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Experimental observation of quantum chaos
in a beam of light
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The manner in which unpredictable chaotic dynamics manifests itself in quantum mechanics

is a key question in the field of quantum chaos. Indeed, very distinct quantum features can

appear due to underlying classical nonlinear dynamics. Here we observe signatures of

quantum nonlinear dynamics through the direct measurement of the time-evolved Wigner

function of the quantum-kicked harmonic oscillator, implemented in the spatial degrees

of freedom of light. Our setup is decoherence-free and we can continuously tune the

semiclassical and chaos parameters, so as to explore the transition from regular to essentially

chaotic dynamics. Owing to its robustness and versatility, our scheme can be used to

experimentally investigate a variety of nonlinear quantum phenomena. As an example, we

couple this system to a quantum bit and experimentally investigate the decoherence

produced by regular or chaotic dynamics.
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C
haotic classical systems have the characteristic trait of
being extremely sensitive to initial conditions. This
behaviour, together with the experimental imprecision of

the initial conditions, causes these deterministic systems to be
inherently unpredictable. The field of quantum chaos addresses
the question as to how classical chaotic dynamics manifests itself
in quantum mechanics. In addition to fundamental questions
concerning the correspondence principle and the classical limit of
quantum mechanics, a number of intriguing quantum-dynamical
features have been unravelled. Prominent examples are dynamical
localization1,2, the quantum suppression of classical diffusion and
the enhancement of the tunnelling rate in the presence of chaos in
the corresponding classical dynamics3,4. These phenomena have
been observed in several physical systems3–12.

The simplest and most widely studied systems that present
manifestations of classical chaos in their quantum dynamics are
periodic time-dependent Hamiltonian (Floquet) systems13. The
quantum evolution up to discrete time t¼ nT is described by the
quantum map

j cðnÞi¼Un j cð0Þi; ð1Þ
where n is an integer and the Floquet operator U describes the
unitary quantum evolution in the time period T. In addition to
extensive study from a theoretical viewpoint, the phenomena
arising in these maps have been observed in experiments
with atoms3–9,14, Bose–Einstein condensates10 and photonic
lattices12. There have been a few theoretical proposals to realize
quantum chaotic maps using paraxial optics15–17 and, in fact,
dynamical localization has been observed in an optical field sent
through a sequence of phase gratings11. However, the realization
of the quantum-kicked harmonic oscillator (KHO), a paradigm
of quantum non-linear dynamics with non-Kolmogorov-Arnold-
Moser (non-KAM) behaviour, and a model for charges moving in
time-dependent fields18, electronic transport in semiconductor
lattices19,20 and trapped ions in a periodic laser field21, is still
outstanding.

The quantum KHO is described by the map (1), where the
iteration operator is

UKHO ¼RaVK : ð2Þ
The operator Ra describes the evolution of a quantum harmonic
oscillator parameterized by a¼oT, where o is its frequency and
T the interval between the periodic perturbations. VK describes a
periodic perturbation corresponding to a potential Kcos(Qþf),
where f is a phase and Q is the dimensionless position variable
defined below.

The dimensionless position and momentum coordinates of a
particle of mass m submitted to the KHO evolution are defined as
Q¼ nq and P¼ np/(mo), respectively, where q and p are the
position and momentum of the particle and n is the spatial
frequency of the kick. The dimensionless operators obey [Q,P]¼
i:eff, where the effective Planck constant is :eff�n2:/mo.

This model can present a rich variety of intriguing quantum-
dynamical phenomena22,23. In the so-called quasicrystal
condition and also for irrational values of a, a quantum
localization, similar to that extensively studied and observed in
the kicked rotor model, can appear24. For the crystal condition
where aA{p/3,p/2,2p/3,p,2p}, the quantum system can present
diffusion in energy for any value of K. In this case, the
stroboscopic phase space of the corresponding classical system
is characterized by the appearance of a ‘stochastic web’ associated
with the chaotic behaviour, with periodic regions corresponding
to essentially regular dynamics in between. Stochastic webs
are typical structures of systems with non-KAM behaviour, where
chaotic dynamics appear even for an arbitrary small perturbation
(in our case the kicks)18, with have many applications20. The size

of the web and the perturbation of the regular dynamics inside
the periodic regions are governed by the intensity of the
perturbation K. For Ko1 the size of the web is considerably
small, as is the perturbation of the regular dynamics inside the
periodic regions. When K¼ 2, the KHO can be considered a
weakly chaotic system.

