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Enrichment of low-frequency functional variants
revealed by whole-genome sequencing of multiple
isolated European populations
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The genetic features of isolated populations can boost power in complex-trait association

studies, and an in-depth understanding of how their genetic variation has been shaped by

their demographic history can help leverage these advantageous characteristics. Here,

we perform a comprehensive investigation using 3,059 newly generated low-depth whole-

genome sequences from eight European isolates and two matched general populations,

together with published data from the 1000 Genomes Project and UK10K. Sequencing data

give deeper and richer insights into population demography and genetic characteristics than

genotype-chip data, distinguishing related populations more effectively and allowing their

functional variants to be studied more fully. We demonstrate relaxation of purifying selection

in the isolates, leading to enrichment of rare and low-frequency functional variants, using

novel statistics, DVxy and SVxy. We also develop an isolation-index (Isx) that predicts the

overall level of such key genetic characteristics and can thus help guide population choice

in future complex-trait association studies.
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P
opulation variation in disease susceptibility has been shaped
by environment, demography and evolutionary history.
Isolated populations (isolates) have generally experienced

bottlenecks and strong genetic drift, so by chance some
deleterious rare variants have increased in frequency while some
neutral rare variation is lost, both helpful characteristics for the
discovery of novel rare variant signals underpinning complex
traits1–3. Studies to date have focused on individual isolates and
have identified several disease-associated signals4–12. However,
isolates differ in the time when they became isolated, their initial
population size, the level of gene flow from outside and other
historical demographic factors, and consequently also differ in
their power for association studies2. We thus generate and analyse
low-depth (4� –10� ) whole-genome sequences (WGS) from
eight cohorts drawn from isolated European populations and
compare each isolate with the closest non-isolated (general)
population, for which we also generate or access WGS data. We
then investigate empirically how these historical differences
influence the population-genetic properties of isolates, and
frame these insights in terms of their consequences for study
design in complex trait association studies.

Results
Samples, sequencing and QC. The data set includes newly
generated low-depth (4x–10x) WGS from eight cohorts drawn
from isolated European populations: one each from Kuusamo
in Finland (FIK) and Crete in Greece (GRM13), four from
Friuli-Venezia Giulia in Italy (IF1, IF2, IF3 and IF4 (ref. 14)), and
one each from Val Borbera in Italy (IVB15) and the Orkney
Islands in the UK (UKO16); and the closest non-isolated (general)
population: Finland (FIG9), Greece (GRG), together with publicly
available data for Italy (ITG17) and UK (UKG18) (Fig. 1a and
Supplementary Table 1). We generated a superset of variants
called in these cohorts and all 26 population samples in the 1000
Genomes Project Phase 3 (ref. 17), and performed multi-sample
genotype calling across all 9,375 samples (3,059 from the current
study, 2,353 from the 1000 Genomes Project Phase 3 release
and 3,781 from UK10K). Both individual population and
amalgamated genotype call data, which have greater than 99%
concordance with genotyping data (Supplementary Table 2), are
available to the scientific community (Data availability).

General description of the variants in the isolates. We identified
approximately 12.2 million variants with minor allele frequency
(MAF) r2% (rare), 5.5 million with MAF 42–r5% (low-fre-
quency) and 8.3 million variants with MAF 45% (common)
across the ten populations newly sequenced here (eight isolates,
GRG and FIG). Of these, 10.5, 0.7 and 0.3%, respectively,
are novel (Table 1 and Supplementary Table 3). As expected,
most of the isolates have lower numbers of variant sites per
genome than their closest general population (Supplementary Fig.
1, Supplementary Table 5). We find B188,000–B513,000 var-
iants that are common with MAF 45.6% in each isolate but with
MAFr1.4% in its closest general population (Table 1); B30,000–
122,000 of these per isolate have frequency r1.4% in all the
general samples studied, among which B150–B700 in coding
regions and B500–B2,800 genome-wide are deleterious
(Supplementary Table 4). These common and low-frequency
variants are thus useful markers for whole-genome association
studies in these populations and some of them (if absent from the
general population) could potentially lead to novel association
signals. They include known examples such as rs76353203
(R19X) in APOC3 in GRM, which is associated with high-density
lipoprotein and triglyceride levels6.

