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High internal quantum efficiency in fullerene
solar cells based on crosslinked polymer donor
networks
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The power conversion efficiency of organic photovoltaic cells depends crucially on the

morphology of their donor–acceptor heterostructure. Although tremendous progress has

been made to develop new materials that better cover the solar spectrum, this hetero-

structure is still formed by a primitive spontaneous demixing that is rather sensitive to

processing and hence difficult to realize consistently over large areas. Here we report that the

desired interpenetrating heterostructure with built-in phase contiguity can be fabricated by

acceptor doping into a lightly crosslinked polymer donor network. The resultant nanotem-

plated network is highly reproducible and resilient to phase coarsening. For the regioregular

poly(3-hexylthiophene):phenyl-C61-butyrate methyl ester donor–acceptor model system, we

obtained 20% improvement in power conversion efficiency over conventional demixed

biblend devices. We reached very high internal quantum efficiencies of up to 0.9 electron per

photon at zero bias, over an unprecedentedly wide composition space. Detailed analysis of

the power conversion, power absorbed and internal quantum efficiency landscapes reveals

the separate contributions of optical interference and donor–acceptor morphology effects.
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T
he power conversion efficiency (PCE) of donor–acceptor
(DA) photovoltaic (PV) cells depends on the spectral
absorption and the bias-dependent internal quantum

efficiency of the cell1,2. To achieve a high internal quantum
efficiency, the heterostructure needs to have the appropriate
interface electronic structure combined with the appropriate
morphology to give efficient exciton dissociation and transport
of the charge carriers to the collection electrodes without
recombination. The ideal morphology is widely believed to
comprise donor and acceptor phases intimately mixed at the
exciton diffusion length scale (B10 nm), but contiguously
extended over the much larger photoactive layer thickness
(100–250 nm). These two conflicting requirements however
present a formidable challenge that has not yet been possible to
address by design. In addition, there is a further challenge that the
morphology needs to be stable and reliably manufacturable over
large areas.

Although the standard approach of spontaneous DA demixing3

in films under thermal4 or solvent vapour5 annealing conditions,
or in the presence of solvent additives6, can provide, in some cases,
a suitable ultrafine morphology, such as in the poly(3-
hexylthiophene):phenyl-C61-butyrate methyl ester (P3HT:PCBM)
DA system, the morphology still cannot presently be predefined.
Furthermore, the processing window is rather narrow and
variable4–9, with the desired morphology itself being
metastable10–14 and prone to over-coarsening that degrades cell
performance.

We report here that by infiltrating or doping the molecular
acceptor into a lightly crosslinked polymer donor network, the
ideal interpenetrating DA heterostructure can be closely
approached. This provides remarkably high internal quantum
efficiencies to the solar cells with consistency across a wide
composition space. The morphology produced is robust to
further coarsening, and to film-processing conditions. We
demonstrate this on the P3HT:PCBM system, and show that a
further improvement in device performance can be obtained over
the relatively high internal quantum efficiencies that are already
reached in the usual demixed biblend films. This improvement is
traced to a more optimal morphology in the networks.

To crosslink the films, we used a recently developed steric-
substituted bis(fluorinated phenyl azide; s-FPA) methodology15,16.
Its key advantage is the non-specificity that allows a wide variety of
semiconductor polymers to be crosslinked at a sufficiently low
crosslinker concentration that does not degrade their crucial
semiconductor properties. We have previously demonstrated this
provides viable new heterostructures for light-emitting diodes,
field-effect transistors and PV cells16. The work here demonstrates
the finesse in DA morphology control that can be achieved using
polymer networks. A P3HT film is first lightly crosslinked just
above its gel point and back-infiltrated with PCBM to the desired
volume fraction, whereupon the PCBM nanotemplates the P3HT
network to give the ultrafine contiguous DA heterostructure. The
low crosslink density plays a crucial role to stabilize the network
and frustrate phase coarsening by suppressing long-range diffusion
of the polymer chains, but without hindering their local ordering
required for high carrier mobility.