Here, we implement the quantum KHO dynamics in the spatial
degrees of freedom of the photons of a monochromatic paraxial
light. We observe the non-linear dynamics through direct
measurement of the optical Wigner function. Controllable
parameters adjust the system from regular to chaotic dynamics,
as well as the effective Planck constant, associated with the
quantum-classical transition. Our scheme is decoherence-free and
can be used in a variety of studies of non-linear quantum systems,
which we illustrate by investigating the decoherence induced by
our system on a qubit.

Results
Optical implementation of the chaotic quantum map. We
implement an optical version of the operator (2) in the spatial
degrees of freedom of monochromatic paraxial light based on the
isomorphism between the paraxial wave equation and the
Schrödinger equation (refs 25–27 and Supplementary Note 1).
The light beam is sent n times through a combination of optical
elements designed to implement the operator UKHO, as illustrated
in Fig. 1a. The transverse position in the near and far-field cor-
respond to the position and momentum of the photons in the
beam, and are analogous to the transverse position q and trans-
verse momentum p of a quantum particle. The instantaneous
‘kick’ perturbation,

VK ¼ e�
i

�heff
K cosQ

; ð3Þ

is produced using a Holoeye spatial light modulator (SLM). The
SLM imprints a programmable phase exp[i f(x,y)] on an optical
beam, and thus can be used in the implementation of many
dynamical maps. We define Q¼ nq as the dimensionless version
of the near-field variable, q (Supplementary Note 2). The para-
meter n is the spatial frequency of the cosine function, K is the
kick strength, and the effective Planck constant :eff will be defined
below.

The harmonic evolution operator Ra produces a phase space
rotation that is equivalent to a fractional Fourier transform
(FRFT) of order a (ref. 28),

Ra ¼ eia/2e
i

�h eff
aðQ2 þP2Þ/2

; ð4Þ

which can be implemented using a lens of focal length f placed
between two sections of free space of distance za¼ 2fsin2(a/2).
The dimensionless momentum variable is P¼ nf

0
y, where y is the

angle of the paraxial ray and f 0�fsina. The dimensionless
operators Q and P obey the commutation relation25,26,

½Q;P� ¼ i�h eff ; ð5Þ

where :eff¼ n2f 0/k is the dimensionless effective Planck constant
(Supplementary Note 2).

It is straightforward to manipulate all the relevant parameters
in the dynamics of the KHO: by changing the order a of the FRFT
(harmonic evolution between kicks), the amplitude K of the
cosine phase implemented with the SLM and the spatial fre-
quency n of this phase (effective Planck constant).

The experimental setup is illustrated in Fig. 1b. To characterize
the chaotic dynamics, we do a point-by-point direct measurement
of the optical Wigner function28,29 using an interferometric
method30. Details of the full experimental setup are given in the
Methods section, and in the Discussion section we show how this

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2214

2 NATURE COMMUNICATIONS | 3:1211 | DOI: 10.1038/ncomms2214 | www.nature.com/naturecommunications

& 2012 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


scheme can be used as a building block to implement long-time
dynamics.

Observing quantum signatures of chaos in phase space.
Figure 2a–c shows three experimental Wigner distributions for a
single iteration (n¼ 1) of the quantum map (2) applied to a
squeezed Gaussian state |C(0)S centred at the phase space origin

(shown in Fig. 3a,e). The theoretical Wigner distributions are
shown for comparison in Fig. 2d–f. All three cases correspond to
the harmonic evolution a¼p/3. The classical dynamics of the
KHO map (controlled by the kick amplitude K) are illustrated
with the usual stroboscopic kick-to-kick map in Fig. 2g,h.
Figure 2a,d,b and e) show results for the kick amplitude K¼ 7.4
that corresponds classically to essentially chaotic dynamics
(Fig. 2g). Figure 2c, f shows results for K¼ 2 that correspond to a
mixed classical dynamics (Fig. 2h).

Extended quantum states (with uncertainty DQDP44:eff/2)
typically exhibit a fine oscillatory structure in their Wigner
function, known as sub-Planck structure31, which saturate at a
scale B:2eff /DQDP. Thus, for an almost fixed extension in phase
space, the wavelength of the oscillatory pattern should decrease
with :eff. This can be observed comparing Fig. 2a,d, where
:eff¼ 4.72, with Fig. 2b,e where :eff¼ 0.9 (in both cases K¼ 7.4).