Population-genetic analyses in the isolates. Previous popula-
tion-genetic studies of isolates have, with some exceptions11,19,
been based on common variants found on genotyping arrays, and
have illustrated general characteristics such as low genetic
diversity and longer shared haplotypes9,13–15,19,20. Rare variants
discovered from sequencing are on average more recent in origin
than common variants21 and therefore more powerful for
distinguishing closely related populations and more informative
about recent demographic history. We find that isolates are, as
expected, genetically close to their matched general population in
principal component analyses (PCA), ADMIXTURE22 and
TreeMix23 using common variants (Fig. 1b, Supplementary
Figs 2–5 and Supplementary Table 6), but PCA using rare and
low-frequency variants, as found previously24, distinguishes
them more clearly from the general population and also from
other isolates, particularly among the Italian samples (Fig. 1c,
Supplementary Fig. 2). The majority of sharing of variants present
just twice across all samples of 36 individuals from each
population (f2 variants21) takes place within the same
population, and the isolates generally share more with their
closest general population than with other populations. This latter
trend, however, is not apparent for IF1–IF4, who show little
sharing with any other population, pointing to a greater level of
isolation and lower level of gene flow with their general
population (Fig. 1d, upper triangle and Supplementary Fig. 7),
which is confirmed by f3-statistics25 comparing with a worldwide
population panel of HGDP-CEPH samples using common SNPs
(Supplementary Fig. 6). f3–f10 variant sharing demonstrates
sharing by ITG and IVB with both Greek and UK populations
(Fig. 1d, lower triangle and Supplementary Fig. 7), potentially
indicative of their more ancient heritage.

Population demographic history. All populations studied here,
both isolates and general, appear to have shared a comparable
effective population size (Ne) history before 20 thousand years ago
(KYA) based on the multiple sequentially Markovian coalescent
method26 (Supplementary Fig. 9). The isolates diverged from their
general populations within the last B5,000 years based on LD
estimations27 (Supplementary Table 7 and Supplementary Fig. 8)
and yet had sharp decreases in their population sizes in
more recent times as estimated using inferred long segments of
identity by descent (IBD)28 (Fig. 1e,f and Supplementary
Fig. 10). Different isolates also split from their respective
general populations at different times. For example, IF1–IF4 split
from ITG B4–5 KYA, while most other isolates split from their
general populations within the last B1,000 years (Supplementary
Table 7).

The different demographic histories of different isolates should
lead to different genetic characteristics. To summarize these
features in a single quantitative measure that can be calculated
from genotype data, as well as sequence data, we developed an
isolation index (Isx) which combines information on the
divergence time from the general population (Tdg), Ne and
migration rate (M), such that early-divergence-time isolates with
small Ne and low M have a high Isx value (Fig. 2a and
Supplementary Fig. 11). The different isolates show different
Isx values: IF1, IF2, IF3 and IF4 have the highest, while IVB
has the lowest (Supplementary Table 8). Isx values are
highly correlated with other population-genetic characteristics
(for example, Fig. 2b,c, Supplementary Table 11), such as
genome-wide pairwise FST between isolates and their matching
general population (reflecting the genetic drift of the isolates)
(Supplementary Fig. 12), the total length and number of runs of
homozygosity (ROH) (Supplementary Fig. 13), inbreeding
coefficient (F) (Supplementary Fig. 14) and length of LD
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(Supplementary Figs 15 and 16 and Supplementary Tables 9 and
10). All these characteristics are correlated, but the pairwise
correlation coefficients show that Isx is a slightly better overall
predictor of the other measures than any single existing measure

(Fig. 2c, Supplementary Fig. 17 and Supplementary Table 11);
moreover, it is potentially more robust to confounding factors as
it is calculated from three demographic parameters, while the
others are all based on single measurements.

Table 1 | Summary of variants discovered in this study.

POP n average
depth

MAFr2% MAF42–r5% MAF45% Novel common SNPs in
isolate*

Novel common SNPs in
isolatew

total novel% total novel% total novel%

FIK 377 4x 4,066,373 10.90 1,553,076 1.20 6,025,077 0.70 190,527 70,579
FIG 1,564 6x 6,548,833 11.80 1,540,915 0.80 6,053,704 0.70 na na
GRM 249 4x 5,129,513 7.20 1,447,981 1.10 6,111,923 0.80 513,272 49,884
GRGz 99 10–30x 3,757,110 na 1,321,955 na 5,842,537 na na na
IF1 60 4–10x 1,456,881 1.30 1,420,929 1.30 5,890,714 0.80 320,191 119,157
IF2 45 4–10x 1,063,098 1.30 1,554,145 1.00 6,001,568 0.80 273,694 94,496
IF3 47 4–10x 961,059 1.30 1,455,284 1.10 6,068,304 0.80 299,603 107,281
IF4 36 4–10x 1,030,673 1.30 1,124,789 1.10 6,001,625 0.80 308,356 122,254
IVB 222 6x 4,857,767 1.60 1,396,799 0.80 6,112,476 0.80 188,972 30,284
UKO 397 4x 5,963,416 11.70 1,471,782 0.80 6,047,383 0.80 193,300 36,512
Total 3,096 12,218,797 10.50 5,503,179 0.70 8,301,524 0.30