Since the DA morphology is defined by molecular nanotem-
plating of the crosslinked network, rather than spontaneous
demixing of two ‘free’ components, it is markedly less sensitive
to film thickness and processing conditions. This opens a
possibility to predefine morphology separately from electronic
structure and film thickness, which facilitates the systematic
optimization of PV cells and elucidation of their device physics.
We illustrate this by performing detailed mapping of the PCE,
power absorption and internal quantum efficiency landscapes of
these cells.

Results
Fabrication of crosslinked P3HT network: PCBM films. P3HT
films were spin-cast with three weight-to-weight (w/w) % of the
s-FPA photocrosslinker ethylene bis(4-azido-2,3,5-trifluoro-6-
isopropylbenzoate)16 onto the intended substrates (for chemical
structures, see inset of Fig. 1a). The films were then exposed to
254-nm deep ultraviolet (DUV) in an N2 glove box to activate an
efficient nitrene-mediated photo crosslinking through the alkyl
side chains of P3HT16. Figure 1a shows the film-retention
characteristics plotted against the s-FPA concentration. These
characteristics were measured after solvent washing (often called
‘development’ in the photolithography literature) with
chlorobenzene (CB) to remove the uncrosslinked and low-
molecular-weight (MW) fractions. As s-FPA exhibits a near-unity
crosslinking efficiency16, the crosslink density r in the film closely
follows the crosslinker concentration. The plot shows that film
retention occurs above a critical threshold, called the gel point,
where an infinite polymer network first emerges (here,
rE2� 1019 cm� 3). The film retention increases towards unity
with increasing r. Hence network stiffness and porosity can be
tuned by r. In this work, we set rE4–6� 1019 cm� 3 to stay in
the lightly crosslinked regime, with roughly one crosslink per
35–50 polymer repeat units.

Figure 1b shows a schematic of the film-processing steps. The
P3HT donor film is crosslinked and developed with CB as
described above. The PCBM acceptor is then doped into this
polymer network by spinning from solution. Figure 1c shows the
evolution of molecular order in the P3HT network probed by
electronic spectroscopy. The electronic spectrum of the
crosslinked P3HT film (r¼ 3.7� 1019 cm� 3; red spectrum) is
identical to the uncrosslinked one. Thus, its electronic structure is
not perceptibly altered by the crosslinks. When this film is
washed with CB, it loses 20% of its absorbance (orange spectrum),
primarily because of extraction of the low MW fraction. The
spectrum of this 65-nm-thick polymer film shows electronic
features that are substantially unchanged in relative intensities at
517, 560 and 610 nm, corresponding to the 0-2, 0-1 and 0-0
vibronic transitions17. Hence, the retained film exhibits similar
molecular order as the initial spin-cast film.

When a PCBM solution (8mgml� 1 in CB) is spun over this
film, an amount equivalent to a 30-nm-thick film of PCBM is
doped into the P3HT matrix. The polymer absorption diminishes
and blue shifts, while the PCBM absorption emerges with onset at
450 nm (green spectrum)4. The blue shift arises from (i)
disordering of a fraction of the P3HT segments owing to
acceptor incorporation and (ii) redistribution of chain segments
from in-plane to out-of-plane orientations. The film composition
is established using the calibrated absorptivities of P3HT and
PCBM, together with the measured initial and final film
thicknesses. This is denoted by (dP3HT, dPCBM), where dP3HT

and dPCBM are, respectively, the effective P3HT and PCBM
thicknesses in the film, with total film thickness d given by
dP3HTþ dPCBM. Some of these compositions have been verified
using X-ray photoelectron spectroscopy.

This doping is fully reversible, as contact with the pure solvent
removes the PCBM and restores the original polymer spectrum.
The extent of PCBM doping can be controlled at will through its
solution concentration (and spin speed). For example, Fig. 1c also
shows the same P3HT film (dP3HT¼ 65 nm) doped with
increasing amounts of PCBM up to 50 vol% (dPCBM¼ 50 nm,
light-blue; 70 nm, dark-blue spectra). In roll-to-roll processing,
this could be achieved by film immersion into the requisite bath.