The Wigner function of some extended states, like energy
eigenstates in integrable systems, have a classical manifold as their
support. Every pair of localized regions of the Wigner function on
this support can interfere creating an oscillatory pattern in the
middle of a chord that joins the localized regions, similar to the
Wigner function of a superposition of two coherent states (a
Schrodinger cat-like state). When the classical dynamics is suf-
ficiently non-linear, the evolution of even highly localized
Gaussian states are supported by a phase space manifold that
evolves classically32,33. This is also the skeleton of the classical
probability distribution associated with the initial Gaussian state
whose evolution is determined by the Liouville equation of the
classical system.

In all the plots of Fig. 2, a curve (yellow in Fig. 2g,h, black in
the rest) indicates the classical manifold that is the support of the
Wigner function. For our initial squeezed Gaussian state this is a
straight line, as in Fig. 3a,e. The interference pattern appears once
the stretching and folding of the classical manifold begins due to
the non-linear classical dynamics. Eventually, some portion of the
interference pattern falls over the classical support, and the
positive skeleton begins to disappear. This occurs very quickly
when the underlying dynamics is chaotic. This can be seen in
Fig. 3, which shows the Wigner function of the first three
iterations of the KHO map (2) for the same initial state |C(0)S
(shown in (a) and (e)), when K¼ 0.75 in (b) to (d) and when
K¼ 2 in (f) to (h). The non-linear regular classical dynamics of a
stability island around the origin for K¼ 0.75 is shown in the
stroboscopic phase space plot (i), and the weak chaotic dynamics
for K¼ 2 in plot (j).

The quantum KHO as a decohering environment. As an
example of the utility and versatility of our approach, we mea-
sured the loss of coherence in a polarization qubit coupled to the
quantum KHO, which acts as a decohering environment. By
taking advantage of the fact that the SLM only imprints a phase
on the horizontal polarization component, a polarization-
dependent evolution, KHO or simple harmonic oscillator (SHO),
is implemented in the spatial degrees of freedom (Methods). This
corresponds to a dephasing-type interaction between qubit and
environment. In this case, the off-diagonal elements of
the qubit density matrix are suppressed by a factor
f ¼ j hCð0Þ j ðUn

SHOÞwUn
KHO j Cð0Þi j , where |C(0)S is the

initial state of the environment. Thus, for an initial state of the
qubit in the equatorial plane of the Bloch sphere, the temporal
behaviour of its purity is given by (1þ | f |2)/2. The quantity f can
be seen as a fidelity amplitude, which has been extensively studied
in the field of quantum chaos34–36.

In general, theoretical studies predict an initial decay of f before
saturation34–36. For fully chaotic underlying classical dynamics, f
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Figure 1 | Optical scheme and experimental setup. (a) Illustration of an

optical system to implement the quantum KHO. (b) Experimental setup for

the implementation of the quantum KHO and measurement of the spatial

Wigner function. The output of the He–Ne laser is horizontally polarized

using a polarizing beam splitter (PBS1) and reflected into n iterations of the

KHO operation. Each iteration consists of a ‘kick’, corresponding to a phase

imprinted on the field with the SLM, and harmonic evolution, implemented

with sections of free propagation and a cylindrical lens. The beam is

reflected back and forth n times onto the SLM. Lenses L1 and L2 map the

final state at transverse plane z0 onto the entrance of a Sagnac

interferometer. Before entering the interferometer, a Dove prism (DP1) is

used to perform a 901 spatial rotation of the beam profile, and a polarizing

beam splitter (PBS2) and a half-wave plate (HWP1) are used to balance the

intensities of the vertical and horizontal polarization components. The

interferometer is used for direct measurement of the optical Wigner

function. Each phase space point of the Wigner function is obtained from

the interference between horizontal (H) and vertical (V) polarization

components of the beam emerging from the interferometer. A Dove prism

(DP2) inside the interferometer is used to spatially rotate the counter-

propagating H and V components of the field. Translation and tilting of the

input mirror are used to select the phase space point (Q,P) to be measured.

