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Diffractive imaging with free-electron lasers allows structure determination from ensembles

of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide

snapshots of the randomly oriented particles frozen in time, and terminate before the onset of

structural damage. As signal strength diminishes for small particles, the synthesis of a three-

dimensional diffraction volume requires simultaneous involvement of all data. Here we report

the first application of a three-dimensional spatial frequency correlation analysis to carry out

this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly

identical samples in random and unknown orientations, collected at the Linac Coherent Light

Source. Our demonstration uses unsupported test particles created via aerosol self-assembly,

and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids

the need for orientation determination entirely. This method may be applied to the structural

determination of biological macromolecules in solution.
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T
he advent of X-ray free-electron lasers (FELs) promises to
eliminate the resolution limitation imposed on imaging of
biological materials by radiation damage1. Owing to the

extreme brevity and high fluence of the FEL pulses, even though a
radiation dose at the target far exceeds the ‘safe dose’ radia-
tion limit for conventional macromolecular crystallography2,
diffraction is recorded before the onset of the structural
damage processes3,4. In the single-shot diffraction serial
nanocrystallography experiments at the Linac Coherent Light
Source (LCLS), structure factors for lysozyme have been
measured to 1.9 Å resolution5. Resolution in reconstructions of
two-dimensional (2D) electron density projections for a large
submicron virus6, soot and other aerosols7,8 from single-
shot LCLS diffraction patterns ranges from 24 to 41 nm. The
next aim is experimental determination of three-dimensional
(3D) structure from non-crystalline single particles using LCLS
single-shot diffraction3. For most systems of practical interest,
such as protein complexes, the experiment will be characterized
by the small number of scattered photons, immersed in the high
background noise, and uncertain number of particles in each
shot. A weak signal dictates the necessity to use a complete data
set of diffraction patterns from particles in random orientations
to construct a 3D diffraction volume. The corresponding
algorithms are based on expectation maximization (EM)9 or
dimensionality reduction10,11. They generally require each
diffraction pattern to be generated by a single particle, posing
practical constraints on the experiment. Instead of orientation
classification of diffraction patterns, Kam proposed the simple
averaging method that overcomes these constraints, and also
reduces the vast data amount to a single compact 3D array. He
demonstrated that averaging angular autocorrelation functions of
individual 2D diffraction patterns yields the autocorrelation
function of the 3D diffraction volume for a single particle, and
this function can be related to the expansion coefficients of the
diffraction volume in spherical harmonics12. Although Kam
originally proposed his method for solution X-ray scattering, it
has never been realized in this form owing to limitations of
previously available X-ray sources. The most notable of these
limitations arises from the restricted X-ray intensity from
synchrotrons, such that statistically meaningful signal cannot be
obtained during exposures shorter than the time for rotational
diffusion on a length scale smaller than the desired resolution.
Nevertheless, 2D projections of protein complexes immobilized
on a supporting membrane have been successfully produced
from correlations in cryo-electron microscopy images13.
Recently, a correlation analysis was applied to soft X-ray
imaging of 90-nm gold rods lying on the substrate
perpendicular to the direction of X-rays, with many identical
particles per shot14. Angular cross-correlation function for the
speckle diffraction pattern has been used to reveal hidden local
symmetries in colloidal systems15.

With ultra-short and intense X-ray pulses from FELs, the
requirement of the sample being frozen in time is easily satisfied
in solutions at room temperature or in vacuum even for the
smallest proteins, opening a door for measurements of spatial
frequency correlations. Here, we report the first experimental
demonstration of Kam’s method for particles with cylindrical
symmetry arbitrarily oriented in space, that became possible with
FELs. We utilized the LCLS to collect a set of single-shot
diffraction patterns from unsupported known objects in random
orientations. Owing to cylindrical symmetry the orientation is
determined by two rotational degrees of freedom, and the particle
shape is fully defined by the cross-section through the rotational
symmetry axis. From the correlation analysis of the collected
diffraction patterns, we obtained the diffraction volume of the
oriented single particle and reconstructed its shape using a phase

retrieval algorithm. This demonstration provides an experimental
foundation of Kam’s method to diffractive imaging with X-ray
FELs, and shows its potential for imaging biological
macromolecules.

