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Understanding the environmental controls on historical wildfires, and how they changed across 
spatial scales, is difficult because there are no surviving explicit records of either weather or 
vegetation (fuels). Here we show how power laws associated with fire-event time series arise 
in limited domains of parameters that represent critical transitions in the controls on landscape 
fire. Comparison to a self-organized criticality model shows that the latter mimics historical fire 
only in a limited domain of criticality, and is not an adequate mechanism to explain landscape fire 
dynamics, which are shaped by both endogenous and exogenous controls. Our results identify 
a continuous phase transition in landscape controls, marked by power laws, and provide an 
ecological analogue to critical behaviour in physical and chemical systems. This explicitly cross-
scale analysis provides a paradigm for identifying critical thresholds in landscape dynamics that 
may be crossed in a rapidly changing climate. 
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Nature displays power laws in frequency distributions of 
diverse phenomena1,2 and critical exponents associated with 
phase transitions3,4. The latter are well known in thermody-

namic and other physical systems, but in ecological systems they 
are more problematic to specify because of the complex dependen-
cies associated with ecological dynamics5. Analyses of power-law 
behaviour in ecosystems frequently invoke self-organized criticality 
(SOC)6,7 to explain how systems evolve to critical points. SOC has 
been suggested as an overarching mechanism for wildfire dynam-
ics, as realized in a Forest Fire Model8 (but see Loreto et al.9), but 
it depends entirely on endogenous processes. In contrast, environ-
mental controls on wildfires are thought to involve both fine-scale 
endogenous controls such as topography and spatial patterns of fuels 
and broader-scale (exogenous) drivers such as climate. We seek here 
to reconcile the potential for criticality to arise in wildfire regimes 
with the need to account for both endogenous and exogenous  
controls on fire spread. We use stochastic simulation and cross-scale 
analysis to quantify thresholds between these two types of controls 
in historical fire regimes.

Fire-scarred trees provide a deep temporal record of fire activ-
ity in low-severity fire regimes10–12, wherein most trees survive,  
and record, most fires. We use this full spatio-temporal record to 
identify phase transitions in landscape fire between domains of 
endogenous versus exogenous control. The core of our analysis is 
a variogram-like metric, whose scaling behaviour follows power 
laws only when the fire regime is at a critical point. We provide an 
alternative interpretation of spatial patterns of fire to that of SOC by 
allowing for heterogenous landscape controls in the model, while 
explicitly modelling the phase transition between them.

We use a spatially explicit fire-history database (Fig. 1) with 
more than 7,000 fire-scarred trees. We replace the gamma statistic 
(semivariance) in a variogram with the Sørensen’s distance13 (SD), 
a multivariate measure of dissimilarity between pairs of time series 
of fires recorded in fire scars. The expectation of the SD variogram 
can be derived analytically from simple stochastic properties of fire 
spread and its memory in fire-scarred trees14. Power-law behaviour 
is evident in SD variograms from the most topographically complex 
watersheds, but clearly not in those with more simple topography 
(Fig. 2). We deconstruct this power-law behaviour with a stochas-
tic model based on exogenously constrained dynamic percolation 
(hereafter ECDP model), whose output replicates the SD variograms 
for each watershed.

The ECDP model simulates fire spread on a raster grid with 
three control parameters: pspread, the global probability that a cell 
burns after a neighbouring cell has burned, pscar, the probability 
that a recorder tree in the cell records the fire and µsize, the average 
maximum size a fire could attain (where individual fire sizes in the 
simulated fire history are drawn from a gamma probability distri-
bution with mean = µsize). pspread represents an endogenous control 
on fire spread, for example, the availability of fuel or a topographic 
barrier, and µsize represents an exogenous control, for example, the  
maximum duration of fire-conducive weather. The parameter pscar 
is the likelihood a tree that experiences fire records it with a scar, 
and fire spread is independent of this scarring probability.