‘Novel’ variants are those not found in 1000 Genomes Project Phase 3 or UK10K project.
*Variants that are common (minor allele frequency, MAFZ5.6%, alternative allele count Z4) in an isolated population but not common (MAFo1.4%, alternative allele count r1) in its closest general
population.
wVariants that are common (MAFZ5.6%, alternative allele count Z4) in an isolated population but not (MAFo1.4%, alternative allele count r1) in any of the general populations.
zDifferent variant calling procedure in this population.
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Figure 1 | General characteristics and demographic history of isolated and matched general populations. (a) Geographical locations of samples.

The base map was plotted in R using the mapdata package and circles were added using Photoshop. (b) PCA using common variants. (c) PCA using

low-frequency variants. (d) Sharing of rare variants within and between populations. Upper left triangle: f2 variants; lower right triangle f3–f10 variants.

(e) Effective population size (Ne) inferred from IBDNe for UKO and UKG during the past nine KY. (f) The lowest Ne inferred by IBDNe for all populations for

the past three KY, plotted as a function of the time at which it occurred.
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Purifying selection analyses. Several lines of evidence suggest
relaxed purifying selection in the isolates due to their reduced Ne,
although as expected we do not detect substantially increased
genetic load per genome using the Rxy statistic29 based on all of
the variants in the genomes (Fig. 3a and Supplementary
Table 12). First, we see different levels of enrichment of low-
frequency functional variants in isolates (Fig. 3b,c, Supplementary
Tables 13 and 14, Supplementary Fig. 18a) quantified by a new
statistic, DVxy-coding, developed here (DV: drifted variants).
DVxy-coding measures the ratio of functional coding variants
(missense plus loss-of-function (LoF)) in isolates compared to the
closest general population (and vice-versa), adjusted for the
corresponding ratios of intergenic variants in order to correct for
the effect of genetic drift. We applied this only to a subclass of
DVs, defined as low-frequency (2–5%, the best choice according
to the sample size we have) in any isolate, yet at least three-fold
higher than in the closest general population (and vice versa). We
find that DVxy-coding is 41 in all isolates and o1 in all general
populations (Fig. 3c, Supplementary Fig. 18a and Supplementary
Table 13). We also calculated a similar DVxy-wg statistic by
stratifying whole-genome variants according to their combined
annotation dependent depletion (CADD) score (0–5, neutral
variants; 5–10, mildly deleterious; 10–20, deleterious; and 420,
highly deleterious; these cut-off choices balance the number of
variants in each bin to allow us comparable statistical power
among all bins, although the conclusions are robust to the
particular cut-off values chosen and different bins
(Supplementary Figs 18b and 19)). The DVxy-wg values are
differentiated for variants with CADD score of 10–20 and
significantly so (assessed using the jack-knife bootstrap method)
for ones with CADD scores 420, with DVxy-wg values 41 in
all isolates and o1 in all general populations (Fig. 3b,
Supplementary Fig. 18b and Supplementary Table 14). This
demonstrates enrichment of low-frequency functional variants,
both coding and genome-wide with CADD score 410, in the
isolated populations. Moreover, both DVxy-coding and DVxy-wg
values are correlated with Isx, suggesting that different isolation
characteristics lead to different levels of enrichment of functional
variants.

We also investigated the relaxation of purifying selection by
assessing functional (missense) singleton variants (SV) pooled for
all of the genes that have at least one singleton missense or
synonymous variant in a pair of populations (one isolate and its
general population), correcting with pooled synonymous variants
(SVxy statistic,). We find a substantial deviation from 1 for
functional singletons in all of the isolates (Fig. 3d and

Supplementary Table 15), with SVxy values positively correlating
with Isx (Fig. 2c and Supplementary Fig. 20). We also find that
the proportion of relaxed essential genes30 with SVxy 41 in
isolates is significantly higher than in the general population
(Supplementary Table 15). Such rare and low-frequency drifted
functional variants, measured by both SVxy and DVxy, are
particularly relevant for boosting the power of association
studies6.

