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A fast and accurate SNP detection algorithm
for next-generation sequencing data
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Various methods have been developed for calling single-nucleotide polymorphisms from

next-generation sequencing data. However, for satisfactory performance, most of these

methods require expensive high-depth sequencing. Here, we propose a fast and accurate

single-nucleotide polymorphism detection program that uses a binomial distribution-based

algorithm and a mutation probability. We extensively assess this program on normal and

cancer next-generation sequencing data from The Cancer Genome Atlas project and pooled

data from the 1,000 Genomes Project. We also compare the performance of several state-

of-the-art programs for single-nucleotide polymorphism calling and evaluate their pros and

cons. We demonstrate that our program is a fast and highly accurate single-nucleotide

polymorphism detection method, particularly when the sequence depth is low. The program

can finish single-nucleotide polymorphism calling within four hours for 10-fold human

genome next-generation sequencing data (30 gigabases) on a standard desktop computer.
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D
etecting genetic variations in human genome is vital to
understanding the causes of phenotypic variations,
including susceptibilities to cancers and infectious

diseases. Single-nucleotide polymorphisms (SNPs) are one of
the most common types of genetic variation in humans. SNPs
have been reported to influence protein coding1, transcriptional
regulation2, alternative splicing3 and non-coding RNA
regulation4. A large number of SNPs has been identified in the
Human Genome Project5,6 and the Human Haplotype Map
Project7,8. In addition, recent advances in next-generation
sequencing (NGS) technologies have enabled us to detect even
more SNPs. The use of NGS platforms, such as the Illumina
Genome Analyzer, Roche/454 FLX and ABI SOLiD, not only
increases the throughput of data but also dramatically reduces
the cost of sequencing9. Although SNP detection methods for
conventional sequencing technologies are well developed, new
SNP detection methods for NGS technologies are still lacking.

Several methods have been developed for SNP calling from
NGS data, and the performances of these SNP calling programs
have been evaluated10. For example, the SNP calling method
by Morin et al.11 used a proportion of bases that matched the
reference. However, this method used an arbitrary threshold and
did not provide confidence estimates for the predicted results.
Other methods such as MAQ12 and SOAPsnp13,14 are based on
Bayesian-based posterior probabilities, and SNVmix15 uses a
mixed binomial model to discover SNPs, giving a confidence
score for each SNP called. These methods perform better for
loci with high sequence depths, but their accuracy decreases
for sequence depths lower than 10. Other SNP callers used in
NGS analysis are integrated into pipelines or are structured into
software libraries, such as Bcftools16 in samtools and
UnifiedGenotyper in GATK17. Both of these tools use Bayesian
likelihood to infer the posterior probability of a locus being a SNP
and to call the genotype. Furthermore, both methods can use
pooled data to improve the accuracy of the SNP calling. A recent
software tool18 was developed for SNP calling of lower
sequencing depths. However, the SNP filtering parameters were
manually defined and the program accepted inputs from only the
Solexa platform. This software performed better when known
SNPs of the target genome were available.

We have designed a fast and accurate SNP detection (FaSD)
program that uses a binomial distribution-based algorithm and a
mutation probability to detect SNPs from NGS data. We
compared our method with existing software using both cancer
and normal tissue data from The Cancer Genome Atlas
(TCGA)19 and trios data from 1,000 Genomes Project20. Using
SNP arrays and high-depth sequencing data as benchmarks, we
found that our method had higher SNP calling accuracy
compared with other methods, especially with low-depth
sequencing data. Furthermore, our program completed the SNP
calling from 10-fold human genome NGS data (30 gigabases)

within four hours on a standard desktop computer compared
with the GATK method that takes double the time.

Results
Performance evaluation on SNPs covered by arrays. To assess
the SNP calling quality of the tools, we compared the results from
our FaSD method with GATK17, SOAPsnp13,14, MAQ12,
SNVmix2 (ref. 15) and Bcftools16 using data sets derived from
a Glioblastoma multiforme (GBM) tumour sample and the
corresponding blood normal sample from the same individual,
which were both sequenced on a Illumina Genome Analyzer II
platform. We used genotype calling results from both Affymetrix
and Illumina SNP arrays as gold standards, which were obtained
from the same samples. Because of the poor accuracy of SNP
calling for data with very low sequencing depths12,13, we included
only the loci that were covered by at least four reads. We
compared the genotype concordances17 (Supplementary Table
S1) among the SNP calling tools and the two SNP arrays for both
normal and tumour data sets. Looking at the normal data set with
either Bowtie (Table 1) or BWA (Supplementary Table S2) as
the aligner, the genotypes called by both Affymetrix SNP array
6.0 and Illumina humanhap550 genotyping beadchip array were
very similar with concordance rates of more than 0.95 (0.997 for
bowtie and 0.957 for BWA). SOAPsnp and MAQ, both developed
by the Beijing Genome Institute in Shenzhen, China, also showed
high concordances of 0.997 with either Bowtie or BWA as the
aligner. The genotypes called by GATK and Bcftools were very
similar when using Bowtie as the aligner giving a concordance of
0.979. The concordance drops to 0.924 when BWA was used as
the aligner, but this value was still high compared with other
genotype calling methods. By comparing the results from the SNP
calling programs with those from the two arrays used as our gold
standards, we found that FaSD and Bcftools were the best
methods. FaSD was better than Bcftools when Illumina array was
used as the benchmark (Table 1 and Supplementary Table S2), as
shown by a concordance of 0.882 for FaSD vs. 0.865 for Bcftools
when aligned by Bowtie, and 0.833 vs. 0.674 when aligned by
BWA. We also evaluated the performance of these methods on
the tumour data set, because tumour tissues are highly
heterogeneous compared with normal tissue. With either
Bowtie or BWA as the aligner, FaSD showed a higher
concordance of about 3–5% with benchmarks in the tumour
tissue compared with normal tissue (Table 1 and Supplementary
Table S2). Similar concordance increases were observed in
Bcftools with both Bowtie and BWA, but this was not the case
for others. In contrast, MAQ and SOAPsnp showed a slight drop
in concordance for tumour tissue compared with normal tissue.