Remarkably, a fraction of highly ordered P3HT segments
persists in the doped P3HT network even at the highest PCBM
volume fraction. This is shown by retention of the ordered 0-0
transition. This is attributed to a molecular ‘scaffolding’ effect.
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For comparison, the as-cast biblend film exhibits considerably
less order at the same PCBM volume fraction (grey dashed
spectrum). A subsequent heat treatment at 140 1C promotes
further P3HT ordering in both the demixed biblend film4,9 and
the crosslinked network film, though the latter still generally
achieves better order (Fig. 1d). This can be tuned by the crosslink
density of the network (Supplementary Fig. S1 and
Supplementary Discussion). We expect that better order can
give the higher carrier mobility needed for more efficient carrier
dissociation and higher PV fill factors10,18. Recent calculations
suggest that the mobilities of both electrons and holes need to be
larger than ca. 10� 3 cm2V� 1 s� 1 in 220-nm-thick devices to
mitigate the space-charge voltage penalty at 1 sun (unpublished
results). The PCBM promotes an isotropic orientation of the
P3HT network that should facilitate hole transport in the film-
thickness direction19.

High-resolution imaging of the nanotemplated polymer
network. To characterize the P3HT morphology, we performed
high-resolution transmission electron microscopy on ultrathin
sections of the film before and after PCBM doping. For the latter,
we removed the PCBM in situ on the TEM grid with hexane to
avoid disrupting the polymer network (verified spectroscopically).
Hexane is a non-solvent for the polymer. No sample staining or
supporting film was used to avoid structural artefacts. The images
were collected in the weak defocus regime (� 100 nm), where the
phase-contrast transfer function is well behaved down to spatial
wavelengths of ca. 0.5 nm, to avoid phase artefacts. Figure 2
shows a representative set of images. The cross-section of the

pristine P3HT film (Fig. 2a) shows the typical coarse texture
characteristic of semicrystalline polymers. The diffractogram
shows enhanced intensities at 3 nm and 10- to 20 nm spatial
wavelengths, which are attributed to the lamellar order of P3HT
and its crystalline domain size, respectively20. In contrast, the
cross-section of the network film gives an ultrafine ‘curly’ texture
with no long-range correlation between neighbouring features. Its
diffractogram shows the 10- to 20 nm spatial wavelength feature
is fully suppressed to the background. Therefore, doping PCBM
into the crosslinked P3HT film swells the network and destroys
long-range order but not the local interchain stacking order. The
observed texture is thus consistent with the proposed ultrafine
contiguous polymer network, where network continuity is
assured by crosslinking. In contrast, demixed biblend films
exhibit a wildly variable texture from the ultrafine to the coarse
depending on film-preparation conditions3,9,14.

The nanotemplating mechanism. Figure 3 outlines a simple
model of the nanotemplating mechanism that produces the
ultrafine contiguous polymer network morphology. First, the
P3HT chains are crosslinked just above the gel point through
their alkyl side chains (Fig. 3a). This may be expected to occur
primarily in the amorphous regions. Contact with a good solvent
then causes the network to swell and expand to a mesh with
length scale determined by Br� 1, which is of the order of 50
repeat units here (Fig. 3b). This provides room for guest incor-
poration. As the solvent evaporates, the polymer network con-
tracts around the PCBM phase. This appears to be determined by
P3HTyP3HT and P3HTyPCBM interactions in the presence
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Figure 1 | Nanotemplating polymer networks. (a) Film-retention characteristics of P3HT using s-FPA as photocrosslinker. Inset gives the chemical

structures. (b) Processing schematic. (c) Electronic spectra of key stages: after crosslinking P3HT (dP3HT¼ 77 nm; red), after CB development (65 nm;

orange), after PCBM doping at 8mgml� 1 by spin-casting at 1.4k r.p.m. (dPCBM¼ 30nm; green), or 30mgml� 1 at 4.0k r.p.m. (50 nm; light-blue), or

30mgml� 1 at 1.4k r.p.m. (70 nm; dark-blue); biblend film with (dP3HT, dPCBM)¼ (55 nm, 45 nm) as reference. Density P3HT, 1.1 g cm� 3; PCBM, 1.7 g cm� 3.

