siamese crocodile, we first
amplified a fragment of the m gene using degenerate primers for
the conserved sequences of known m genes in other species. We
subsequently performed rapid amplification of cDNA ends
(RACE) to clone the 50-portion of IgM heavy-chain transcripts,
which revealed a number of heavy-chain joining (JH) segments. It
is known that in a given species of tetrapods, distinct IgH classes
can share the same set of JH segments when expressed1. Using the
JH-derived primers, we performed 30-RACE with RNA isolated
from the spleen or small intestine. The amplified 30-RACE PCR
products were cloned to construct both spleen and intestine IgH-
specific mini-cDNA libraries. Theoretically, these IgH cDNA
libraries should contain all of the IgH isotype transcripts provided
that each transcript is expressed at a sufficient level.

Multiple IgH genes are expressed in crocodilians. Using PCR
and sequencing, we identified 526 clones in the spleen IgH library
and 428 clones in the small intestine library. Despite their dif-
ferent frequencies (Supplementary Fig. S1), we detected heavy-
chain transcripts of three distinct m-encoding genes (termed m1,
m2 and m3, sharing 59.2 to 65% sequence identity at the protein
level), three u-encoding genes (termed u1, u2 and u3, sharing
49.3–51.3% sequence identity at the protein level) and two
a-encoding genes (termed a1 and a2, sharing 62.4% sequence
identity at the protein level) in the two libraries. A single d heavy-
chain transcript containing two CH (heavy-chain constant
region) domains was also identified in the spleen library. An
additional 30-RACE reaction with primers based on the identified
dCH revealed two further transcripts: one containing four CH
domains and another containing seven CH domains. The iden-
tities of these IgH genes were all confirmed by phylogenetic
analysis (Fig. 1).

The expression of multiple Ig subclass-encoding genes,
including the m genes, in the Siamese crocodile was unexpected
because few of the tetrapod species examined thus far have been
reported to express more than one m gene. The only known
exception is cattle, in which two m genes have been detected
(located in BTA21 and BTA11)32. To determine whether multiple
Ig subclasses are expressed by other crocodilians, we analysed the
IgH genes expressed in the Chinese alligator using the same
approach and also detected the expression of three m, three u and
two a heavy chains (Supplementary Fig. S1). Interestingly, each of
these heavy-chain transcripts corresponded with a high degree of
sequence identity (485%) to a specific class or subclass identified
in the Siamese crocodile (Supplementary Fig. S1), whereas the
different subclasses in a single species share o70% sequence
identity. These data suggest that the divergence of the Ig subclass-
encoding genes likely occurred before the divergence of these two
species.

Physical mapping of the IgH gene locus in the Siamese
crocodile. We subsequently determined how these m genes are
organized in the genome, that is, whether they are organized in a
single IgH locus with a ‘translocon’ structure (Vn-Dn-Jn-Cn) as
in other tetrapods or in (V-D-J-Cn) clusters located on either the
same or different chromosomes as found in cartilaginous fish.
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To address this issue, we employed genome walking to map the
IgH locus of the Siamese crocodile. The corresponding genomic
sequences of each IgH cDNA (except IgD) were first amplified by
long-range PCR and then sequenced. These sequences served as
the starting points for genome walking in both directions until
overlapping sequences could be found for an upstream or
downstream gene. Using this approach, we identified a genomic
region of B260 kb in which all of the identified IgH class- and
subclass-encoding genes were contained. Surprisingly, an addi-
tional pseudo m gene and two additional a genes (one structurally
functional (termed a3) and one pseudo a) were identified in this
region (Fig. 2a). The pseudo m gene was found to have a mutation
at the CH1 30-splice site (or the 50-splice site of the following
intron), changing GTAAG to ATAAG. Although the expression
of the a3 gene could be confirmed at the cDNA level, the pseudo
a was found to be mutated. Notably, all a genes, including the
pseudo a gene, showed an opposite transcriptional orientation to
all other genes within the locus.