A quarter-wave plate (QWP), a half-wave plate (HWP2) and a polarizing

beam splitter (PBS4) are used to perform the required polarization

measurement, and a large aperture power metre is used to measure the

beam intensity. See Methods for more information.
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presents an exponential decay with different decay rates
depending on the perturbation regime34,35. On the other hand,
for regular dynamics, the decay of f is not generic and depends
strongly on the localization of the initial state in the classical
phase space34,35. For initial states well localized in a stability
island long time oscillations with revivals are expected, where the
oscillations can be understood in terms of the classical
frequencies included in |C(0)S. The temporal mean value of f
decreases with :eff so, due to revivals, the size of the fluctuations
increase in the semiclassical regime. When the underlying
dynamics of the environment is chaotic the temporal mean
value of f and its fluctuations are inversely proportional to the
effective Hilbert space dimension of the environment36 and
therefore tend to 0 in the semiclassical limit (:eff-0). In this
limit the qubit becomes maximally entangled to the environment,
so its purity-1/2.

In our experiment, an incoming beam was prepared in a linear
diagonal polarization state. Figure 4a,b show the purity of the
polarization state as a function of the number of iterations of the
KHO map. Figure 4a is for essentially regular dynamics (K¼ 0.5),
and Fig. 4b shows the case in which the KHO has chaotic
dynamics (K¼ 2). The initial state |C(0)S is analogous to the one
shown in Fig. 3a,e and in the case when K¼ 0.5 is localized in an
stability island around the origin (not shown). Figure 4c shows
the purity for n¼ 3 kicks as a function of :eff for K¼ 2 (green
triangles) and K¼ 0.5 (red diamonds). The dashed lines are the
predictions given by numerical simulation of the composite
system. Although the number of kicks are few, one observes a
general behaviour compatible with the theory described above. In

the case of chaotic dynamics (K¼ 2), rapid loss of purity occurs
for all values of :eff attaining a saturation with very small
fluctuations, indicating that the polarization state becomes nearly
maximally entangled (purity¼ 1/2) for decreasing values of :eff
(Fig. 4c). Hence, the equilibrium state of the qubit is a totally
mixed state. The total loss of coherence in the polarization state
here is due to the underlying classical chaotic dynamics in the
spatial degrees of freedom of the beam. On the other hand, for
regular dynamics (K¼ 0.5), because |C(0)S is almost completely
localized in an stability island, we observe what appears to be the
beginning of oscillations for different values of :eff, with a revival
of the polarization state purity (for all values of :eff). The value of
the purity at its minimum value goes to 1/2 in the semiclassical
limit (Fig. 4c), indicating that the temporal mean value of f goes
to 0 when :eff-0. This is compatible with the typical large
fluctuations of the fidelity amplitude f in the semiclassical regime
for the case of regular dynamics when the initial state is localized
in a stability island.

Discussion
The optical KHO setup reported here can be used as a building
block to implement a large number of iterations of the KHO
operator. Figure 5 shows an experimental scheme that can be
used to implement N441 kicks of the KHO. A pulse from a
vertically polarized laser is reflected from a polarizing beam
splitter (PBS), and the polarization is rotated to the horizontal
direction by a Pockels cell (PC). The laser is sent to the SLM, and
n iterations of the KHO operator are implemented, in the same
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manner as reported in the Results section. To minimize losses
from multiple optical components, a single cylindrical mirror can
be used in the place of the cylindrical lens and plane mirror in
Fig. 1. After n iterations, the output light is sent through a second
PC, which can be used to switch the pulse out of the setup for

measurement. The measurement system is the interferometer
used for direct measurement of the spatial Wigner function. If the
PC is left inactive, the pulse is reflected from the mirror and
backwards through the KHO operation, resulting in another n
iterations. The lenses are chosen with focal length equal to half
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the distance between the SLM and mirrors, so that two
consecutive optical Fourier transforms are performed. The overall
result is an imaging system, up to a reflection. In this way, the
output state from each set of n iterations is mapped onto the
input state for the next set of n iterations. As the kick operator (3)
and harmonic evolution (4) are symmetric around the origin, the
reflections can be absorbed into the definition of the coordinate
system. The pulse is sent back to the first PC, which remains
inactive, resulting in reflection of the pulse at the mirror, and
transmission back into the n KHO iterations. In this way, it is
possible to implement a sequence of n� 2n� 2n kicks and switch
the output state into the interferometer for measurement after the
first n iterations, or at intervals of 2n after that. We note that the
SLM allows us to control the number of kicks n per iteration by
programming whether the kick phase or a quadratic phase is
imprinted on the field. The quadratic phase can be used to
implement or undo the harmonic evolution.