(d) Electronic spectra before and after annealling (140 1C, 10min; hotplate): demixed biblend film (top) and nanotemplated polymer network film (bottom)

with dPCBM/dP3HTB0.7.
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of the crosslinks that restricts long-range diffusion but allows
local ordering of the chain segments. PCBM has limited solubility
in the ordered P3HT stacks9,21. Annealing this network further
improves P3HT order, but cannot cause the usual phase
coarsening and breakup. In this way, the conflicting demands
on length scales (ultrafine but contiguous) can be built into the
morphology, predefined to a large extent by the crosslink density.

Ion-sputtered X-ray photoemission spectroscopy shows that
these crosslinked P3HT network: PCBM films exhibit a markedly
smaller P3HT surface enrichment and PCBM subsurface
enrichment than the usual demixed biblend films. Both the
amplitude and width of the composition wave are suppressed
(Supplementary Fig. S2 and Supplementary Discussion). Thus, the
usual formation of an unfavourable P3HT-rich surface layer upon
annealing of the biblend films9,22 is greatly attenuated. This is yet
another benefit of the crosslinked network. Thus, these films can
advantageously produce high PCE (vide infra) even without post-
cathode annealling4,9.

The PCE landscape. Crosslinked P3HT network: PCBM solar
cells were fabricated with poly(3,4-ethylenedioxythiophene):
poly(styrenesulphonic acid) (PEDT:PSSH) as hole collector and
Ca/Al as electron collector. Figure 4a shows the current–voltage
characteristic of such a solar cell compared with one fabricated
with the usual demixed biblend film. The cells have the same 1:1
weight-to-weight (w/w) P3HT:PCBM ratio (that is, dPCBM/
dP3HT¼ 0.65) and film thickness (85 nm), and were measured
together under 1.2 sun illumination (this power setting was

chosen for historical reasons; reported PCE is normalised
and spectral-mismatch corrected). The network cell shows a
markedly higher short-circuit current density jsc (12.6 versus
9.9mA cm� 2), a marginally higher open-circuit voltage Voc (0.63
versus 0.61V), and a similar fill factor FF (0.63), as the biblend
cell. As a result, this network cell gives a PCE of 4.2%, which
is 30% higher than the biblend cell of 3.2% (averaged over 8
devices). As the devices were measured in the same simulator,
they are not subjected to calibration uncertainties.

To understand the origin of this improvement, we fabricated
solar cells over a wider composition space to map out the PCE
landscape, that is, the dependence of PCE on (dP3HT, dPCBM). We
used a simple combinatorial approach to dope predetermined
amounts of PCBM into various thicknesses of crosslinked P3HT
films. Figure 4b gives the measured PCE landscape as a colour-
coded image plot. The PCE data for the network cells are shown
without border. These are then fitted with a two-dimensional,
multi-Gaussian model to interpolate the PCE surface contours as
guide to the eye. Biblend cells were also fabricated for compar-
ison, along the 1:1 w/w P3HT:PCBM composition ratio, which is
known to be nearly optimal21. Their PCE data are colour-coded
in the same way, but distinguished by a red border.

The PCE landscape reveals a high-efficiency composition ridge
that is oriented near, but not exactly on, the 1:1 composition line.
This ridge is characterized by a strong oscillation in the film-
thickness direction with rapid fall off to both sides. The first and
second PCE peaks on this ridge are located at (dP3HT,
dPCBM)¼ (50 nm, 25 nm) and PCE¼ 4.5%, and (dP3HT,
dPCBM)¼ (125 nm, 75 nm) and PCE¼ 4.0%, respectively,
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Figure 3 | A model of the nanotemplating mechanism that produces an ultrafine contiguous polymer network morphology. (a) The polymer (red

chains) comprising ordered (yellow) and amorphous domains is lightly crosslinked (green links) to give a swellable network. (b) This network expands in

contact with the solvent to allow for incorporation of guest and solvent molecules. (c) As the solvent evaporates, the network contracts, and its morphology

becomes nanotemplated by the incorporated guest molecules. The properties of the resultant morphology, such as phase length scale, order and

connectivity, are determined more by the crosslink density than solvent or drying conditions or the film thickness.
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separated by a relative saddle dip of 30%. These two peaks have
similar PCEs. The PCE oscillation is widely anticipated from the
oscillation of power absorbed within the photoactive layer due to
optical interference8,23–26.