The area under the curve (AUC) of a receiver operating
characteristic (ROC) curve is widely used as a measure of the
overall classification performance of a program without needing

Table 1 | The genotype concordance rates among distinct SNP callers with Bowtie as the aligner.

Illumina Affymetrix FaSD MAQ SOAPsnp SNVmix2 GATK

Affymetrix 0.997 (0.996)
FaSD 0.882 (0.927) 0.891 (0.926)
MAQ 0.397 (0.401) 0.436 (0.435) 0.449 (0.430)
SOAPsnp 0.417 (0.409) 0.437 (0.434) 0.449 (0.430) 0.997 (0.996)
SNVmix2 0.157 (0.182) 0.251 (0.277) 0.274 (0.290) 0.733 (0.778) 0.733 (0.779)
GATK 0.804 (0.842) 0.839 (0.875) 0.848 (0.857) 0.476 (0.465) 0.486 (0.475) 0.312 (0.315)
Bcftools 0.865 (0.898) 0.905 (0.928) 0.958 (0.960) 0.508 (0.465) 0.503 (0.453) 0.352 (0.336) 0.979 (0.975)

The first number in each cell is the concordance between corresponding SNP callers in the normal data sets, the number in the parentheses is the concordance in the tumour data sets. The average depth
of both normal and tumour data sets was 10� .
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to consider the specific cutoffs. We independently evaluated the
performances by comparing the AUCs of different programs
using both normal and tumour data sets. Because the sequencing
depth has a large impact on SNP calling quality, we separated all
the data sets into four sub-data sets according to the sequencing
depth of each position. The subsets were named 4_5, 6_10, 11_15
and 16_20, which corresponded to sequence depths of 4–5, 6–10,
11–15 and 16–20, respectively. As shown in Supplementary
Tables S3 and S4, FaSD had the largest AUC compared with the
other tools for all the sub-data sets of both the tumour and
normal data sets, regardless of the array platform used as the
benchmark. We further tested the performances by the stability of
AUCs (bootstrapped 1,000 times), and the result confirmed
that FaSD significantly outperformed the other methods,
especially in low coverage categories (Fig. 1, one tail unpaired
Wilcox test Po2.2e� 16 for each depth category, in both GBM
tumour and normal data sets, benchmarked by either Illumina
or Affymetrix array).

We compared the results from FaSD, GATK, Bcftools and
MAQ on both normal and tumour data sets. For the tumour
samples using Affymetrix SNP array as the benchmark, SNPs
were divided into several groups: SNPs detected by a single tool,
two tools, three tools and by all four tools (Fig. 2). For a SNP
called by FaSD and by either Bcftools or GATK, over 99.7% could
be confirmed by the Affymetrix array. However, if a SNP was
called by both Bcftools and GATK, but not by FaSD, only 46.2%
could be confirmed by the Affymetrix array. We further looked at
the SNPs that were called uniquely by each tool: 63.3% of SNPs
detected by only FaSD could be confirmed by the Affymetrix
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Figure 1 | Box plots of the AUC of each program based on 1,000 times bootstrap. The average depth of this data set was 10� . (a) The normal data set

with Affymetrix SNP array as the benchmark, (b) normal data set with Illumina SNP array as the benchmark, (c) tumour data set with Affymetrix SNP array

as the benchmark and (d) tumour data set with Illumina SNP array as the benchmark. The average sequencing depth in both normal and tumour data sets

was 10� . The number of loci located in the 16_20 category was less than the number of loci located in the other categories. This explains why some tools

in 16_20 category showed a small decrease in the AUC with a corresponding slight increase in the standard deviation compared with the other categories.
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Figure 2 | The Venn diagram of SNPs detected by different tools. The

number in each cell is the number of SNPs in the corresponding category.

The percentage under the number is the proportion of SNPs that were

confirmed by the Affymetrix SNP array. The FaSD, GATK, Bcftools and

MAQ called 123661, 171291, 81432 and 211892 SNPs in total, respectively.

The average depth of this data set was 10� . The figure is based on the

tumour data set and Bowtie was used as aligner, and statistics are based on

the loci genotyped by the Affymetrix SNP array.
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array, whereas the number was 43.3% for GATK, 35.9% for
Bcftools and 2.0% for MAQ. MAQ made the largest number of
SNP calls, but the accuracy was the lowest for uniquely called
SNPs. We analysed the normal data set and found similar results
(Supplementary Fig. S1).