Positive selection analyses. We do not find convincing evidence
for positive selection in any isolate using deltaDAF31, PCAdapt32

or singleton density score (SDS)33, although we do identify some
highly differentiated variants (Supplementary Fig. 21 and
Supplementary Tables 16 and 17), including in the protein-
coding genes ALK, SPNS2, SLC39A11 and ACSS2, which can
nevertheless be accounted for by drift. Interestingly, we also find
six highly differentiated variants shared between different isolates
from Italy, IF2, IF3 and IF4, but interpret them as likely to result
from drift or positive selection for the ancestral allele in the ITG
(Supplementary Table 17). We find that the SDS method has little
power in our samples because of their small size, and failed to
detect selection even at the lactose tolerance SNP in the UKO, a
known strong signal of recent selection (Supplementary Fig. 22).

Discussion
Isolated populations have special characteristics that can be
leveraged to increase the power of association studies, as several
previous studies have shown19,34. Nevertheless, only a small
proportion of functional variants have increased in frequency in
any one isolate, so multiple isolates must be investigated to reveal
the full diversity of associated variants. Here, we probed an
extended allele frequency spectrum of variants potentially
underpinning human complex disease through the analysis of
WGS data in multiple isolates matched to nearby non-isolated
populations, capturing common, low-frequency and rare variants.
We quantified different levels of isolation resulting from different
demographic histories and have demonstrated that the Isx
statistic, calculated even from SNP-chip data, reliably captures
these relevant features. This study provides a systematic
evaluation of the genetic characteristics of multiple European
isolates and for the first time empirically demonstrates
enrichment of rare functional variants across multiple isolates.
With the advent of large-scale whole-genome sequencing, studies
in isolates are poised to continue as major contributors to our
understanding of complex disease etiology.
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Methods
Data set and variant calling. The data set includes 3,059 whole-genome low-
depth sequences generated at The Wellcome Trust Sanger Institute using the
Illumina Genome Analyzer II and Illumina HiSeq 2000 platforms, as well as
100 high-depth sequences from the Illumina HiSeq X Ten (Fig. 1a and
Supplementary Table 1). Informed consent was obtained from all subjects and the
study was approved by the HMDMC (Human Materials and Data Management
Committee) of the Welcome Trust Sanger Institute. The multi-sample genotype
calling across all of the low-coverage sequencing data from the current study, as
well as 2,353 from the 1000 Genomes Project Phase 3 release, and 3,781 from
UK10K (a total of 9,375) was performed with the defined site selection criteria
(Supplementary Note). Genotype likelihoods were calculated with samtools/
bcftools (0.2.0-rc9) and then genotypes were called and phased using Beagle v4
(r1274) (ref. 35). We assessed the performance of the genotype calling from the low
coverage data using the available genotype chip data for a subset of the cohorts
consisting of 4,665 individuals, and calculated the discordance rates on
chromosome 20 separately for the categories REF-REF, REF-ALT and ALT-ALT.

The sample sizes are very different across these collections, and we used three
different standard-sized subsets of the samples for different analyses: (1) the whole
data set; (2) the sample-size-matched data set, obtained either by randomly
selecting samples from general population to match the isolated population
(for example, we randomly select 377 from FIG to match FIK), or by randomly
selecting a subset of the isolated population to match the general population
(for example, we randomly select 108 IVB to match the general population ITG);
(3) the minimum-sample-size data set of 36 individuals per population. By doing
this, we maximize the use of the data for different analyses, and we specify which
data set is used for each analysis. The sequencing depth is also different across
different populations, within a 2.5-fold range (apart from GRG, in which variants
were called differently, details in Supplementary Notes), and we allowed for these
differences when interpreting the results.

Variant counts. We first re-annotated all variants using the Variant Effect Pre-
dictor annotation from Ensembl 76 with the ‘- pick’ option, which gives one
annotation per variant. We then performed variant counting at both the population
and individual level, stratifying by functional categories and frequency bins. These
counts were either plotted in figures or summarized as median values in tables.
We carried out these analyses using both the sample-size-matched data set and the
minimum-sample-size data set.