We asked whether a SOC model, which has been proposed to 
explain power laws in fire-size distributions6, can replicate the 
observed variability in the SD variograms. We built a simple ‘forest 
fire’ model8 but added a CSR pattern (complete spatial randomness) 
of simulated recorder trees as in the ECDP model, so that a ran-
dom draw determines whether a recorder tree that experiences fire 
records that fire with a scar. The SOC model is said to depend solely 
on emergent system properties, which self-organize to a critical 
state independently of exogenous driving forces, unlike the ECDP 
model, whose parameters are surrogates for both endogenous and 
exogenous drivers. Notably, the SOC model uses instantaneous 
spread (fires percolate deterministically), whereas the ECDP model 

tests via pspread at each cell, and percolation is a statistical property 
of the fire regime.

Comparison of the ECDP model to the SOC model shows 
that the latter mimics historical fire only in a limited domain of  
criticality, and is not an adequate mechanism to explain landscape 
fire dynamics, which are shaped by both endogenous and exog-
enous controls. Our results identify a continuous phase transition 
in landscape controls between the purely endogenous and a mix of 
endogenous and exogenous controls, marked by power laws, and 
provide an ecological analogue to critical behaviour in physical and 
chemical systems. This explicitly cross-scale analysis provides a  
paradigm for identifying critical thresholds in landscape dynamics 
that may be crossed in a rapidly changing climate.

Results
Percolation threshold. We found a percolation threshold for pspread, 
which is the value of pspread at which absent a size constraint, the 
first fire spans a suitably large raster grid. For our system we estimate 
this first fire spans at pspread = 0.495. When we vary pspread between 
0.35 and 1.0 and remove the size constraint, we find two domains 
in which simulated SD variograms follow power laws (Fig. 3), one 
of which is centered on the percolation threshold, and represents a 
transition between fires that are mostly small and cannot propagate 
across a landscape and larger ones that can. This characterizes 
a phase transition in landscape dynamics over a narrow range of 
values for the parameter pspread, a region of criticality15,16 in which 
we find that the SD variograms follow power laws.

Interpretation of model parameters. In the watersheds with the 
most complex topography, values of pspread that produce simulated 
SD variograms indistinguishable from the observed are very close 
to the percolation threshold, within the domain found to produce 
power-law SD variograms (Fig. 4a). The µsize parameter for these 
landscapes is ill-defined (Fig. 4b), as simulated fires fail to spread 
before the randomly drawn fire size is reached so that the simu-
lated dynamics are independent of the value of µsize. The analogue 
to pspread could be a topographic barrier or a discontinuity of  
fuels, and we interpret that for landscapes with pspread near the 
percolation threshold, there is a balance between exogenous and 
endogenous controls on fire spread.

In contrast, as topographic complexity lessens, the distribution 
of pspread values able to replicate observed SD variograms converges 
well above the percolation threshold (Fig. 4a). The µsize parameter is 
well defined for these landscapes because the simulated fires require 
the random fire size-based stopping rule in order to not span the 
raster grid (Fig. 4b). For pspread well above the percolation thresh-
old, changes in the pspread parameter have diminished effects, and 
the shape of the SD variogram is more sensitive to changes in the 
µsize parameter, such that the balance is shifted towards exogenous 
controls.

Comparison to SOC model. By tuning the ratio of frequency of 
ignitions to fuel accumulation, as in the original SOC model, we 
sought to replicate the observed SD variograms in the two water-
sheds with the most contrasting topographic complexity: Swauk 
Creek and Twenty Mile. We find that whereas the SOC model can 
replicate the spatial structure (and power-law behaviour) recorded 
in the SD variogram for Swauk Creek, with complex topography, in 
the watershed with the simplest topography (Twenty Mile) it does 
not (Fig. 4c).

Discussion
Two inferences arise from the failure of SOC to replicate observed 
behaviour except at criticality. First, SOC cannot predict the  
scaling region surrounding the phase transition we discovered 
and explained with the ECDP model; second, SOC is therefore an 
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incomplete representation of processes that drive real fire regimes 
across landscapes, except perhaps at precisely the parameter values 
where dynamics are in a domain of criticality. Furthermore, it is 
even less likely that SOC is globally justified as a mechanism for 
fire-size distributions across an entire region17, where fires do not 
experience the same environmental controls, nor do they influence 
each other’s behaviour and spread.