Performance evaluation on SNPs not covered by arrays. Both
Illumina and Affymetrix SNP arrays contain less than one-tenth
of the total number of current SNPs in the human genome, so
evaluations based on the SNP arrays will be biased for common
SNPs selected by these platforms. To avoid this bias, we evaluated
the performance of the tools using high coverage multi-source-
merged sequencing data (chromosomes 21 and 22 from a Yoruba
with average 35-fold whole genome coverage). Because this data
set has high sequence depth and MAQ has been proven to have
high SNP calling accuracy for high sequence depth data12, we
used the results of MAQ SNP calling (named High_MAQ) on this
data set as our benchmark. We randomly sampled 10% of reads
four times to form four sub-data sets. FaSD, MAQ, SOAPsnp,
GATK and Bcftools were then used to call SNPs on these sub-
data sets and their results were compared with the benchmark.
The majority of loci (499.5%) in the human genome have the
genotype of AA, whose inclusion could overwhelm any
differences, that is, the overall genotype concordance won’t
differ much among the various caller methods. Therefore,
we used non-reference concordances to assess the quality of
SNP calling by excluding the concordant AA genotypes
(Supplementary Table S1). As shown in Table 2, with default
cutoffs, FaSD called 69,768 SNPs in chromosome 21 and 78,240
SNPs in chromosome 22. The numbers are close to the SNPs
called by the benchmark, which were 78,679 and 68,017,
respectively. SOAPsnp and MAQ called 25–40% more SNPs
than the benchmark, whereas Bcftools and GATK called 40–50%
less SNPs than the benchmark. To call a similar number of SNPs
as Bcftools and GATK, we adjusted FaSD’s cutoff from the default
3.2 to 5.0, which reduced numbers of SNPs called in
chromosomes 21 and 22 to 45,845 and 45,211, respectively. We
then compared the non-reference concordances of FaSD at this
cutoff with the other tools and with the benchmark. For
chromosome 21, FaSD had the highest non-reference
concordance with the benchmark (Table 3). Consistent with
our previous evaluation, the performance of SOAPsnp was almost

the same as MAQ10. The non-reference concordances of both
GATK and Bcftools with the benchmark were also around 0.4,
which was close to that of FaSD. For chromosome 22, GATK had
the best non-reference concordance with the benchmark.
However, the non-reference concordances of both FaSD and
Bcftools were only around 0.5% and 2.5% lower than GATK,
respectively (Supplementary Table S5).

Performance evaluation on pooled data. The detection of rare
variants is important because common genetic variants can
explain only a small proportion of heritability21. However, rare
variants have low minor allele frequencies and are very hard to
separate from genotype errors22. Pooled data from multiple
individuals can improve the discovery of rare variants. Both
GATK and Bcftools have the function to utilize pooled data.
Therefore, we compared the performance of FaSD on pooled
samples with the performance of both GATK and Bcftools.
The pooled samples are composed of low coverage (B4� ) whole
genome sequencing data of 40 CEU (Utah residents with ancestry
from Northern and Western Europe) individuals from pilot 1 of
1,000 Genomes Project. Sequencing data on chromosome 21 of
three CEU individuals in one trio were picked as the evaluation
objects. MAQ calling results of corresponding high coverage data
(30� ) from pilot 2 of 1,000 Genomes Project were used as the
gold standard. As expected, the calling results on the individual’s
low coverage 4� data had limited SNPs discovery. Even using
FaSD as the caller, we could not exceed the non-reference
concordance of 0.6 (Table 4 and Supplementary Tables S6
and S7). Using a multi-sample SNPs calling function to genotype

Table 2 | Number of reported SNPs in each method for chromosomes 21 and 22.

Data set\software High_MAQ Bcftools GATK FaSD MAQ SOAPsnp

21 78,679 39,688 48,136 69,768 97,666 97,267
22 68,017 33,028 36,867 78,240 94,237 94,768

The total number of SNPs called by each software using default settings. High_MAQ was the SNP calling result from high-depth data, which was used as our benchmark. The lengths of chromosomes
21 and 22 are 46,976,537 and 49,476,972, respectively; the GC% was 43% and 49%, respectively. The average depth was 4� for chromosome 21 and 22.

Table 3 | The non-reference concordances for chromosome 21.

High_MAQ FaSD MAQ SOAPsnp GATK

FaSD 0.419±0.002
MAQ 0.271±0.001 0.267±0.001
SOAPsnp 0.266±0.001 0.264±0.001 0.981±0.001
GATK 0.415±0.001 0.626±0.002 0.315±0.001 0.308±0.001
Bcftools 0.383±0.001 0.613±0.002 0.295±0.001 0.293±0.001 0.681±0.002

The number in each cell is the mean of non-reference concordance and standard deviation. The average depth of this data set was 4� . High_MAQ represents the high-depth data called by MAQ, and is
the benchmark.

Table 4 | The non-reference concordances for chromosome
21 in individual call set and pooled-sample call set of
NA12878.

High_MAQ FaSD GATK

FaSD 0.557 (0.556)
GATK 0.489 (0.379) 0.637 (0.641)
Bcftools 0.535 (0.353) 0.573 (0.673) 0.520 (0.603)

The first number in each cell is the non-reference concordance on the basis of pooled data, the
number in the parentheses is the non-reference concordance based on the corresponding
individual low coverage data set. High_MAQ was used as the benchmark.
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multiple samples simultaneously from aggregated 40-sample
data, GATK and Bcftools showed at least 20% improvement in
terms of the non-reference concordance. FaSD also showed a
slight increase in the non-reference concordance because it also
incorporated genotype information from the pooled data sets.
For all individuals investigated from that trio, FaSD had the best
non-reference concordances of 0.557 (NA12878), 0.585
(NA12891) and 0.556 (NA12892) benchmarked by High_MAQ.
In the GATK pipeline, imputation23,24 could help to refine and
recover genotypes at sites with little or no coverage. Following
this recommendation, we used Beagle25 to impute the 40-sample
call set. It should be noted that imputation not only recovered an
additional 36% of the non-reference sites for FaSD, 26% for
GATK and 3% for Bcftools (average of three individuals,
Supplementary Table S8), but also improved the non-reference
concordance from an average of 0.566 to an average of 0.706 for
FaSD, from 0.477 to 0.632 for GATK and from 0.514 to 0.590
for Bcftools (average of three individuals, Supplementary
Tables S9–11).