Results
Characterization of experimental diffraction patterns. The test
particles, considered in this work, consist of two touching poly-
styrene spheres (mean diameter of 91 nm), henceforth referred as
sphere dimers. A set of 635 diffraction patterns from single
particles with random orientation distribution was selected for
analysis. Figure 1 shows a schematic of the experimental set up,
and a representative set of diffraction patterns from dimers in
various orientations, with corresponding particle projections as
seen by X-rays. The X-ray fluence in each shot was estimated by
extrapolation of the radially averaged diffraction patterns to
the scattering vector q¼ 0 following the procedure given in
the Supplementary Methods, and varied from 8.5� 109

to 2.3� 1011 photons mm� 2. To compensate for these fluctua-
tions, we used deviations of photon count I(q) from the spheri-
cally averaged scattered intensity S(q), normalized by S(q):
d~IðqÞ¼ IðqÞ/SðqÞ� 1. This normalization also facilitates reliable
determination of non-vanishing singular values of partial corre-
lation matrices discussed further. The normalization factor S(q)
was obtained as the radial average of the sum of all diffraction
patterns. Before normalization of each pattern it was scaled to
match the corresponding X-ray fluence. A small constant back-
ground has been added to each diffraction pattern and scaled S(q)
to minimize a relative error in background subtraction for dif-
ferent shots.

As a uniform distribution of particle orientations is essential
for correct evaluation of correlation function, we estimated this
distribution using the common-lines method16 and cross-
correlations with model diffraction patterns (Supplementary
Methods). Though we found deviations from the uniform
distribution, this did not significantly impact the results.

Correlation analysis. The arguments of the autocorrelation
function for diffraction volume are the magnitudes of the
two scattering vectors and the angle between them. After
sampling each diffraction pattern corresponding to an unknown,
random orientation o in polar coordinates (qn,jm), where
n¼ 1..N, m¼ 1..M, its angular autocorrelation function was
computed as

C2oðqi; qj;DjkÞ¼
1
M

XM
m¼ 1

d~Ioðqi;jmÞd~Ioðqj;jmþ kÞ ð1Þ

Averaging these functions over all diffraction patterns
generates the autocorrelation function for a 3D diffraction
volume C2(qi,qj,Djk). The magnitudes of scattering vectors qi
and angles between them Djk are calculated taking into
account the curvature of the Ewald sphere, which resulted in the
missing angles within 1.51 of Dj¼ 0, and 31 in the vicinity of
Dj¼ 1801.

Expansion of C2(qi,qj,Djk) as a function of angle in Legendre

polynomials yields partial correlation matrices C2l ¼
Pl

m¼ � l
IlmI�lm,

where Ilm is the column vector of normalized partial scattered
intensities (expansion coefficients of scattered intensity in sphe-
rical harmonics, see Methods) with elements (Ilm)i¼ Ilm(qi) and
I�lm is its adjoint. In general, these are N�N real symmetric
matrices of at most rank 2lþ 1, depending on the sample sym-
metry, which can be decomposed into the sum of rank-one
matrices IlmI�lm. While there are many ways to present a matrix as
the sum of rank-one matrices, this can be most efficiently done by
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singular value decomposition (SVD, equivalent to eigenvalue
decomposition for a hermitian matrix to within the signs of
eigenvalues). It captures the maximum possible fraction of the
matrix norm in the leading terms, corresponding to the
largest singular values. That implies that if there are
selection rules imposed on Ilm by the particle symmetry, this will
be reflected in the number of non-vanishing singular values for
each l. Simplification of the analysis by a proper choice of the
basis for the scattered intensity expansion based on the particle
symmetry was demonstrated in the special case of icosahedral
symmetry17.

From SVD of the experimental partial correlation matrices,
we found that all of them have rank one. That immediately
implies the cylindrical symmetry of the diffraction volume,
with the only contributions into its expansion coming from
spherical harmonics with m¼ 0. Corresponding partial scattered
intensities Il0(q) can be calculated to within a sign as the product
of the square root of the sole singular value and its singular
vector.

The signs of real partial scattered intensities still remain
uncertain as so far we only used their products Il0I�l0. They
can be uncovered by involving spherical harmonics expansion of
the squared scattered intensity I2(q)/S2(q) with coefficients
Ql0(q), that has connection to the three-point autocorrelation
function C3(qi,qj,Djk) computed at two scattering vectors
from experimental diffraction patterns. General problem of
unique determination of Ilm(q) for the particles without
symmetry using the higher-order correlation functions was
addressed by Kam18. Similar to pair correlations, normalized
partial triple correlations can be experimentally found and

written in the matrix form as

C3l ¼
Xl

m¼ � l

Qlm � 2Ilm½ �I�lm ð2Þ

Like C2l, the matrix C3l is of maximum rank 2lþ 1 and real.
However, it is asymmetric as follows from equation 2. Limiting
our discussion to an object with cylindrical symmetry, vectors
Qtrpl

l ¼Ql0 � 2Il0 can be calculated using equation 2:

Qtrpl
l ¼C3lIl0/jjI2l0jj; ð3Þ

where || � || is a vector 2-norm. The same vectors Qpair
l can be also

computed directly from pair correlations as quadratic forms of
partial scattered intensities (Methods). Vectors Qpair

l and Qtrpl
l will

coincide if all Il0 have proper signs. Therefore, the signs can be

determined by minimization of the difference between these

vectors, defined by the R-factor R2 ¼
Plmax

l¼ 2
jjQpair

l �Qtrpl
l jj2

�
jjQpair

l jj2,
using signs of Il0 as fitting parameters. The R-factor for all sign
combinations up to lmax¼ 26 is plotted in Fig. 2a. The sets of Qpair

l
and Qtrpl

l vectors for the sign combination corresponding to the
point with the smallest R-factor are compared in Fig. 2b,c. This
point can be clearly identified and correctly determines signs of
all partial intensities. Alternatively, we can search for the sign
combination that minimizes the number of negative pixels in the
scattered intensity assembled from its spherical harmonics
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Figure 1 | Measuring single-shot diffraction patterns. (a) Experimental schematic. Micron-sized droplets emitted from an atmospheric pressure nebulizer

contain one or multiple polystyrene spheres. As the droplets transit into the aerodynamic lens stack in a N2 carrier gas, evaporation leads to single spheres

or aerosol-assembled aggregates of random configurations. These particles accelerate towards the interaction region with a velocity of about 150ms� 1.

LCLS X-ray pulses scatter off randomly intersected particles to produce a diffraction pattern recorded on the pnCCD. The unperturbed X-ray beam passes

through a hole in the detector. Non-intercepted particles are captured in a particle beam dump. (b) Experimental diffraction patterns from dimers in several

orientations, as indicated in the bottom of each image. The incident X-ray fluence, from left to right, is (3.7, 2.9, 4.4, 4.0)� 1010 photonsmm� 2. Colourbar

indicates detector counts. Detector gain is 7 counts per photon, and quantum efficiency is 0.9. Projections of the particles on the plane perpendicular to the

X-ray beam direction, corresponding to each shot are also shown.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2288 ARTICLE

NATURE COMMUNICATIONS | 3:1276 | DOI: 10.1038/ncomms2288 | www.nature.com/naturecommunications 3

& 2012 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


expansion. However, this method only gave us correct signs
up to l¼ 22.

Partial scattered intensities Il0(q)S(q) up to l¼ 26 with the signs
correctly resolved from Fig. 2a are plotted in Fig. 3 by circles.
They can be compared with the results of direct computation

from the particle shape, described in Supplementary Methods,
and plotted by solid lines. Now the determined partial scattered
intensities can be substituted into the spherical harmonics
expansion of scattered intensity to generate the diffraction
volume. Owing to the cylindrical symmetry of the sample, the
diffraction volume is fully defined by its azimuthal projection,
which is equivalent to the central section through the axis of
cylindrical symmetry. These sections, calculated directly from the
model particle shape and experimentally determined partial
scattered intensities, are depicted in Fig. 4a,b, respectively.
The negative pixels in the experimental diffraction pattern were
set to zero.

Electron density reconstruction. The diffraction pattern in
Fig. 4b was used to solve the phase problem and reconstruct the
sample electron density. In cylindrical coordinates, the azimuthal
projections of the sample electron density and scattering ampli-
tude are related by a Fourier transform in the direction of
cylindrical symmetry axis and a zeroth-order Hankel transform
in the radial direction19. While the 2D Fourier transform results
in the projection of sample electron density in the direction of
X-ray beam, this transform provides more information on the
sample electron density by revealing the interior of the particle.
For a sample with cylindrical symmetry, it is equivalent to a 3D
Fourier transform of diffraction volume, and greatly reduces
computation time. Image of the electron density averaged over
5,000 reconstructions with different starting points after their
longitudinal alignment is shown in the inset of Fig. 4b. Full-
period resolution is 20 nm, twice the pixel size, and limited by the
maximum measured scattering vectors.

Discussion
The major sources of error in our analysis likely originate from
the bias in the particles orientation distribution, mostly caused by
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Figure 4 | Azimuthally averaged single-particle diffraction patterns.