The underlying assumption of SOC is that the endogenous proc-
esses controlling fire on real landscapes operate in a region of criti-
cality. Not surprisingly then, the dynamics of SOC overlap with 
the ECDP model near the percolation threshold (also a region of  
criticality). We show that this region applies to watersheds with  
complex topography, but not to watersheds with simpler topography. 
Unlike SOC, ECDP finds a transition between sites where the endog-
enous controls (for example, topographic constraints) balance exoge-
nous forcings (for example, fire weather)18 and sites where exogenous  
forcings have a greater impact. Although SOC may indeed be a mech-
anism producing power-law behaviour, on real landscapes it operates 
only within the phase transition we have identified. A further infer-
ence is that the SD variogram not only provides more information 
about historical fires than (reconstructed) fire-size distributions, but 
also is a more sensitive and robust indicator of criticality15.

Universal explanations are rare in ecological phenomena. They 
generally fail to be consistent with observations except in lim-
ited domains. A simple stochastic model (ECDP), in conjunction 
with scaling laws as manifest in the SD variogram, has identified a  
scaling region with strong parallels to phase transitions in the 
physical sciences, but the difference is that this domain of critical-
ity is embedded in complex causal dependencies characteristic of  
ecological systems5. For example, our phase transition is fairly abrupt 
in units of the stochastic parameter pspread, but spans a broader scal-
ing region in more standard units of topographic complexity, for 
example, fractal dimension. The strength of power-law behaviour in 
the observed SD variograms (Fig. 2) is strongly correlated with the 
estimated fractal dimensions of the watersheds19. We would expect 
this scaling region to shift with stronger exogenous forcing, such 
as the increased flammability and more intense fire behaviour in a 
hotter and drier climate. Under such conditions topography would 
have to be even more complex for fire dynamics to remain at the 
phase transition.

Quantifying the transition between endogenous and exog-
enous controls on landscape fire should improve predictions of  
the response of fire regimes to a rapidly changing climate20. The 
power-law domain found in SD variograms is a surrogate for 
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Figure 1 | Fire history study sites. Spatially explicit fire-scar records distributed across semi-arid mountain ecosystems of Washington, USA. Each point 
represents an individual recorder tree. The record extends back to the 1,500 s, but most trees in the database recorded a fire by 1,700, and there were 
few fires after 1,900, marking the onset of fire exclusion. We therefore used only data from 1,700 to 1,900 in this analysis. Fractal dimensions for each 
watershed (2—Hurst exponent from roughness-length regressions2) are Twenty Mile (1.20), Frosty Creek (1.25), Entiat (1.30), Nile Creek (1.33), Quartzite 
(1.35), Swauk Creek (1.40). Length of scale bar within index map is 100 km; length of scale bar for study area maps (E, TM, FC, SC, Q, NC) is 5 km.
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the interactions of multiple processes at criticality (for example,  
fire weather, topographic constraints and their effect on fuel  
configurations, tree scarring by fire), all of which can be measured 
only with considerable error and whose future patterns are uncer-
tain. In this study, the power-law domain observed at the balance  
of exogenous and endogenous controls represents the climate  
during the time domain of the fire history (1,700–1,900). Topog-
raphy (hence endogenous control) remains relatively constant, 
but future climate will not, disturbing the balance of exogenous 
and exogenous controls, such that topographies for which power-
law SD variograms apply historically may not produce them in 