Processing speed. The time taken for these tools to process the
data is a major bottleneck for NGS data analysis. We compared
the running time of FaSD, GATK and Bcftools for SNP calling on
a standard 10-fold tumour genome (total 30 gigabases) NGS data.
All three programs were tested on a server (based on a 2.13-GHz
Intel Xeon Processor E5506 CPU with 4MB cache, 32GB
memory and 4 TB storage) and on a standard personal computer
(running a 2.66-GHz Intel Core2 Quad Processor Q9400 CPU
with 6MB cache, 6GB memory and 1 TB storage). On the server
using only a single core, GATK took 29,757 s to finish the job and
Bcftools took 19,286 s, whereas FaSD took only 13,484 s, which
was 120% faster than GATK and 43% faster than Bcftools (Fig. 3).

On the personal computer, FaSD finished the job in 14,042 s,
which was 92% faster than GATK and 72% faster than Bcftools.

Discussion
Our FaSD method could rapidly call SNPs after the NGS data are
aligned to the reference genome. FaSD uses a single score
(FaSD_score) to determine the loci’s genotype. For all the
experiments, we used a default cutoff of 3.2 for separating AA and
AB, and a cutoff of 15.8 for separating AB and BB. Users can
adjust these cutoffs in our program to obtain different numbers of
SNPs depending on their purpose. As shown in Supplementary
Table S12, a higher cutoff will result in less SNPs being reported,
and vice versa. If the default cutoff of 3.2 is applied, the false
positive rate and true positive rate are 0.0011 and 0.83 in the
normal data set and 0.0015 and 0.82 for the tumour data set,
respectively. To assess the AUC of each SNP caller, we assigned a
SNP locus as class 1, and a non-SNP locus as class 0. The 0/1 ratio
is the ratio between the numbers of loci in class 0 and class 1. The
loci were determined to be truly class 0 or class 1 based on
the gold standard used. An imbalanced data set could reduce the
classification performance and make the classifications deviate to
the prevalent class26,27. The 0/1 ratios of both the normal data set
and tumour data set were close to 1 (Supplementary Table S13),
indicating little classification bias in our array-based data sets.

Our FaSD algorithm is comprised of two parts, the
alternative_score and the mutation probability (equations 1 and
2 in the methods section). The mutation probability model has
been used in many other SNP detection programs. We report
here for the first time the use of our unique alternative_score
model. To assess the contributions of these two models to the
overall performance of the FaSD method, we evaluated the AUCs
separately and in combination from the normal data set
benchmarked by the Affymetrix array. In the 4_5 depth category
(Table 5), the combined model had an AUC of 0.973, which
decreased by 0.033 to 0.940 when only the mutation probability
model was used but only decreased by 0.003 to 0.970 when only
the alternative_score model was used, indicating the alternative_
score model contributed about 90% to FaSD’s performance.
At high depth, the AUC decreased by 0.009 using only the
mutation probability model but decreased by 0.001 using only the
alternative_score model, indicating the alternative_score con-
tributed about 70–80% to FaSD’s performance. Similar results
were obtained when the two components were evaluated using
the Illumina array (Table 5).

To assess the effects of different aligners on FaSD’s
performance, we used BWA as alternative aligner for the tumour
and normal data set (BWA is the recommended aligner
for GATK). On the basis of concordance, we showed that FaSD
was the superior method (Supplementary Table S2). Although
with BWA the AUC of GATK increases by about 10% in each
sub-category, FaSD still has the largest AUCs (Supplementary
Table S14), indicating FaSD’s superior performance regardless of
the aligner.
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Figure 3 | Run time on both server and standard personal computer. The

average depth of this tumour data set was 10� (30 gigabases). Bowtie is

applied as aligner.

Table 5 | AUC of different parts of FaSD on the normal data set.

Affymetrix Illumina

Depth 4_5 6_10 11_15 16_20 4_5 6_10 11_15 16_20
Mutation_probability 0.940 0.958 0.976 0.983 0.937 0.953 0.961 0.979
Alternative_score 0.970 0.988 0.990 0.989 0.967 0.988 0.990 0.986
FaSD (combined) 0.973 0.981 0.992 0.992 0.972 0.989 0.992 0.989

The average depth of this data set was 10� . Affymetrix SNP array and Illumina SNP array were used as benchmarks. Bowtie was used as aligner.
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We then assessed the effects of the sequencing platform on
FaSD’s performance. We used the six tools to call SNPs from
data sequenced using ABI-SOLiD sequencing platform. With the
Affymetrix SNP array as the gold standard, FaSD outperforms all
the other programs using the corresponding Serous Cystadeno-
carcinoma (OV) data set (One tail paired Wilcoxon test P-value
o2.2e-16 in each depth category, Fig. 4 and Supplementary
Fig. S2). This result confirmed that FaSD SNP calling is reliable
even for data from different sequencing platforms.