The d gene was shown to have seven CH exons corresponding
to the seven cloned CH-containing cDNA sequences. Addition-
ally, four mutated CH exons were identified between dCH4 and
dCH5 (Fig. 2a). It was also shown that the two cloned short IgD
transcripts contained the first two and first four CH domains,
respectively.

The m1 gene was located at the most 50-end of the IGHC (Ig
heavy-chain constant region gene) locus, and a JH gene locus
containing nine JH gene segments was found 10 kb upstream of
the m1 gene (Fig. 2a). The IgH gene locus in the Siamese crocodile
was arranged as JH-m1-d-a1-m2-a3-m3-ca-cm-a2-u3-u2-u1. The
expression of these IgH genes in different tissues was examined
by quantitative RT–PCR as shown in Fig. 3. Although all of the
three m genes were expressed at the highest levels in the spleen,

both the a1 and a2 genes were expressed at the highest levels in
the intestine. All three u genes were expressed at relatively high
levels in the liver and spleen.

Physical mapping of the IgH gene locus in the Chinese alli-
gator. To analyse whether the IgH genes are similarly organized
in the Chinese alligator, we generated a BAC (bacterial artificial
chromosome) genomic library using peripheral blood leucocytes
isolated from a Chinese alligator. The library consisted of
2.1� 105 clones with an average insert size of B100 kb
(Supplementary Fig. S2), representing B9� genomic coverage
(B2.5Gb). Five IgH gene-positive BAC clones (Y368I17,
Y236C22, Y234H2, Y29J4 and Y88L23) were identified using a
PCR-based approach and sequenced. Upon covering a gap
between Y236C22 and Y234H2 by genome walking, we obtained
a B432 kb genomic sequence covering the alligator IgH genes.
Furthermore, in addition to the genes identified at the cDNA
level, a pseudo m (cm), a d, a third functional a and a pseudo a
(ca) gene were arranged in the same order as in the Siamese
crocodile (Fig. 2b). Within nearly 200 kb upstream of the first m,
we identified two functional VH (heavy-chain variable gene), six
pseudo VH, 68 DH (heavy-chain diversity segment) and 10 JH
segments (Supplementary Figs S3 and S4). The identification of
these regions allowed us to deduce the physical map of the alli-
gator IgH gene locus as VHn-DH(1-68)-JH(1-10)-m1-d-a1-m2-a3-m3-
ca-cm-a2-u3-u2-u1 (Fig. 2b).

Both the l2 and l3 genes are expressed through CSR. In tet-
rapods, the expression of IgH classes other than IgM and IgD is
mediated by class-switch recombination (CSR), which involves
somatic DNA rearrangements that delete the m and d genes as
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Figure 1 | Phylogenetic analysis of IGHC genes in jawed vertebrates. The scale bar shows the genetic distance.
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well as other genes upstream of the expressed genes. As IgM is the
first Ig class expressed during B-cell development, CSR switches
an IgM-expressing B cell to express a non-IgM/IgD class. As two
additional functional m genes were found downstream of the most
50m within the crocodilian IgH locus, we questioned whether these
genes are expressed through CSR. CSR is mediated by recombi-
nation between switch (S) regions, which are located upstream of
the m gene and other IgH constant genes (except for d). The
switch regions typically contain short, repetitive sequences that
are rich in AGCT motifs. Using these criteria, we identified S
regions for all of the three m genes and u genes in the IgH locus of
the Siamese crocodile (Supplementary Fig. S5).

To determine whether CSR is involved in m2 and m3 expres-
sion, sense primers derived from the Sm1 50-flanking region and
anti-sense primers from the Sm2, Sm3 and Su1 30-flanking regions
were designed and used in two-round nested PCR amplifications
of the recombined Sm1-Sm2, Sm1-Sm3 and Sm1-Su1 fragments

(Fig. 4a). Using spleen genomic DNA as templates, these primers
generated the desired bands only if somatic recombination had
occurred between Sm1 and the other S regions (Fig. 4b). After
cloning and sequencing the amplified PCR products, we obtained
54 unique Sm1-Sm2 recombined fragments, 53 Sm1-Sm3 fragments
and 45 Sm1-Su1 fragments (Fig. 4c, Supplementary Fig. S6),
suggesting that CSR occurred between m1 and the two down-
stream m genes.