the future. If exogenous controls on fire spread strengthen in the  
future (for example, more extreme fire weather), then one might 
expect a shift in the shape of the SD variogram for complex  
landscapes to that observed for the simpler landscapes, effectively 
increasing the pspread value and moving the system away from  
the phase transition. By overlaying barriers to fire spread at judi-
ciously chosen coordinates21, however, to mimic increasing topo-
graphic complexity (artificially increasing the fractal dimension 
of the landscape), we may discover simple but robust treatments 
to maintain fire-adapted landscapes that are resilient to climate 
change.
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Figure 3 | Power laws at percolation threshold. Near the percolation threshold, power-law behaviour appears in the SD variogram in a narrow scaling 
region. This represents a phase transition between fires whose spread is endogenously controlled and those controlled by exogenous factors. (a) Power-
law behaviour (linearity in log-log space) is apparent when a lack-of-fit (LOF) test for the linear model is not rejected (P-values between 0.10 and 1.0). Red 
dots indicate P ≥ 0.1; black dots represent P < 0.1. A phase transition occurs at pspread≈0.495. At pspread ≥ 0.6, the LOF test is nonsignificant, but the result is 
trivial because the slope of the SD variogram is zero. This happens because for this part of the analysis we did not include exogenous controls on fire size. 
(b) Simulated fire shape with pspread well above the percolation threshold (0.57) shows a fire with a regular shape and a lower perimeter/area ratio.  
(c) Simulated fire shape with pspread at or just below the threshold (0.49) shows a fire with an irregular shape and a higher perimeter/area ratio.

50 10
0

50
0

2,
00

0

5,
00

0

0.3

0.4

0.5

0.6

0.7

0.8
a Twenty Mile (fd=1.2)

Log (distance)

Lo
g 

(S
D

)

50 10
0

50
0

2,
00

0

5,
00

0

0.55

0.60

0.65

0.70

0.75

0.80

b Frosty Creek (fd=1.25)

Log (distance)

Lo
g 

(S
D

)

50 10
0

50
0

2,
00

0

5,
00

0

0.45

0.50

0.55

0.60

0.65

0.70

0.75
c Entiat (fd=1.3)

Log (distance)

Lo
g 

(S
D

)

50 10
0

50
0

2,
00

0

5,
00

0

0.4

0.5

0.6

0.7

0.8

d Nile Creek (fd=1.33)

Log (distance)

Lo
g 

(S
D

)

50 10
0

50
0

2,
00

0

5,
00

0

0.4

0.5

0.6

0.7

0.8

e Quartzite (fd=1.35)

Log (distance)

Lo
g 

(S
D

)

50 10
0

50
0

2,
00

0

5,
00

0

0.3

0.4

0.5

0.6

0.7

0.8
0.9

f Swauk Creek (fd=1.4)

Log (distance)

Lo
g 

(S
D

)

Figure 2 | Sørensen’s distance variograms and power laws. Increasing power-law behaviour, as measured by linear fit of the SD variogram scatterplots in 
double logarithmic space, along a gradient of topographic complexity measured by fractal dimension (fd). Black lines are best-fit non-linear regression lines; red 
lines are the linear regressions (that is, power laws in log-log space). (a) Twenty Mile (b) Frosty Creek (c) Entiat (d) Nile Creek (e) Quartzite (f) Swauk Creek.
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Methods
Fire-history data. Fire-history reconstructions in low-severity fire regimes rely 
on the presence of fire-scarred trees (recorder trees) in a landscape, where the 
presence of a scar is cross-dated to provide an estimate of the year and sometimes 
season in which a fire occurred. Our data set records not only the presence of scars, 
but also the locations of the recorder trees. This data set provides a marked point 
pattern of recorder trees, with the marks being the observation of a scar a given 
year. A fire-history matrix summarizes the scar pattern for a set of recorder trees in 
a given landscape (Supplementary Table S1). For each combination of tree and fire 
year an entry in the matrix is 1, if the tree records that fire, and 0 otherwise.