The developers of GATK proposed a unified analytic frame-
work that included realigning the sequences before SNP calling to
reduce the effects of inaccurate base quality scores and mapping
errors23. We adopted this framework for locally realigning
regions around indels and for recalibrating the base quality
score to check how the pre-process affected the SNP calling
quality. Realignment had significant effects on GATK’s

performance, particularly when using the Affymetrix array as
the gold standard. Realignment caused GATK’s concordance
rates with the Affymetrix array to increase from 0.839 to 0.912 for
normal tissue and increase from 0.875 to 0.930 for tumour
tissue. Changes in FaSD performance resulted in a moderate
concordance increase from 0.891 to 0.922 for normal tissue and
an insignificant increase from 0.926 to 0.929 for tumour tissue
(Tables 1 and 6). On the other hand, realignment with Illumina
Array as the gold standard had an overall negative effect. After
realignment, the concordance rates between Illumina and
Affymetrix arrays dropped from 0.997 to 0.949 for normal and
from 0.996 to 0.942 for tumour tissues. The effects were most
pronounced for Bcftools, dropping from 0.865 to 0.735 for
normal and from 0.898 to 0.734 for tumour tissues. For FaSD,
changes were 0.882 to 0.864 for normal and 0.927 to 0.867 for
tumour tissues. Both MAQ and SOAPsnp had better concordance
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Figure 4 | The performance on the OV data set sequenced from the SOLiD sequencing platform. (a) The AUC on the 4_5 coverage subset, (b) the AUC

on the 6_10 coverage subset, (c) the AUC on the 11_15 coverage subset and (d) the AUC on the 16_20 coverage subset. The average depth of this data set

was 6� .

Table 6 | The concordance rates after realignment among distinct SNP callers.

Illumina Affymetrix FaSD MAQ SOAPsnp GATK

Affymetrix 0.949 (0.942)
FaSD 0.864 (0.867) 0.922 (0.929)
MAQ 0.439 (0.469) 0.454 (0.486) 0.484 (0.491)
SOAPsnp 0.439 (0.472) 0.455 (0.488) 0.485 (0.492) 0.998 (0.995)
GATK 0.790 (0.774) 0.912 (0.930) 0.950 (0.962) 0.531 (0.561) 0.532 (0.564)
Bcftools 0.735 (0.734) 0.898 (0.930) 0.951 (0.958) 0.534 (0.562) 0.534 (0.564) 0.980 (0.978)

The first number in each cell is the concordance between corresponding SNP callers in the normal data set, the number in the parentheses is the concordance in the tumour data set. Bowtie was used as
aligner. The average depth of both normal and tumour data sets was 10� .
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rates with the Illumina array after realignment. For MAQ,
changes were 0.397 to 0.439 for normal and 0.401 to 0.469 for
tumour tissues, and for SOAPsnp, changes were 0.417 to 0.439 for
normal and 0.409 to 0.472 for tumour tissues (Tables 1 and 6).
We further evaluated the AUC of the different tools after
realignment. We found that FaSD performed better than the
other tools regardless of whether the data was pre-processed or
not, or whether the Affymetrix or Illumina array benchmarks
were used (Supplementary Tables S15–18).

We evaluated the performance of the different tools using the
three criteria of concordance rate, AUC and non-reference
concordance rate. These criteria were applied in different
situations (Supplementary Table S1). When one of the two
callers is used as the benchmark, the concordance rate is used
to measure the proportion of correctly called AA, AB and BB
genotypes in the results. The SNP caller must use a specific cutoff
for genotype calls, so the concordance will only be valid under
this cutoff. In contrast, AUC measures the overall performance of
two classification groups, AA and non-AA (non-SNP and SNP).
It is a comprehensive measurement because it is not limited to a
specific cutoff, but it does not distinguish between AB and BB.
Therefore, the concordance and AUC measurements may not
always be consistent. For example, Bcftools has high concordance
rates (Table 1 and Supplementary Table S2) but poor AUC
(Supplementary Tables S3 and S4). When a program is applied on
genome-wide data, the SNP calling result will be highly
unbalanced because the chance of calling a SNP is less than 1%
(predominately AA). Under this situation, the non-reference
concordance rate is more appropriate than concordance rate
for performance assessment, because it focus on measuring the
quality of called AB and BB genotypes.

FaSD can be used as good complementary program to either
GATK or Bcftools. The accuracy rate for SNPs called by both
FaSD and Bcftools was the highest at 99.9% (Fig. 2). For SNPs
called by both FaSD and GATK, the rate was also high at 99.7%.
In contrast, the accuracy is far less for SNPs called by any other
two programs. For example, SNPs called by both FaSD and MAQ
(but not by others) had an accuracy rate of 65.6%, and for GATK
and Bcftools the accuracy was 46.2%. SNPs called individually by
FaSD, GATK, Bcftools and MAQ had accuracies of 63.3%, 43.3%,
35.9% and 2.0%, respectively. We further investigated SNP loci
called uniquely by FaSD and confirmed by both Affymetrix and
Illumina SNP arrays (some examples are shown in
Supplementary Figs S3–S5). In general, FaSD made accurate
SNP calls even at loci with low-depth reads, with intermediate
sequencing quality, and at the two ends of the read, compared
with other programs that failed to make SNP calls. In summary,
we recommend using both FaSD with either GATK or Bcftools
for SNP calls. If the user requires a larger number of SNP calls, we
suggest using FaSD on its own or FaSD and MAQ combined. The
next best option would be to use GATK on its own or GATK and
Bcftools combined.