It is well known that CSR is achieved through the non-
homologous end-joining pathway in humans and mice33. An
analysis of the junctions in the recombined fragments described
above revealed a similar pattern to that observed in humans and
mice34. Approximately one quarter (28%) of the junctions
indicated direct joining of Sm1 and the other S regions.
However, more than half (57%) of the junction sites appeared
to be derived from microhomology-mediated ligation, where 1–6
nucleotides were found to be shared by the two S regions involved
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(Table 1). A small portion (16.6%) of the junctions was also
shown to have nucleotide insertions between the two recombined
S regions.

Similar to SHM, which occurs in the variable regions of Ig
genes, CSR is also an AID (activation-induced cytidine
deaminase)-dependent process. In humans and mice, it has
been recognized that AID can introduce mutations into S regions
involved in CSR35. We therefore analysed the mutation pattern in
the cloned switch fragments. The analysis was limited to ±25-bp
sequences flanking the junction site of each recombined fragment.
The analysed region accounted for 7,600 nucleotides, and a total
of 120 nucleotide mutations were identified by comparison to the
germline S region sequences, indicating a mutation frequency of
15.7 per 1,000 bp (Table 1). Although nucleotide transitions
occurred at the same rate as transversions, significantly more
mutations were found at G/C sites than at A/T sites (90% versus
10%) (Table 1). Approximately 73% of the mutations were
located at the WRC or GYW motifs, suggesting that AID was
involved in the mutational process (Table 1).

Identification of germline transcripts and intronic exons of
l genes. In humans and mice, germline transcription through
the S regions, which allows the S regions to be accessible to AID,
is required to initiate CSR. Along with germline transcription, a
short sequence (termed the I exon) located in the 50 segment of
each S region is spliced to the CH exons to generate germline
transcripts. As m2 and m3 are expressed through CSR, both the I
exon and the corresponding germline transcript are expected to
be located upstream of these genes. Upon performing 50-RACE to
amplify the 50-m3 heavy-chain portion in the Siamese crocodile,
we obtained three cDNAs with no rearranged VDJ sequence but
with a sequence located B0.7 kb from the 50-Sm3 region, which
was spliced to the m3 CH1 exon (Fig. 5a). This finding indicated
the presence of an Im3 exon and germline m3 transcription. As
neither Im1 nor Im2 could be identified using the same approach,
we designed a series of sense primers for the 50-Sm1 and -Sm2
flanking regions. These primers were used for RT–PCR amplifi-
cation together with anti-sense primers derived from m1 and m2.
This approach allowed us to locate Im1 at B1.3 kb 50 of Sm1 and
Im2 at B0.4 kb 50 of Sm2 (Fig. 5a). Germline m1 and m2 gene
transcripts were mainly detected in the spleen and intestine,
whereas germline m3 transcripts were mainly detected in the
spleen (Fig. 5b).

Promoter and enhancer activity for germline transcription of
l genes. Germline transcription of each Ig heavy-chain constant
region gene is driven by an intronic promoter located at the
50-region of the mammalian I exon. To determine whether there
are I promoters for the Siamese crocodile m genes, we cloned the
sequences (two fragments, M1L1 and M1L2 for Im1, M2L for Im2
and M3L for Im3) upstream of each Im exon into pGL3 luciferase
reporter vectors, which were then transfected into the chicken
B-cell line DT40. As shown in Fig. 5c, we identified I promoters
in the 50-regions of all three Im exons, with M1L1, M2L and M3L
fragments demonstrating promoter activities when cloned into
the pGL3-enhancer vector. However, only a weak enhancer
activity was detected for the Im1 promoter, and enhancer activity
was not observed for the Im2 and Im3 promoters; only M1L1
showed enhancer activity when cloned into the pGL3-promoter
vector (Fig. 5d), whereas M2L and M3L decreased the promoter
activity to a certain extent (Fig. 5d).