Because of this optical interference effect, devices need to be
compared at matched (dP3HT, dPCBM) to determine whether there
has been a relative improvement. This can be done using the
interpolated PCE surface. The PCE of the biblend cell clearly falls
below the PCE of the network cell at matched (dP3HT, dPCBM) by
10–30%. The biblend cells here show the best PCE of 3.4% in the
vicinity of the first PCE peak. This is similar to the best results
that have been widely reproduced (3.0–3.6%)4,5,8,9,14,21, although
4–5% have also been reported27,28. The general improvement in
PCE here of ca. 20% in the network cells is remarkable, since the
demixed biblend films already exhibit rather good internal
quantum efficiencies. Achieving a high second PCE peak is
beneficial for manufacturing because this peak is broad and has
better defect tolerance.

The one-dimensional photonic structure effect revisited. The
availability of a high quality PCE landscape prompts a re-eva-
luation of the optical interference effect. We used a standard
transfer matrix formalism29 to compute the photon flux
absorbed, Fph, in the photoactive layer for the schematic cell
structure shown in Fig. 5a, across the entire composition space.
The reflective electrode causes optical field nodes and antinodes
to emerge within the cell, as has previously been well known in
organic light-emitting diodes30. This systematically alters the
efficiency of the cell in absorbing light, which needs to be
determined. The complex dielectric functions ~EðhnÞ of all the
layers were known or measured, together with the spectral
irradiance of the solar simulator and the composition dependence
of ~EðhnÞ for the photoactive layer.

Figure 5b shows the computed dependence of power absorbed
Pabs on (dP3HT, dPCBM) at the spectral irradiance used in the
experiments. The plot clearly shows a strong diagonal oscillation
along the photoactive layer thickness direction and a weaker
compositional dependence at fixed thicknesses, particularly for
the thicker films. The first and second absorption peaks are
located at (dP3HT, dPCBM)¼ (60 nm, 20 nm), 34mWcm� 2, and
(130 nm, 70 nm), 38mWcm� 2, respectively. These correspond
to the emergence, respectively, of one and two optical field
antinodes in the photoactive layer. The second peak is within a

few per cent of the theoretical maximum in the photoactive layer,
after taking into account reflection and parasitic ITO and
PEDT:PSSH losses. Despite the small d of 80 nm at the first
optimum, the Pabs is only ca. 12% lower than the second optimum
at 200 nm. This is because of strong optical field enhancement in
the centre of the thin film. Furthermore, the computed plot
explains the curious displacement of the first optimum towards
the 2:1 P3HT-rich composition line. This is because the power
absorbed scales strongly with absorptivity in this regime. It is
evident that the PCE landscape bears the signatures of the Pabs
surface. This provides first unambiguous evidence for the role of
optical interference in determining the PCE of organic solar cells,
through its influence on absorption in the photoactive layer.

The FF landscape. To probe the influence of controlled DA
morphology in the network cells on the shape of their current-
voltage characteristics, we plotted FF as a function of (dP3HT,
dPCBM) in Fig. 5c. We found the FF decreases gently with
increasing d but more strongly with increasing off-compositions
from the 1:1 line. The gradual decrease with d arises from the
space-charge voltage penalty that sets in when the carrier
extraction distance becomes long31, together with a possible
(weak) field dependence of the charge-separation step32. The
strong composition-ratio dependence on composition, in
particular its pronounced asymmetry, on the other hand, can
be attributed to the underlying phase connectivity of the DA
morphology. As the film composition becomes P3HT rich, the
PCBM nanophase eventually becomes poorly connected. This
causes the effective electron mobility to drop and the
photocurrent to become space-charge limited. However, as the
film composition becomes PCBM rich, the converse does not
occur as readily, because the crosslinked P3HT network ensures
built-in phase continuity for the hole carriers. This FF landscape
thus reveals an interesting morphology aspect of these
nanotemplated crosslinked networks. Detailed modelling of the
current–voltage curves along the high-efficiency ridge reveals that
the effective hole mobility is ca. 2� 10� 4 cm2V� 1 s� 1, largely
independent of film thickness. This shows that the morphology is
indeed well regulated (Liu et al., unpublished).