The FaSD program was implemented in Cþþ , which can
easily be compiled to run on all platforms. Once the result of
alignment is obtained, our model is able to detect SNP sites with
high speed based on the pileup files. The compiled programs for
Linux or Windows and demonstration data can be downloaded
freely at http://jjwanglab.org/FaSD.

Methods
Data sets. We used NGS data from both a blood-derived normal sample and GBM
tumour sample sequenced in the TCGA project. The reads (Sequence Read Archive
(SRA) accession code: SRX006325) of the blood-derived normal sample (TCGA
accession code: TCGA-06-0188-10B-01D-0373-08) were from a male with
untreated GBM (TCGA accession code: TCGA-06-0188). The reads (SRX006310)
of the GBM tumour sample were from primary tumour tissue (TCGA-06-0188-
01A-01D-0373-08) from the same male with untreated GBM (TCGA-06-0188)19.

Both the samples were sequenced on the Illumina Genome Analyzer II platform:
the normal sample was prepared by 2� 76 bp paired-end library construction
(Solexa-8304) and the GBM sample was prepared by 2� 76 bp paired-end library
construction (Solexa-8303). To evaluate NGS data from the SOLiD platform, reads
(SRX015368) from the primary tumour tissue (TCGA-13-0720-01A-01D-0445-10)
of a female OV patient (TCGA-13-0720) were used (B6-fold). The sequences, all
in fastq format (csfastq for SOLiD), were extracted from the NCBI database of
genotype and phenotype (dbGap) using the SRA toolkit. The raw data obtained
using SRA was not filtered or modified (besides trimming). We merged the results
from several runs to reach 30 gigabases at 10� coverage for each data set. These
data sets were also genotyped using Illumina humanhap550 genotyping beadchip
array and Affymetrix genome-wide human SNP array 6.0. The genotype data were
downloaded from TCGA portal and used as our gold standards. To test the SNP
callers’ performance without using SNP arrays as the benchmark, we used data
from one Yoruba individual (1,000 genomes accession code: NA19240) with high
coverage MAQ alignment data of chromosome 21(39� ) and 22(40� ) generated
by the pilot 2 phase of 1,000 Genomes Project28. To compare the performance of
FaSD on pooled samples with the performance of GATK and Bcftools, we used the
publically available sequencing data from 40 CEU individuals in the pilot 1 phase
of 1,000 Genomes Project. All 40 individuals were sequenced to B4� coverage
genome-wide on a variety of platforms and from a variety of sequencing centres29.
Sequencing data on chromosome 21 of a CEU trio (NA12878, NA12891 and
NA12892) out of the 40 individuals was chosen as our evaluation subjects. This trio
was also sequenced to B30� coverage genome-wide in the pilot 2 phase of 1,000
Genomes Project. We used MAQ’s SNPs calling result on chromosome 21 of this
high-depth trio, NA12878 (37� , rounded sequencing depth of chromosome 21),
NA12891 (36� , rounded) and NA12892 (30� , rounded) as the evaluation
benchmark.

The FaSD model. After obtaining alignments from pileup file, we used FaSD to
call SNPs for each aligned position. A FaSD_score was used to measure the
polymorphism probability that a certain locus is a SNP location and to determine
its corresponding genotype. If the FaSD_score was greater than the cutoff score, we
called the locus a SNP and gave its corresponding genotype. The FaSD_score
was calculated using the alternative_score and the geometric mean of a mutation
probability of reads (equation 1):

FaSD Score¼ � alternative score��
Depth
i¼ 1 log2 Pðreadi /refÞ

� �
Depth

ð1Þ

The alternative_score was calculated according to equation 2. The Pðreadi /refÞ
� �

is
the probability of getting a read genotype when the reference allele is known30. At
each position, there could be three possible genotypes: AA, AB and BB. AA is
homozygous and matches the reference allele, AB is heterozygous and BB is
homozygous but does not match the reference allele. For positions with depth N, n
reads will match the reference and the other N� n reads will not match the
reference. We assumed that the number of reads matching and not matching the
reference will follow binomial distributions. We then calculated the probability
of the observed read frequency for each of the three possible genotypes. If the
genotype is AA, then the probability of not matching the reference should be very
low (to be consistent with the error rate in the mutation probability formula
Pðreadi /refÞ
� �

we set this to 0.001), and thus the probability of matching the reference
should be very high (we set this to be 1–0.001¼ 0.999). If the genotype is AB,
the probability of matching the reference and non-reference should be equal (both
set to 0.500). Similarly, if the genotype is BB, the probability of matching the
reference should be 0.001 and of matching the non-reference should be 0.999
(equation 2). We then used the probability mass function of binomial distributions
to calculate the joint probability of all N reads. We then compared the joint
probabilities from all three possible genotypes. The genotype with the highest
probability was selected and the alternative_score was assigned (equation 2). The
three different binomial distributions corresponding to AA, AB and BB were
assigned the P parameter 0.001, 0.500 and 0.999, respectively. We then checked
whether these parameters fitted our data. Taking into account the possible flaws in
the sequencing, alignment or construction of the data sets, the parameters for the
three binomial distributions appeared to be acceptable. The assigned
alternative_score of 0, 1 and 2 represents the number of loci that are different from
the reference allele for two allele loci. Positions with genotype AB or BB are
considered as SNP locations.