The Sørensen distance variogram. We calculated the SD for every pair of 
recorder trees on a given landscape. The SD is a semimetric commonly used in 
community ecology to measure species co-occurrence. It is calculated from a 
frequency table that compares the fire history of two recorder trees (Supplementary 
Table S2; equation (1)) 

SD = − + +1 2 11 11 10 01n n n n/( )

SD can take continuous values on the range (0,1), with zero indicating completely 
similar fire histories between a pair of trees and one indicating completely dissimi-
lar fire histories between a pair of trees. The choice of SD was motivated by a re-
markably elegant relationship between its expectation (E[SD]) and the probabilistic 
nature of recorder-tree scarring. Kennedy and McKenzie14 used the probability 
structure implicit in ECDP to derive an expectation for the value of SD between a 
given pair of recorder trees (A and B) (Supplementary Table S3). When combined 
algebraically, the complicated equations in Supplementary Table S3 reduce to a 
simple expression for the expected value of SD (3). 

E SD P B Ascar fire fire( ) ( | )= −1 p

where P(Bfire|Afire) is the probability a second tree (B) experiences fire given the 
first tree (A) has experienced fire. This probability depends on the spatial structure 
of the fire and the fire size, which change with the model parameters pspread and 
µsize. Therefore, the shape of the SD variogram depends on the fire size and the 
spatial structure of fire spread, connecting the SD variogram directly to the spatio-
temporal pattern in a fire history.

SD variograms are produced by binning the between-tree pairwise geographic 
distances, calculating the mean SD for all pairs of trees for a given distance bin, 
and plotting the mean SD against geographic distance. We truncate the SD vari-
ogram at half the maximum geographic distance between recorder trees, following 
the paradigm for variogram analysis in spatial ecology. Beyond this distance, 
variograms typically have sample sizes in bins that are too small, and outliers will 
confound inferences22.

ECDP model. ECDP simulates two processes: fire spread and recorder tree scarring 
(Supplementary Fig. S1). ECDP is initialized with a blank raster grid with  
100×100 pixels. A point pattern of CSR recorder trees is overlain on the raster grid 
and retained throughout the simulated fire history. These are the trees available for 
scarring, and fire spread is independent of the presence of recorder trees.  

(1)(1)

(2)(2)

The number of fires simulated for an individual is a random number determined 
by sequential draws from an exponential distribution. For each fire in the history, a 
random fire size expressed as the number of pixels burned is drawn from a gamma 
distribution whose mean is a mean fire size (µsize). For each fire, an ignition point 
on the raster grid is randomly chosen, with a five-cell buffer excluded along the 
edge. Fire spreads iteratively from the ignition point according to a simple prob-
ability test (pspread; Supplementary Fig. S1). For each fire in the history, this process 
is iterated until one of three stopping points is reached. (1) If all tests of spread 
fail in a given iteration, the fire can no longer spread and the next fire is initialized 
(the fire burns out on its own). (2) If the number of pixels burned in the current 
fire is more than the random fire size, then fire spread is halted and the next fire is 
initialized. (3) If the fire spreads to each of the four borders of the raster grid before 
the fire reaches its random size, fire spread is halted and the next fire is initialized. 
Each fire is spread independently of the previous fires, so there is no memory in 
the landscape process. For details of the ECDP model, see ref. 2.

SOC model with fire scars. We programmed an SOC forest fire model (Supple-
mentary Fig. S2) after Malamud et al.6 and overlaid a CSR pattern of recorder trees 
on the SOC grid. The SOC model is initialized with a blank raster grid. At each 
iteration, fuel is dropped randomly on the grid, with each pixel having an equal 
chance to receive fuel. The tunable parameter of the SOC model is the frequency of 
sparks that are dropped onto the SOC grid ( f ). In our version, fuel accumulation 
and sparking are independent of the presence of recorder trees, which occupy a 
given pixel throughout the simulated fire history. If a pixel included in the SOC fire 
is occupied by a recorder tree, then that tree is tested for scarring as in the ECDP 
model. Our modified SOC model then has two parameters: frequency of sparks ( f ) 
and probability of scarring (pscar). Details of the SOC fire model are in many recent 
publications7,8.