The internal quantum efficiency landscape. Finally we analyse
the landscape of the internal quantum efficiency Zint, that is,
electron collected per photon absorbed, of these cells at short-
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circuit to reveal another feature of the DA morphology. The Zint is
a measure of the photocurrent generation quantum yield of the
photoactive layer. This can be phenomenologically written as
Zint ¼ Zgen � Zcoll, where Zgen is the photo-carrier generation effi-
ciency, that is, fraction of excitons dissociated to carrier pairs, and
Zcoll is their collection efficiency, that is, the fraction of carrier
pairs collected at the electrodes without undergoing recombina-
tion. Since both these steps are strongly morphology dependent,
Zint is a useful proxy to characterize the effectiveness of the DA
heterostructure to generate photocurrent.

Figure 5d shows the dependence of Zint on dP3HT and dPCBM,
extracted at zero bias from jsc according to the following formula:
Zint ¼ jsc/ðq � FphÞ, where q is the elementary charge and Fph is
the computed photon flux absorbed (cm� 2 s� 1) in the photo-
active layer. The Zint landscape thus reveals a broad high-effi-
ciency ridge (shaded magenta to guide the eye) that is disposed
between the 1:1 and 2:1 P3HT:PCBM composition lines. How-
ever, unlike the PCE ridge, this is substantially free from oscil-
lations. The Zint is 0.85 over most of the shaded region, rising
marginally to 0.9 in the vicinity of the first PCE peak, but falling
off strongly to its sides. Thus, the roll-off in the PCE for strongly
off-optimal compositions is due to the sharp decline in Zint. This
is caused by the very imbalanced donor and acceptor phase ratio.
Hence, it is clear that the overall PCE surface can be separated

into a photonic structure contribution and a DA morphology
contribution.

The high Zint values found across a wide swathe of (dP3HT,
dPCBM) space is noteworthy. It shows that both photo-carrier
generation and collection efficiencies can approach near unity
over a wider composition space than previously thought possible.
Although high Zint values can also be reached in demixed biblend
cells, for example, in the vicinity of the first PCE peak (ZintB0.8),
this drops quickly with d to ca. 0.6 in the vicinity of the
second peak. We attribute this to a progressive drift in the
DA morphology of thicker demixed films13. Previous current–
voltage modelling33 and transient spectroscopy32,34 have shown
that the primary loss mechanisms in these films are geminate and
non-geminate recombinations, each accounting for ca. 10% losses
in thin films. The even higher efficiencies of the nanotemplated
network cells reached here show these mechanisms can be further
suppressed.

Although the above results have been established using CB as
the processing solvent, we note that both the optical
characteristics of the doped polymer network and the electrical
characteristics of their cells are rather insensitive to the choice of
processing solvent. For example, this could be changed to
chloroform or 1,2-dichlorobenzene to cover two decades in
solvent volatility and film drying time without causing any
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significant change to the characteristics of the final films,
according to electronic spectroscopy (Supplementary Fig. S3)
and the solar cell characteristics (Supplementary Fig. S4; see also
Supplementary Discussion). This is in marked contrast to the
well-known sensitivity of the properties of spin-cast biblend films.

Discussion
The novelty of this work lies in the demonstration that high Zint
(and PCE) can be achieved consistently across a wide swathe of
(dP3HT, dPCBM) space using a simple method of PCBM acceptor
doping into a lightly crosslinked P3HT donor polymer matrix, in
which phase connectivity and length scale are preset by the
crosslink density. As a result, the desired ultrafine morphology
can be produced with rather weak sensitivity to film thickness,
solvent processing and annealing conditions. This methodology
can thus be consistently implemented over large film areas and
thicknesses, and be potentially manufactured on scale.