Alternative Score¼
0þ pseudo score;when N

m

� �
ð0:999Þmð0:001ÞN �mismax

1þ pseudo score;when N
m

� �
ð0:500Þmð0:500ÞN �mismax

2þ pseudo score;when N
m

� �
ð0:001Þmð0:999ÞN �mismax

8><
>:

ð2Þ

N is the depth of the reads, and m is the occurrence of reference allele at the
position. We added a pseudo_score to avoid an alternative_score of 0. By default,
we set the pseudo_score to 0.01. The alternative_score depends on which one of the
three possible genotypes/models (reference homozygote, non-reference
homozygote, and heterozygote) explain the data the best. For example, if the locus
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has a total of five reads, with three Gs and two Cs, and the corresponding reference
is G: the probability of getting the above reads with the reference homozygote
model is N

m

� �
ð0:999Þmð0:001ÞN �m ¼ 5

3

� �
ð0:999Þ3 ð0:001Þ5� 3 ¼ 9:9�10� 6; the

probability for the heterozygote model is N
m

� �
ð0:500Þmð0:500ÞN �m ¼ 5

3

� �
ð0:500Þ3

ð0:500Þ5� 3 ¼ 0:31; the probability for the non-reference homozygote model is
N
m

� �
ð0:001Þmð0:999ÞN �m ¼ 5

3

� �
ð0:001Þ3 ð0:999Þ5� 3 ¼ 9:9�10� 9. We choose the

heterozygote model because it has the highest probability of 0.31, and we assign an
alternative_score¼ 1þ 0.01¼ 1.01. Using equation 1, we obtain a FaSD_score of
5.07, which is between our default cutoffs of 3.2 and 15.8, so we assign
heterozygous genotype GC to this locus.

The estimated SNP rate between two distinct human haploid chromosomes has
been reported to be close to 0.001 (ref. 30), and transitions are almost four times
more frequent than transversions among substitutions31. The different
frequencies of transitions and transversions mean they would have different
contributions to the SNP calling. To discriminate these contributions, we
integrated a Pðreadi /ref Þ

� �
for each read into our final FaSD_score. We calculated

the SNP rate and transition/transversion ratio in our GBM tumour and normal
data sets, and found similar ratios (data not shown). Therefore, we used the above
reported values to calculate Pðreadi /refÞ

� �
(Supplementary Table S19). For each

read, we compared the base at current loci with the reference allele to obtain a
Pðreadi /ref Þ
� �

. From this table, we calculated the geometric mean of the mutation
probability using equation 1. We incorporated the effects of transitions and
transversions into our FaSD model. The average of log-odd Pðreadi /refÞ

� �
of all the

N reads was obtained, and the product of this value with the alternative_score was
combined to form a FaSD_score, which was used to call SNPs. The higher the
FaSD_score, the more likely a site is a SNP position. The default cutoffs of FaSD
are determined mathematically. Because different types of errors such as
sequencing or mapping errors during NGS could raise the FaSD_score of a non-
SNP site, we suggest the use of a cutoff value higher than the default to remove
false positives, especially with low quality sequencing data. A user interface for
setting the user-specific cutoff has been implemented in our FaSD program. The
model has the ability to handle both the individual data sets and the pooled data
sets.

Performance evaluation using SNP arrays. We used Illumina and Affymetrix
SNP arrays as gold standards to evaluate the performance of FaSD and other tools.
We excluded all sites whose depths were lower than 4. The quality score is absent
for the Illumina HumanHap550 Genotyping BeadChip data, so we accepted all the
genotype entries. The Affymetrix genome-wide human SNP array 6.0 provides
confidence scores for genotype quality using the Birdseed algorithm. Here, we
chose the high-quality SNP probes as our test data set
by removing the probes with confidence scores above 0.018.

For SOAPsnp and MAQ, we assigned the Phred-scaled probability that the
genotype is identical to the reference, the so called ‘SNP quality’ as the predictor.
There are several possibilities for the called genotypes: the reference homozygote,
the non-reference homozygote, heterozygote and others. For the ROC curve and
AUC calculations, we assigned the reference homozygote genotype as 0, and all
other genotypes as 1. SNVmix2 outputs three genotypes, namely homozygous to
reference (AA), heterozygous genotype (AB) and homozygous to the non-reference
(BB). We considered AB and BB genotypes as a SNP, we added the probabilities of
these two genotypes (AB and BB) together to get the ‘SNP probability’ as the
predicator. The GATK’s UnifiedGenotyper and Bcftools generate SNP calls in the
VCF format; the QUAL column is the ‘SNP quality’ and can be used as our
predicator. For all callers mentioned above, the different values of predictor
were used to draw the ROC curve, whereas the FaSD_score was used for FaSD. To
test the stability of each software, we performed 1,000 times’ bootstrap and
obtained 1,000 AUC for each software. We then used Wilcoxon test to determine
whether FaSD performed better than the other tools.

The genotype concordance and non-reference concordance. To measure the
reliability of the different software/platforms for genotypes called from all SNPs
(not limited to SNPs in Illumina and Affymetrix arrays), we determined genotype
concordances among tools. Before the calculation of concordance, we restricted the
tested loci to be the loci which has been genotyped in benchmark and whose depth
were higher than 3 in the test alignment file to facilitate the reliability of the
concordance result. Because GATK and Bcftools only report non-reference sites,
we assigned genotype AA, the reference homozygous, to the loci which are not
listed in SNP calling result of the above two tools. The non-reference concordance
is measured in the similar way but excludes the concordant AA genotype because
they are usually huge in number and easily detectable, but will greatly influence the
measurement.