Monte Carlo tests for SD variograms. This study was motivated by the variability 
in the shape of the SD variogram across landscapes with varying topography. 
Rather than inferring directly from these patterns, we use Monte Carlo inference to 
test whether a stochastic model (ECDP) can replicate the observed variability. We 
use spatially explicit simulations to remove biases associated with mean-field ap-
proximations of spatial processes, which can confound the identification of critical 
thresholds23. The model parameters are surrogates for underlying ecological proc-
esses; for example, pspread is interpreted as endogenous controls on fire spread, and 
µsize is interpreted as exogenous controls on fire spread. If a model is found that 
can replicate the variability in observed patterns, we use the interpretation of the 
model parameters that corresponds to the observed pattern for each landscape to 
infer its dominant controls. It is therefore the correspondence of the model to the 
observed patterns (that is, each is driven by a spatial process), through the Monte 
Carlo inference procedure, that enables the major conclusions to be drawn.

We used the ECDP model to produce simulated SD variograms and evaluated 
how well it can replicate the observed SD variograms using a Monte Carlo good-
ness-of-fit procedure24, which tests the hypothesis: is the observed pattern a typical 
model realization? For each site, this procedure returns the set of combinations of 
pspread, pscar and µsize that cannot be rejected relative to the observed pattern. We 
used an analogous procedure to evaluate the SOC model, finding the combina-
tions of frequency of sparks ( f ) and probability of scarring (pscar) that cannot be 

200 400 600 800 1,000

0.0

0.2

0.4

0.6

0.8

1.0
c

f (ignition frequency)

P
-v

al
ue

1.2 1.25 1.3 1.35 1.4

5

10

15

20
b

Fractal dimension

� s
iz

e×
1,

00
0

1.2 1.25 1.3 1.35 1.4

0.5

0.6

0.7

0.8

0.9

1.0
a

Fractal dimension

p s
pr

ea
d

Figure 4 | Monte Carlo tests. Monte Carlo tests of parameters from the original stochastic model and the SOC model. (a) Distributions of pspread that 
produced SD variograms not significantly different (α = 0.25) from real watersheds, based on Monte Carlo simulations described in Methods. With 
increasing topographic complexity, pspread approaches the percolation threshold of 0.495. Watersheds left-to-right (also in b): Twenty Mile, Frosty 
Creek, Entiat, Nile Creek, Quartzite, Swauk Creek. (b) Distributions of µsize that produced SD variograms not significantly different (α = 0.25) from real 
watersheds. In contrast to pspread, the optimal value of µsize is more tightly constrained in watersheds of lower topographic complexity. Watersheds left-
to-right: same as in a. (c) Distribution of P-values for lack-of-fit tests of the ignition frequency parameter in the SOC model, showing a scaling region of 
nonsignificance (P > 0.25) for Swauk Creek (red dots), with complex topography, but not for Twenty Mile (blue dots), and confirming that the SOC model 
replicates landscape fire dynamics only in the region of criticality. The α-level (0.25) for these tests provides much more control of Type II error (that is, a 
rigorous matching of simulated to observed SD variograms) than classic experiments such as clinical trials or ecological field experiments, wherein control 
of Type I error is clearly paramount.
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rejected. A significance level of 0.25 was set for both, given that a primary concern 
was to control for Type II error (overly liberal acceptance of the replication of 
observed SD variograms by the models).

Identifying the phase transition. To quantify the region of criticality, we evalu-
ated domains of pspread over which the ECDP model produces power-law SD 
variograms. First, we sampled 1,000 values of pspread uniformly on (0,1). We set the 
ECDP model to remove the size-based stopping rule, thereby isolating the effect of 
pspread on the shape of the SD variogram. For each value of pspread, we conducted 
20 replicate simulations, yielding 20 simulated SD variograms for each value of 
pspread. We then used the replicate simulations in an F-test for lack-of-fit to deter-
mine whether the power law can be rejected for the simulated SD variograms with 
the associated value of pspread. The significance level was 0.10—a more balanced 
consideration of Type I versus Type II errors because regions in which power laws 
occurred and where they did not were both of interest. In reality, only one point 
near the percolation threshold fell between P = 0.10 and 0.25 (Fig. 3). 
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