More fundamentally, this work reveals an approach to
decouple the DA morphology from electronic structure. This is
exciting because it allows separate control and hence optimization
of these two vital aspects. This approach when used with state-of-
the-art materials will likely underpin further advances. Finally, it
appears that not only molecular acceptors but monomers,
oligomers and nanorods may also be infiltrated into the
crosslinked networks. This will greatly enhance the versatility of
these networks, not only for solar cell but also other applications
that require a controlled ultrafine morphology, perhaps in energy
storage.

Methods
Materials. P3HT (Sigma Aldrich, 498% head-to-tail regioregularity, MW 30–
60 kDa) and PCBM (Nano-C) were used as received. The s-FPA crosslinker was
synthesized in-house following established procedures16. Photocrosslinking was
performed in a glove box (pO2; pH2Oo1 ppm) with a 254-nm-wavelength DUV
exposure at a dose of ca. 300mJ cm–2 from an 8-W low-pressure Hg lamp.

Device fabrication and characterization. Solar cell devices were fabricated on
ITO-coated glass substrates. The substrates were first cleaned with an SC-1 recipe.
PEDT:PSSH (1:16 w/w; reformulated Baytron P; Leverkussen) films of 50 nm
thickness were spin-cast and annealed at 120 1C in the glove box to remove sorbed
moisture. The P3HT:PCBM films were then formed in the glove box, either by
spin-casting of biblend mixtures (18–24mgml� 1) or by PCBM doping of cross-
linked P3HT films. All photoactive layers were processed from CB.

To fabricate the crosslinked polymer network: fullerene devices, P3HT was
dissolved in CB (10–20mgml� 1) with 3 weight% ethylene bis(4-azido-2,3,5-tri-
fluoro-6-isopropylbenzoate (referred to P3HT¼ 100%) as the crosslinker additive.
The films were spin-cast and crosslinked by DUV exposure, and then washed with
CB twice on the spinner. PCBM was dissolved in CB (8–30mgml� 1) and spun at
different speeds onto the crosslinked P3HT films. The thicknesses of the photo-
active layers lie between 80 and 220 nm for both biblend and doped network films.
All devices were then annealed in the glove box at 140 1C for 10min (hotplate),
before evaporating a 30-nm-thick Ca electrode capped with 120-nm-thick Al at a
base pressure of better than 1� 10� 6 Torr. Eight devices (4.3mm2 each) were
prepared and measured on each substrate.

The density of the P3HT nanophase in the photoactive layer was assumed to be
1.1 g cm� 3, on the basis of its known crystalline density (1.16 g cm� 3, ref. 35).
The density of the PCBM nanophase was assumed to be 1.7 g cm� 3, on the basis of
the known crystalline densities of the 1:0.5 adduct of the PCBM:CB complex
(1.65 g cm� 3) and the 1:1 adduct of the PCBM:1,2-dichlorobenzene complex
(1.67 g cm� 3, ref. 36) which set a lower bound due to the incorporation of solvent
molecules. The ratio of these densities is consistent with our measurements of
dP3HT and dPCBM.

Current–voltage characteristics were measured on a Keithley 4200
semiconductor characterization system. The cells were illuminated with the
simulated AM1.5 spectral output (at 1.2 sun) of a home-built solar simulator with
Xe arc lamp corrected with an AM1.5G filter. This simulator was cross-calibrated
with a commercial-class ABA solar simulator (Oriel Sol2A), which in turn was
cross-checked by calibration services at Solar Energy Research Institute of
Singapore. Spectral-mismatch correction was applied to the reported results.

Optical modelling. The standard optical transfer matrix method was used to
model the optical absorption of the solar cells. The complex dielectric functions of

all the layers were either known or measured in this work over the 400 to 650 nm
wavelength range. The dielectric functions of P3HT:PCBM layer were measured by
variable-angle spectroscopic ellipsometry on annealed biblend films, with weight
ratios 1:2, 1:1 and 2:1, and then interpolated by Bruggeman effective medium
approximation to obtain the compositional dependence at 5 nm wavelength steps
and on a 10-nm (dP3HT, dPCBM) grid. The fractional absorption of the photoactive
layer was computed from the difference in Poynting vectors. The integrated
absorbed power and photon flux for the experimental solar simulator were then
computed at 2 nm steps using the measured incident spectral irradiance taking care
of reflection at the air/glass interface.
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