References
1. Ng, P. C. & Henikoff, S. Predicting the effects of amino acid substitutions on

protein function. Annu. Rev. Genomics Hum. Genet. 7, 61–80 (2006).
2. Kim, B. C. et al. SNP@Promoter: a database of human SNPs (single nucleotide

polymorphisms) within the putative promoter regions. BMC Bioinformatics
9(Suppl 1): S2 (2008).

3. Yang, J. O., Kim, W. Y. & Bhak, J. ssSNPTarget: genome-wide splice-site single
nucleotide polymorphism database. Hum. Mutat. 30, E1010–E1020 (2009).

4. Hariharan, M., Scaria, V. & Brahmachari, S. K. dbSMR: a novel resource
of genome-wide SNPs affecting microRNA mediated regulation. BMC
Bioinformatics 10, 108 (2009).

5. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351
(2001).

6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature
409, 860–921 (2001).

7. Frazer, K. A. et al. A second generation human haplotype map of over 3.1
million SNPs. Nature 449, 851–861 (2007).

8. Altshuler, D. et al. A haplotype map of the human genome. Nature 437,
1299–1320 (2005).

9. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing
technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

10. Wang, W. X., Wei, Z., Lam, T. W. & Wang, J. W. Next generation sequencing
has lower sequence coverage and poorer SNP-detection capability in the
regulatory regions. Sci. Rep-UK 1, 55 (2011).

11. Morin, R. et al. Profiling the HeLa S3 transcriptome using randomly primed
cDNA and massively parallel short-read sequencing. Biotechniques 45, 81–94
(2008).

12. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

13. Li, R. et al. SNP detection for massively parallel whole-genome resequencing.
Genome Res. 19, 1124–1132 (2009).

14. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment
program. Bioinformatics 24, 713–714 (2008).

15. Goya, R. et al. SNVMix: predicting single nucleotide variants from
next-generation sequencing of tumors. Bioinformatics 26, 730–736 (2010).

16. Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

17. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303
(2010).

18. Malhis, N. & Jones, S. J. High quality SNP calling using Illumina data at shallow
coverage. Bioinformatics 26, 1029–1035 (2010).

19. Chin, L. et al. Comprehensive genomic characterization defines human
glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

20. Altshuler, D. L. et al. A map of human genome variation from population-scale
sequencing. Nature 467, 1061–1073 (2010).

21. Hindorff, L. A. et al. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Pro. Natl Acad. Sci.
USA 106, 9362–9367 (2009).

22. Wei, Z., Wang, W., Hu, P. Z., Lyon, G. J. & Hakonarson, H. SNVer: a statistical
tool for variant calling in analysis of pooled or individual next-generation
sequencing data. Nucleic Acids Res. 39, (2011).

23. DePristo, M. A. et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet. 43, 491 (2011).

24. Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling
from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).

25. Browning, B. L. & Yu, Z. X. simultaneous genotype calling and haplotype phase
inference improves genotype accuracy and reduces false positive associations
for genome-wide association studies. Genet. Epidemiol. 33, 783–783 (2009).

26. Visa, S. R. A. in IEEE Conference on Fuzzy Systems 749–754 (IEEE, 2005).
27. Weiss, G. M. & Provost, F. Learning when training data are costly: the effect of

class distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003).
28. Via, M., Gignoux, C. & Burchard, E. G. The 1000 Genomes Project: new

opportunities for research and social challenges. Genome Med. 2, 3 (2010).
29. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome
Biol. 10, R25 (2009).

30. Sachidanandam, R. et al. A map of human genome sequence variation
containing 1.42 million single nucleotide polymorphisms. Nature 409,
928–933 (2001).

31. Zhao, Z. & Boerwinkle, E. Neighboring-nucleotide effects on single nucleotide
polymorphisms: a study of 2.6 million polymorphisms across the human
genome. Genome Res. 12, 1679–1686 (2002).

Acknowledgements
This work was supported by funding from the Research Grants Council (781511M,
778609M, N_HKU752/10, AoE M-04/04), Food and Health Bureau (10091262) of
Hong Kong, NSFC of China (91229105) and the University of Hong Kong (10401206
and Genomic SRT).

Author contributions
Concept, design and method development (F.X., P.C.S. and J.W.); data preparation,
pipeline design and performance evaluation (W.W., F.X. and J.W.); program imple-
mentation and algorithm optimization (F.X., P.W. and M.J.L.); and manuscript writing
and editing (F.X., W.W., P.C.S. and J.W.).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2256

8 NATURE COMMUNICATIONS | 3:1258 | DOI: 10.1038/ncomms2256 | www.nature.com/naturecommunications

& 2012 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper on http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Xu, F. et al. A fast and accurate SNP detection algorithm for next-
generation sequencing data. Nat. Commun. 3:1258 doi: 10.1038/ncomms2256 (2012).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2256 ARTICLE

NATURE COMMUNICATIONS | 3:1258 | DOI: 10.1038/ncomms2256 | www.nature.com/naturecommunications 9

& 2012 Macmillan Publishers Limited. All rights reserved.

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	A fast and accurate SNP detection algorithm for next-generation sequencing data
	Introduction
	Results
	Performance evaluation on SNPs covered by arrays
	Performance evaluation on SNPs not covered by arrays
	Performance evaluation on pooled data
	Processing speed

	Discussion
	Methods
	Data sets
	The FaSD model
	Performance evaluation using SNP arrays
	The genotype concordance and non-reference concordance

	Additional information
	Acknowledgements
	References