(a) Model partial scattered intensities (solid lines in Fig. 3) are used for

calculation of diffraction pattern. (b) Diffraction pattern is assembled from

the experimental partial scattered intensities (circles in Fig. 3) obtained by

correlation analysis of randomly orientated diffraction patterns. Inset shows

the image of azimuthally averaged electron density reconstructed from the

experimental pattern. Scale bar is 10 nm.
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Figure 2 | Determining the signs of partial scattered intensities.

(a) R-factor monitoring agreement between spherical harmonics expansion

coefficients of the squared scattered intensity computed in two distinct

ways for all possible sign combinations assigned to the first 13 non-

vanishing partial scattered intensities with l40. The arrow marks the point

corresponding to the correct sign combination. (b,c) Comparison of the

expansion coefficients of the squared scattered intensity calculated from

pair and triple correlations, respectively. Each row corresponds to the

different l, indicated on the vertical axis, and magnitude is encoded

with colour.
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the small size of the data set, and to some extent by the
possible anisotropy introduced by the particle delivery system.
Additional error can be introduced during the data selection and
processing. Close resemblance between the single-sphere diffrac-
tion pattern and that of a dimer nearly aligned along the X-ray
direction leads to the potential exclusion of such orientations
from the analysis.

Overrepresentation of the diffraction patterns, corresponding
to the particles oriented perpendicular to the incident beam, may
result from our data normalization by the incident X-ray fluence.
As estimated in the Supplementary Methods, the fluence for such
particles could be underestimated by as much as 25%. With an
extensive data set, the normalization by X-ray fluence could be
omitted if all classes of sample orientation are adequately
represented over the entire distribution of observed X-ray
fluences, and its fluctuations would be averaged out.

We emphasize that although our test sample’s cylindrical
symmetry has certainly simplified the correlation analysis, this
symmetry was apparent from the form of the partial correlation
matrices, each of which had a single singular value. Therefore, it
did not need to be assumed a priori. The treatment of an arbitrary
object lacking symmetries was given by Kam20. In this case, each
partial scattered intensity Ilm(q) is a linear combination of the
2lþ 1 singular vectors of the corresponding correlation matrix.
All Ilm(q) for a given l can be found by multiplication of a special
solution from SVD by a specific unitary matrix. Determination of
these matrices for all l requires solving the optimization problem
on the set of random unitary matrices (whose elements are
additionally constrained by the properties of the spherical
harmonics expansion coefficients) with the total number of

parameters
Pk¼ lmax/2

k¼ 2
4k 3kþ 1ð Þ for expansion up to lmax, which

seems to be a formidable task. But many biological systems of
interest are oligomers with some symmetry. In special cases, this
symmetry will greatly decrease the number of fitting parameters.
We expect that use of SVD will help to reveal the sample
symmetries. As a simple example, the number of non-zero
singular values for each l would identify the n-fold rotational
symmetry.

In a past similar experiment, a set of the soft X-ray diffraction
patterns from ellipsoidal particles with variable X-ray fluence was
converted into the 3D diffraction volume using the iterative
expansion—expectation maximization—compression (EMC)
algorithm21. EMC maximizes the log-likelihood function of the
statistical model for the 3D diffraction volume parameterized by
the scattered intensities on the Cartesian grid in reciprocal space.
However, assembling the 3D diffraction intensities with the EMC
requires each diffraction pattern to be produced by only a single
particle. We avoid this restrictive requirement in our paper as
single-particle correlation functions will be obtained even if more
than one particle contributes to each diffraction pattern. Two
factors permit this: first, averaging of the correlation function
over all recorded diffraction patterns ‘washes out’ random cross-
correlations and the coherent interference between different
particles; second, for spatially separated particles, interference
speckles are averaged out when the pixel size is adjusted to give a
minimum oversampling required for reconstruction. The number
of particles illuminated by X-rays in a single shot usually can be
adjusted over a broad range if the sample is injected by means of
aerodynamic lens stack22 or liquid jet23. The ability to make
productive use of multiple-particle diffraction patterns allows
the significant sample dilution required to guarantee the
predominance of single particle hits to be avoided. The allowed
number of particles per shot is only limited by the detector
intensity resolution or maximum sample concentration. Never-
theless, we should note that although computing correlations

using a single diffraction pattern from N particles appears
equivalent to averaging N correlation functions of single-particle
diffraction patterns, the undesirable background is proportional
to N2 and N in the respective scenarios18. As demonstrated
elsewhere24, the signal-to-noise ratio quickly saturates as the
number of particles per shot increases.