Both IgM1 and IgM2 can form polymers. To examine the
secreted forms of IgM in serum, we developed mouse monoclonal
antibodies specific for Chinese alligator IgM1 and IgM2. Western
blotting showed that under reducing conditions, both IgM1 and
IgM2 heavy chains were detected as an B80-kDa band, which is
15–20 kDa greater than the predicted size and roughly equal to
the size of the mouse IgM heavy chain (Fig. 6a,b). The sizes of
both IgM1 and IgM2 were reduced to approximately the pre-
dicted size when the serum sample was treated with PNGase F to
remove N-linked saccharides, suggesting substantial N-linked
glycosylation of both subclasses (Fig. 6b). The size was only
slightly reduced upon O-glycosidase treatment (Fig. 6b). In
contrast to mouse IgM (which is present as pentamers in serum),
IgM1 was present as both pentamers and hexamers, whereas
IgM2 was detected as tetramers under non-reducing conditions
(Fig. 6c).

Discussion
Compared with birds and mammals, few studies have been
conducted on reptilian Ig genes25,28,36–41. Crocodilians are a
group of reptiles that phylogenetically link reptiles and birds, and
they are thought to have a strong immune system29–31. It is thus
of great interest to investigate the immunogenetic components of
these crocodilians.

The family Crocodylidae comprises three subfamilies (Alliga-
torinae, Crocodylinae and Gavialinae). The Siamese crocodile and
the Chinese alligator belong to Crocodylinae and Alligatorinae,
respectively. In both of these crocodilians, the IgH gene was
organized similarly, as Vn-Dn-Jn-m1-d-a1-m2-a3-m3-ca-cm-a2-
u3-u2-u1 in a ‘translocon’ configuration (Fig. 2), and each IGHC
gene in one species clearly had a homologous counterpart in the
other species. This finding strongly suggests that Alligatorinae
and Crocodylinae share a common IgH gene locus that developed
before the divergence of these subfamilies B140 million years
ago42. This IgH gene locus is interesting in several ways. First, this
locus contains orthologs of all IGHC genes found in mammals
(given that the mammalian g and e evolved from u) even though
the d or a genes have not been observed in other reptiles and
birds studied to date. Second, this is the first IgH gene locus in
tetrapods that has been found to possess multiple m genes. Third,
it is the first IgH locus in non-mammalian tetrapods that has been
shown to have subclass divergence of both the u and a genes,
although the subclass divergence of the counterparts of these
genes is commonly observed in mammals. Fourth, similar to
birds27, all of the a genes in this IgH locus showed the opposite
transcriptional orientation to that of the remaining genes,
indicating that a gene inversion may have occurred before the
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divergence of crocodilians and birds. Last, a large number (68) of
DH gene segments was found in the IgH locus of the Chinese
alligator, suggesting that DH segments may contribute
significantly to antibody diversity in crocodilians.

The present work allows us to more clearly track the
evolutionary history of IgH genes in jawed vertebrates, particu-
larly tetrapods (Fig. 7). As IgM and IgD(W) are now commonly
accepted to be the most primordial IgH classes in evolu-
tion17,21,22, it is reasonable to conclude that all other IgH
classes evolved from them through various molecular
mechanisms such as gene duplication, conversion or
recombination. These processes gave rise to IgNAR and IgZ(T)
after the divergence of cartilaginous fish and bony fish,
respectively12–14. In comparison with fish, two additional IgH
classes, IgY and IgA(X), have evolved in tetrapods, including
amphibians, reptiles and birds. Although the origin of these
classes is unknown, the present study suggests that both classes
emerged before the divergence of tetrapods and that the common

tetrapod ancestor expressed IgM, IgD, IgY and IgA. During
tetrapod evolution, lineage-specific IgH class addition or deletion
was adopted to shape the IgH locus of the modern living
tetrapods. In Xenopus, the new isotype IgF, apparently derived
from IgY gene duplication, was identified in addition to IgM, IgD,
IgY and IgX17 (Fig. 7). Interestingly, IgA was found to be lost in a
number of reptilian species, including lizards and turtles25,41,43,
whereas IgD is absent in all birds investigated thus far22,27,44–46