The ultimate limit to the number of iterations that can be
performed depends primarily on the losses in the optical system.
These arise predominantly from the SLM, lenses and mirrors
used in the n iterations of the KHO. The total output intensity
after n kicks of the KHO can be written as follows:

Iout ¼ Iintoðt1tSLMÞn; ð6Þ
where to is the combined transmission coefficient of the optical
elements outside the KHO evolution, tl is the combined
transmission coefficient of the lenses and mirrors that implement
the harmonic evolution between kicks, tSLM the transmission
coefficient of the SLM and Iin the input intensity of the laser
beam. In the Supplementary Discussion, we estimate that with
current technology it should be possible to perform about nB100
kicks.

In conclusion, our experiment allows for the study of the
dynamics of a non-relativistic quantum system using an intense
classical laser beam due to the analogy between quantum
mechanics and classical wave mechanics. A possible next step is
to study the chaotic evolution of entangled photons. The optical
realization of non-linear quantum dynamics should prove
invaluable in the experimental investigation of quantum chaos,
decoherence and the quantum-classical boundary.

Methods
Experimental setup. The complete experimental setup is illustrated in Fig. 1b. A
632.8-nm He–Ne laser is coupled to a single-mode optical fibre. This defines a
Gaussian light beam as the initial state cð0Þj i, which is then evolved by the
quantum KHO propagator (2) in one dimension of the transverse spatial degrees of
freedom. The state is sent through n iterations of the KHO operator UKHO by
reflecting n times between the SLM and a mirror. A polarizing beam splitter (PBS1)
is used to polarize the beam parallel to the active axis of the SLM display. The
harmonic evolution between kicks corresponds to propagation in the a-order
fast Fourier transform system, which consists of free space propagation and the
cylindrical lens. For practical reasons, we actually implement two consecutive fast
Fourier transforms of order a/2, before each incidence on the SLM. The focal
length of the cylindrical lens is f¼ 150mm, and the free space propagation length
is z¼ 75mm, so that a¼p/3 between two consecutive kicks (Fig.1b). As the
entire KHO evolution is made with optical elements that act only in one spatial
dimension, the perpendicular direction evolves according to free space propagation
(see the Supplementary Discussion for details and a discussion of the accessibility
of long-time dynamics).

To measure the Wigner function, two spherical lenses (L1 and L2) of focal length
f¼ 350mm are used to map the output state of the KHO system |c(n)S from the
transverse plane at position z0 to the input mirror of the Sagnac interferometer. A
Dove prism (DP1) tilted at a 451 angle is used to swap the horizontal and vertical
coordinates, because for convenience the quantum-kicked Hamiltonian is imple-
mented in the vertical axis, whereas the Wigner measurement is performed in the
horizontal. The second PBS (PBS2) and the first half-wave plate 1 are used to keep
the beam linearly polarized before entering the Sagnac interferometer.

Measurement of the optical Wigner function. The method used to directly
measure the optical Wigner function is an interferometric scheme proposed in
(ref. 30). The interferometer is illustrated in Fig. 1. The displacement and tilting of

a steering mirror (M1) at the entrance of a three-mirror Sagnac interferometer
displaces the optical field by Q and changes its direction of propagation by P
(which in the paraxial approximation corresponds to the addition of a phase). This
produces the field expði�heffPx/2ÞCðQþ x/2; zÞ.

A polarizing beam splitter divides the field into two spatially identical compo-
nents and a Dove prism (DP2) placed inside the interferometer realizes opposite
901 spatial rotations in the two counter-propagating transverse spatial modes,
resulting in a total relative rotation by 1801. The modes are recombined, and
projected onto the diagonal polarization direction before detection by an area-
integrating ‘bucket’ detector. The measured intensity is composed of three terms
I¼ I1þ I2þ Iint, where the sum I1þ I2 is constant and equals half the total input
intensity. The term Iint originates from the interference between the counter-pro-
pagating beams. Owing to the relative rotation implemented by DP2, Iint is pro-
portional to:

WðQ; PÞ¼A
Z1

�1

C Qþ x
2

� �
C� Q� x

2

� �
ei�heff Pxdx ð7Þ

The right-hand side of equation (7) is an integral over spatial variable x of the
overlap between the displaced field, expði�heffPx/2ÞCðQþ x/2; zÞ, and its complex
conjugate with the transformation x-� x. This transformation corresponds to the
1801 relative rotation implemented by DP2. It is important to note that slight
polarization transformations introduced by the DP37 inside the Sagnac
interferometer does not alter (at all) the measured Wigner function.