Besides the obvious advantages of reducing experimental time
and computational load, in the multiple-particle diffraction,
normalization by the radially averaged sum of all diffraction
patterns can be replaced by normalizing each pattern by its radial
average, as it approximates the spherical average of scattered
intensity from the individual particle. That eliminates the
requirement to determine the incident X-ray fluence in each shot.

As the computation of correlations is simple and straightfor-
ward, it can be easily parallelized and even performed during
experiments for useful and immediate feedback to experimenters.
The resultant correlation functions are compact, when compared
with the massive set of the original diffraction patterns, easy to
manipulate and transfer between computers.

It is instructive to note that the correlation functions in this
paper can still be computed using measurements from detectors
with sparse pixel distributions, as long as the entire required
range of scattering vectors and their relative orientations is
represented. In particular, the presence of the gap between the
two detector halves in our experiment did not handicap the
analysis.

In summary, we have presented the first experimental
evaluation of the use of the scattered intensity correlations to
obtain and phase the single-particle diffraction pattern utilizing
an ensemble of 2D snapshot diffraction patterns from nearly
identical unsupported particles in random orientations, produced
by an X-ray FEL. The size and electron density of these particles
are similar to those of large viruses. Achievable resolution will be
improved as harder X-rays with higher intensities are used, and
stable submicrometre liquid jets for background minimization are
developed. Our work highlights several important practical
concerns in designing experiments aimed at structure determina-
tion through the use of spatial correlations. The many strengths
of the spatial correlations approach discussed in this paper and its
references continue to motivate and guide us in the ultimate goal
of reconstructing the 3D structure of non-crystalline particles
without symmetries.

Methods
Data acquisition and sorting. Experiments were carried out in the CFEL-ASG
Multi-Purpose (CAMP) instrument25 on the atomic, molecular and optical science
(AMO) beamline at the LCLS. A colloidal suspension of polystyrene spheres (from
Postnova Analytics GmbH), with nominal diameter of 98 nm, in water was
atomized using a Mira Mist CE nebulizer (Burgener Research Inc., Mississauga,
ON, Canada). Evaporation of water from the aerosolized droplets resulted in
formation of self-assembled clusters of polystyrene spheres. They were focused and
directed into the X-ray interaction region with help of a differentially pumped
aerodynamic lens stack22, as illustrated in Fig. 1a. Clusters varying in size from a
single sphere to large aggregates populate the particle beam. As we need to
differentiate the dimer particles, the sample formation and delivery system was
tuned to provide exactly one particle in each shot, similar to previous work21.
Those particles that were intercepted by X-ray pulses produced diffraction patterns,
captured by a detector system consisting of two 1024� 512 pnCCD detectors
located at the distance 738mm from the interaction region, and separated by a
gap of 1.6mm. The pixel size was 75� 75 mm2. This arrangement corresponds to
full-period resolution of 20 nm for X-ray energy of 1.2 keV used in the experiment.
The X-ray beam was focused to a 10 mm2 focus spot in the interaction region.
After removing the persistent background, faulted and saturated pixels, recorded
diffraction patterns were preliminarily sorted by the total scattered intensity to
eliminate empty shots and weak patterns. Images corresponding to sphere
aggregates were extracted by selection based on the position of the first pronounced
minimum in the radially averaged diffraction patterns. Patterns from single spheres
were identified by flat angular autocorrelations. Finally, the set of diffraction
patterns produced by dimers was selected by visual inspection of the remaining
data. The average beam centre and relative position of two detector halves
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were determined by minimizing variations of the angular correlations in single-
sphere diffraction patterns, or by maximizing the depth of minima in the radially
averaged diffraction patterns. These two methods gave the same results. The set of
10,190 single spheres was used to determine the true size distribution of the
spheres. For this purpose, the radially averaged scattered intensities were fitted to
an analytical dependence using incident X-ray fluence, sphere radius and uniform
background as fitting parameters. Owing to the small sphere size and low electron
density of polystyrene, the phase shift introduced by a sphere is small, and scattered
intensity can be calculated in the framework of the Rayleigh–Gans formalism26.
The sphere diameter from this analysis is 91±5 nm (below the nominal size),
which closely matches a simple estimation from the position of the first minimum
in radial intensity. Variations in the determined sphere size also include
apparent changes owing to the jitter in sample–detector distance of a few mm
during the experiments, and possible effects of the X-ray pulse duration,
intentionally varied from 70 to 300 fs. A total of 845 diffraction patterns from
randomly oriented dimers were identified. Of these, the patterns whose first radial
minimum was beyond the ensemble’s s.d. were excluded from examination in
order to provide size monodispersity, a property essential for successful application
of correlations.