(Fig. 7). Another important point regarding Ig evolution in
tetrapods is that mammalian species inherited all IgH classes
from the common tetrapod ancestor, with IgY subsequently
functionally diversifying into IgG and IgE26.

The finding of three functional m genes was unexpected. Both
m2 and m3 genes were expressed via the CSR mechanism, which
was previously shown to induce a non-IgM class switch in IgM-
expressing B cells33. CSR is not utilized in bony or cartilaginous
fish as a mechanism for expressing non-IgM/IgD antibody
classes, even though the CSR initiator AID has been identified in
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both groups of fish47–49. Although many cis elements, such as the
switch region, the I promoter and germline transcription, are
required for CSR in tetrapods, none of these elements have been
detected in fish33. Although the evolution of CSR must have been
accompanied by the acquisition of these cis elements, it remains
puzzling how these genetic elements were acquired by non-IgM/
IgD-encoding genes. The discovery of m to m CSR in this study
strongly suggests that these elements developed by gene
duplication of the most 50-m gene, which is similar to the
finding that multiple crocodilian m genes likely resulted from gene
duplication. Furthermore, it has long been hypothesized that non-
IgM/IgD-encoding genes in tetrapods were initially derived by
duplication of the m gene26. In addition, as there is an Em
enhancer with promoter activity between the JH region and the
first m in mammals and birds33,50, the I promoters of non-IgM/
IgD-encoding genes are likely to be derived from the Em enhancer
accompanying the duplication process.

Identification of the crocodilian a genes in this study also
provides a number of significant clues to the evolution of this
gene. First, with the addition of the crocodilian a genes
(representing the first bone fide reptilian a gene cloned thus

far), the phylogenetic analysis clearly revealed that the a genes in
reptiles, birds and mammals, as well as IgX in amphibians, share a
common ancestor51. This finding suggests that the amphibian IgX
is orthologous to IgA51 and that the a gene emerged before the
divergence of tetrapods (including amphibians, reptiles, birds and
mammals). Considering the early emergence of the tetrapod a
gene, it is remarkable that this antibody class, with a major
importance in mucosal immunity, is missing in some reptiles25.
Second, similar to birds, the crocodilian a genes were all inverted,
suggesting that the a gene inversion also occurred before the
divergence of crocodilians and birds. Third, this study provides
the first evidence in non-mammalian tetrapods for the evolution
of IgA subclass-encoding genes, which may have led to functional
divergence and a benefit to mucosal immunity.

In conclusion, this study reports the identification of a distinct
IgH gene locus in crocodilians that demonstrates extensive
subclass divergence of the m, a and u genes. Our data provide
significant insight into Ig-gene evolution and improve the
understanding of how a flexible Ig-gene system can develop in
various species in response to long-term environmental selection
pressure.

Table 1 | Summary of the junctional patterns and nucleotide mutations flanking the junction sites in the recombined switch
fragments.

Junction Direct end-joining Perfectly matched short homology Insertions No. of fragments

1–3 bp 4–6 bp 7–9 bp 1 bp 2–3 bp Z4bp

Sm1-Sm2 13 (24%) 28 (52%) 3 (6%) 0 (0%) 7 (13%) 1 (2%) 2 (4%) 54
Sm1-Sm3 16 (30%) 29 (55%) 1 (2%) 0 (0%) 7 (13%) 0 (0%) 0 (0%) 53
Sm1-Su1 13 (29%) 19 (42%) 7 (16%) 0 (0%) 5 (11%) 1 (2%) 0 (0%) 45
Total junctions 42 (28%) 76 (50%) 11 (7%) 0 (0%) 19 (13%) 2 (1%) 2 (1%) 152