In this way, the amplitude of the optical Wigner function at point (Q,P) can be
obtained by measuring the intensity at the interferometer output for different
settings of the tilt angle and displacement of the steering mirror M1. In our
experiment, these parameters were controlled with high-resolution motorized
stages. At the exit of the interferometer we use a quarter-wave plate that is tilted to
adjust the relative optical phase between the two arms of the interferometer37.

Analysis of the experimental data. The final state of the optical KHO is obtained
at the output plane z0, indicated in Fig. 1b. However, the optical wave function
propagates through free space and several linear optical elements before reaching
the steering mirror at the entrance of the Sagnac interferometer, where the optical
Wigner function is measured. One must therefore take into account this evolution
before comparing measurements with the theoretical Wigner functions, obtained
from numerical calculation of the quantum KHO evolution. This is done by cal-
culating the total linear transformation M, resulting from propagation through all
of the optical elements and free space between the output plane z0 and the steering
mirror shown in Fig. 1b.

The expected Wigner function in the measurement plane can be written as
follows:

Wðx; pxÞ¼WðKHOÞ
x ðx 0; p0xÞ�WðGaussÞ

y ðy 0; p0yÞ; ð8Þ

where ðx 0 y 0 px 0 py 0 ÞT ¼M� 1ðx 0 px 0ÞT are the transformed coordi-
nates. The function WðKHOÞ

x ðx; pxÞ represents the Wigner function due to KHO
evolution of the initial Gaussian state implemented in the x transverse spatial
direction. The function WðGaussÞ

y ðy; pyÞ refers to the Gaussian state describing the
y transverse spatial direction at plane z0. This spatial mode does not undergo KHO
evolution.

Experimental errors associated with the propagation though the optical elements
between the output plane z0 and the steering mirror results in scaling, skewing and
rotation of the final measured Wigner function, W(exp)(x, px), in comparison with
W(KHO)(x, px). These uncertainties are due principally to errors in lens placement,
misalignment of the optical elements and diffraction. Nevertheless, a single linear
transformation E corrects these errors, such that WðexpÞðx; pxÞ¼WðKHOÞ Eðx; pxÞð Þ.
Both M and E depend only on the experimental setup, and are the same for all
measurements of Wigner functions, including the case in which the SLM is turned
off. In this case, the implemented evolution is that of a SHO. With the KHO turned
off, we determined the value of E, and used these values to correct all of the KHO
Wigner functions. This was repeated for each harmonic evolution used.

Implemention of a dephasing-type decoherence channel. The SLM imprints a
phase on the horizontal polarization component of the light beam, but leaves the
phase of the vertical polarization component unchanged. Without the SLM, the
optical system is designed to implement SHO evolution via the FRFT systems
composed of the cylindrical lens and free space propagation. Therefore, if diag-
onally polarized light is used in the KHO optical setup, one obtains the transfor-
mation:

jCi� jþi ! 1ffiffiffi
2

p UKHO j Ci� jHiþUSHO jCi� jVið Þ ð9Þ

where jþi¼ ð jHiþ jViÞ/
ffiffiffi
2

p
, and |CS designates the transverse spatial mode of

the light beam. The evolution operators UKHO and USHO act on the spatial degree
of freedom, and correspond to the evolution of the KHO and the SHO, respec-
tively. The total evolution given in equation (9) could be interpreted as
the quantum evolution of a qubit interacting (instantaneously at the moment of
each kick) with a quantum KHO via a dephasing type of coupling of the form
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�ðs� sHÞK cosQ/ðsV � sHÞ jHihH j, where we denote with sH and sV the linear
polarization eigenvalues of |HS and |VS, respectively, and s¼ sH or s¼ sV.

Performing a polarization measurement of the output beam using a ‘bucket’
detector is equivalent to tracing over the spatial degree of freedom, and yields,

r¼ 1
2
ð jHihH jþ jVihV j þ f jHihV j þ f � jVihH jÞ; ð10Þ

where f ¼hC jUw
SHOUKHO jCi is the overlap between the SHO and KHO quan-

tum states. The purity of the polarization state is given by Trr2¼ (1þ | f |2)/2, and
decays with f (ref. 36).

We use wave plates and a PBS to perform quantum polarization state
tomography using the standard recipe38,39 to obtain the density matrix r, from
which we calculate the results shown in Fig. 4.
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