Correlation functions. Here, we outline the relationships between the correlation
functions and spherical harmonics expansions of corresponding values. The two-
point (pair) correlation function normalized by the spherically averaged scattered
intensity S(q) is

C2ðq1; q2Þ¼/d~Ioðq1Þd~Ioðq2ÞSo; ð4Þ
where d~IðqÞ¼ IðqÞ/SðqÞ� 1. The subscript o denotes orientation of the particle,
and averaging is performed over all possible orientations.

Using the orthogonality of rotation matrices and the addition theorem for
spherical harmonics, one can show12 that this correlation function can be
expanded in Legendre polynomials Pl(x):

C2ðq1; q2Þ¼C2ðq1; q2;jÞ¼
1
4p

X1
l¼ 2

Xl

m¼ � l

Ilmðq1ÞI�lmðq2ÞPlðcosjÞ; ð5Þ

where j is the angle between q1 and q2, and Ilm(q) partial scattered intensities in
spherical harmonics expansion of the normalized scattered intensity

IðqÞ/S qð Þ¼
X
lm

IlmðqÞYlmðOÞ: ð6Þ

In this expansion I00 qð Þ¼
ffiffiffiffiffi
4p

p
, and only even l terms contribute into the sum

owing to the (� 1)l parity of spherical harmonics and symmetry of scattered
intensity with respect to reflection about the origin (Friedel’s law). The expansion
coefficients, or partial correlation matrices, of equation 5 are determined as:

C2lðq1; q2Þ¼
Xl

m¼ � l

Ilmðq1ÞI�lmðq2Þ: ð7Þ

In a complete analogy with pair correlation function, normalized three-point
(triple) correlation function calculated in two points is defined as

C3ðq1; q2Þ¼/d~I2oðq1Þd~Ioðq2ÞSo: ð8Þ

Its evaluation requires expansion of the square of the normalized scattered

intensity I2 qð Þ/S2 qð Þ¼
P
lm

Qlm qð ÞYlm Oð Þ. Just like pair correlation function,

C3(q1,q2,j) can be reduced to a set of expansion coefficients in Legendre
polynomials

C3lðq1; q2Þ¼
Xl

m¼ � l

Qlmðq1ÞI�lmðq2Þ� 2C2lðq1; q2Þ: ð9Þ

There is a connection between expansion coefficients Ilm(q) and Qlm(q), which
can be established by taking square of equation 6 and using the product rule for
spherical harmonics:

QlmðqÞ¼ 2Ilm qð Þþ
Xlmax

l1 ;l2 ¼ 2

X
m1 ;m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 þ 1ð Þ 2l2 þ 1ð Þ

4p 2lþ 1ð Þ

s

�Cðl1l2l; m1m2mÞCðl1l2l; 000ÞIl1m1 ðqÞIl2m2 ðqÞ;
where C(l1l2l;m1m2m) are Clebsch–Gordan coefficients.

Phase retrieval. To obtain phases of the scattering amplitudes, the relaxed aver-
aged alternating reflections algorithm27, a variant of iterative projection phasing

algorithms, was used. A quasi-discrete Hankel transform28 was applied for
numerical calculation. A starting point in reciprocal space was generated by
assigning random phases to the experimental scattering amplitudes, which were set
to the square root of the azimuthal projection of diffraction volume. The initial
support mask was estimated from the sample autocorrelation. The support was
updated as iterations proceeded following the Shrinkwrap algorithm29. This
algorithm periodically modifies the object support, using the current estimate of
the object’s electron density. In addition to the support constraint, reality and
positivity constraints were applied in real space. In reciprocal space, the
unmeasured scattering amplitudes in the central beamstop area and pixels
with zero values were kept unconstrained. To estimate consistency between
independent reconstructions, we calculated the phase retrieval transfer function
PRTF(q)¼ |/exp(ijq)S|, where jq are retrieved phases, and averaging is
performed over all reconstructions. Resolution can be defined by the point
where radially averaged PRTF drops below 1/e. For our reconstruction, PRTF falls
to 0.47 at the maximum value of measured scattering vector, and resolution is
diffraction limited.
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