Mutations in recombined fragments

AT versus GC mutations Transitions Mutations in
WRC or GYW

Frequency
(per 1,000bp)

No. of bp
sequenced

No. of
mutations

Sm1-Sm2 5 versus 34 (13% versus 89%) 13 (33%) 27 (69%) 14.4 2,700 39
Sm1-Sm3 5 versus 39 (11% versus 89%) 23 (52%) 34 (77%) 16.6 2,650 44
Sm1-Su1 2 versus 35 (5% versus 95%) 18 (49%) 26 (70%) 16.4 2,250 37
Total junctions 12 versus 108 (10% versus 90%) 54 (50%) 87 (73%) 15.7 7,600 120
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Methods
Sample collection. The Siamese crocodile (Crocodylus siamensis) was purchased
from a crocodile breeding farm in Tianjin, and the Chinese alligator (Alligator
sinensis) tissue samples were collected from the Anhui Research Centre for the
Reproduction of the Chinese Alligator. Blood samples for the BAC library
construction were collected from the Beijing Zoo. These studies were approved by
the Animal Care and Use Committee of the China Agricultural University.

BAC library construction. The BAC library was constructed using a service pro-
vided by Bioestablish Biotechnology Co., Ltd (Beijing, China). Briefly, high-

molecular-weight DNA was isolated from the blood cells of a Chinese alligator and
embedded in agarose plugs. The DNA-containing agarose plugs were partially
digested by Hind III according to a standard protocol. The partially digested DNA
was subjected to two rounds of size selection by pulsed-field gel electrophoresis in a
1% agarose gel. DNA fragments ranging from 100 to 300 kb were excised from the
gel and recovered. The size-selected, digested DNA was ligated into a Hind III-
digested and dephosphorylated BAC vector. The ligation reaction was transformed
into electrocompetent EPI300 cells to obtain B2� 105 recombinant clones, which
were loaded onto 560 384-well plates. Super and secondary pools were also
established for PCR screening.

Genome walking. The IgH locus of the Siamese crocodile was mapped by genome
walking using a genome walking kit (Clontech, CA, USA) according to the man-
ufacturer’s instructions. All amplifications were conducted using LA Taq DNA
polymerase (Takara, Dalian, China) with proof-reading activity.

Construction and screening of an IgH-specific mini-cDNA library. JH-derived
primers were used to perform 30-RACE (rapid amplification of cDNA 30-ends)
using RNA isolated from the spleen and small intestine. The resultant PCR pro-
ducts were cloned into a pMD19-T vector. Recombinant clones were screened by
sequencing and PCR.

50-RACE amplification of the IgH heavy-chain variable regions. Primers derived
from the IgM heavy chain constant regions were used for 50-RACE amplification
using spleen RNA as a template. The 50-RACE kit used was 50-RACE System
Version 2.0 (Invitrogen, NY, USA). The resultant PCR products were cloned into a
pMD19-T vector and sequenced.

Quantitative RT–PCR. Total RNA was isolated from various tissues using an
RNeasy Mini Kit (Qiagen, Valencia, CA, USA). cDNA was prepared using the
QuantiTect Reverse Transcription Kit (Qiagen). The TaqMan gene expression
assays were performed using the TaqMan Matrix Mix and TaqMan probes.

Analysis of recombined switching fragments. Two sense primers were designed
using the 50-flanking sequence of Sm1, while six anti-sense primers (two for each S
region) were designed based on the 30-flanking sequences of Sm2, Sm3 and Su1.
These primers were used for a nested PCR to amplify the recombined fragments of
Sm1-Sm2, Sm1-Sm3 and Sm1-Su1. The PCR was performed using the high-fidelity
enzyme FastPfu DNA Polymerase (TansGen, Beijing, China). The resulting PCR
products were cloned into the pMD19-T vector and sequenced. The primers
sequences were as follows: M1U1 (50-TGTGCTTGAAAGTGCATAGGA-30) and
M1U2 (50-AACCTTGGAGCGATTTCTGAT-30); M2L1 (50-AACCTCTTT
GAAAGCCAGCTC-30) and M2L2 (50-GCCACAAACCACAGAGCTAAG-30);
M3L1 (50-ATCATCTCATTCAGCCACCTG-30) and M3L2 (50-TAATGGGAGA
AGGCGGAAGTA-30); and Y1L1 (50-CACAGTGCCCAACTGGTTTAT-30) and
Y1L2 (50-TAACCAGCCTAGCCAGTCTCA-30). The junction sites of these
recombined fragments and the mutations in the flanking regions were determined
by sequence alignment with germline S regions.
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Promoter and enhancer activity analysis. The sequences upstream of the Im1, Im2
and Im3 regions were cloned into both the pGL3 enhancer and pGL3-promoter
vectors (Promega, WI, USA). These plasmid vectors were transfected into chicken
DT40 cells using Lipofectamine 2000 (Invitrogen, NY, USA) together with the
PRL-TK vector at a ratio of 1:9. The pGL3 enhancer and pGL3 control vectors were
used as negative and positive controls, respectively. The activity of firefly luciferase
and renilla luciferase was detected using the Dual-Glo Luciferase Assay System
E2920 (Promega, WI, USA).

Preparation of mAbs against the Chinese alligator IgM1 and IgM2. The mouse
mAbs were prepared using a service provided by Abmart (Shanghai, China). The
specificity of the obtained mAbs was confirmed by western blotting for the con-
stant regions of IgM1 and IgM2 expressed in 293T cells. 1B2 and 3B1 mAbs were
selected for the detection of IgM1 and IgM2, respectively, in the serum.

Phylogenetic analysis. The phylogenetic trees were constructed using
MrBayes3.1.252 and were viewed using FigTree or Tree View53. The amino-acid
sequences of the entire heavy-chain constant region of most isotypes were used in
the analysis, whereas the first four CH regions were used for the IgD analysis of
non-mammalian vertebrates. The NCBI GenBank accession numbers of the
sequences used were as follows: m, nurse shark, M92851; skate, M29679; trout,
X65261; cod, CAA41680.1; rainbow trout, AAB27359.2; zebrafish, AF281480;
catfish, CAB38072.1; lung fish, AAO52808.1; Chinese soft-shelled turtle,
ACU45376.1; chicken, X01613; duck, AJ314754; X. laevis, X15114; lizard,
ABV66128; gecko, ABY74509; platypus, AY168639; human, X14940; mouse,
V00818; X. tropicalis, AAH89670; axolotl, A46532; and Iberian ribbed newt,
CAE02685; d, catfish, U67437; X. tropicalis, DQ350886; human, BC021276;
platypus, ACD31540; mouse, J00449; lizard, ABV66130; gecko, ABY67439; Chinese
soft-shelled turtle, ACU45375; and trout, AAW66977; a or w, chicken, S40610;
duck, AJ314754; human, J00220; mouse, J00475; platypus, AY055778; X. laevis,
BC072981; X. tropicalis, AAI57651; and axolotl, CAO82107; g, human, J00228;
mouse, J00453; and platypus, AY055781; e, human, J00222; mouse, X01857; and
platypus, AY055780; u: chicken, X07175; duck, X78273; X. laevis, X15114; axolotl,
CAA49247; lizard, ABV66132; gecko ACF60236; X. tropicalis BC089679; Chinese
soft-shelled turtle, ACU45374; and Iberian ribbed newt, CAE02686; z/t/p,
zebrafish, AY643752; trout, AY872256; and Iberian ribbed newt, CAL25718; and o,
sandbar shark, U40560; lungfish, AF437727; and nurse shark, U51450.

Statistical analysis. The statistical analysis was performed using a one-way ana-
lysis of variance in SPSS1.5.
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