Population-genetic analyses. We used the whole data set for the analyses in this
section, unless otherwise specified. PCAs were performed separately with common
variants or rare variants using EIGENSTRAT v.501 (ref. 36). Shared ancestry
between the populations studied here was evaluated using ADMIXTURE v1.22
(ref. 22). The relationships between the populations studied here, combined with
worldwide populations from the HGDP-CEPH panel37, were also examined using

ancestry graph analyses implemented in TreeMix v.1.12 (ref. 23). We also used
formal test of f3-statistics25 to investigate population mixture in the history of the
populations studied here, as well as worldwide populations from the HGDP-CEPH
panel. Rare f2 variants (with only two copies of the alternative allele in the
minimum-sample-size data set) and moderately rare f3–10 variants (3–10 copies of
the alternative allele in the same data set) are particularly informative for
investigating recent human history21. We investigated the sharing pattern of these
two types of variant by summing all f2 variants or any random two alleles of the
f3–10 variants shared by pairs of individuals. We plotted the results as a heat map
using the image1 function from the base R package (https://stat.ethz.ch/R-manual/
R-devel/library/graphics/html/image.html). Variants were aggregated by pair of
individuals using the ‘count’ function of the plyr package, then arranged in matrix
form and colourized using ‘colorRampPalette’ from the colorspace package
(https://cran.r-project.org/web/packages/colorspace/index.html). ROH, inbreeding
coefficient (F) as well as the length of LD-blocks were calculated in PLINK, and
finally genome-wide FST values between isolates and their general populations were
calculated with the software 4P (ref. 38) using the minimum-sample-size data set.

Demographic inferences. LD-based39–41 demographic inference was performed
in the NeON R package27 using the minimum-sample-size data set; the median and
confidence interval were estimated using the 50th, 5th and 95th percentiles of the
distribution of long-term Ne in each time interval. We used the multiple
sequentially Markovian coalescent method26 to infer demographic changes before
20,000 years ago using four individual sequences from each population. In order to
account for some loss of heterozygous sites in the low-depth data, we used a slow
mutation rate of 0.8� 10� 8 mutations per nucleotide per generation and a longer
generation time of 33 years. We then estimated more recent demographic changes
(from the present to B9,000 years ago) using IBDNe28 with the minimum-sample-
size data set. We used IBDseq42 to detect IBD segments in sequence data from
chromosome 2 in all populations. We then used IBDNe with the default
parameters and a minimum IBD segment length of 2 centiMorgan (cM) units.
We assumed a generation time of 29 years.

Isolation index. In order to quantify the different isolation levels of different
isolates, we developed an index that combines three demographic parameters:
(a) Tdg, (b) Ne and (c) the level of private isolate ancestry (M). We call this
estimate the Isolation index (Isx). It is defined as:

Isx ¼ log Tdg 100�Mð Þ2
� �

log Neð Þ

Both Tdg and Ne were inferred from the LD-based method using the NeON R
package27. M is difficult to estimate directly from SNP genotype data, so here we
estimated the difference of shared ancestral components between an isolate and its
general population from ADMIXTURE analysis. We ran ADMIXTURE with only
one isolate and it closest general population using K¼ 2. We then estimated the
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genetic load in the isolates. The mean and s.d. for each Rxy value from 100 bootstraps are shown. (b) DVxy-wg (DVxy-whole genome) statistic in isolates

and general populations, stratified by CADD score, showing enrichment of highly functional low-frequency variants. (c) DVxy-coding statistic in isolates and

general populations, showing enrichment of low-frequency missense variants in isolates. (d) SVxy-missense statistic in each isolate, showing relaxation of

purifying selection in isolates in singletons. The s.e.’s for both DVxy and SVxy were calculated by randomly sampling data from 20 chromosomes 100 times.

All of these analyses are based on the minimum-sample-size data set (36 individuals from each population).
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difference in the means of ancestry between the isolate and its general population.
The M parameter was defined as Delta Ancestry.

Rxy analysis. Rxy statistics29 between each pair of populations (an isolate and its
closest general population) for different functional categories were calculated using
the matched-sample-size data for missense and LoF variants, including stop gain,
splice donor and acceptor variants, using synonymous variants as controls (we did
not use intragenic variants as control because of the ascertainment in the ITG
which has high-depth exome sequences and low depth for the rest of the genome).
We also calculated Rxy statistics for variants with CADD scores43 greater than 10
and 20, using variants with CADD scores less than 5 as controls. The mean and s.d.
for each Rxy value were obtained from 100 bootstraps.

DVxy analysis. A new statistic, DVxy, was developed to quantify the enrichment of
low-frequency functional variants in the isolates using both the matched-sample-
size and minimum-sample-size data sets. It calculates the proportion of functional
variants in each isolate compared with its general population, correcting for genetic
drift at the same time. We calculated DVxy specifically for the subset of variants
with DAF 2–5% in the isolate, and at least three times lower in its closest general
population, or vice-versa. We called these variants ‘drifted variants’ (DV). DVxy
was calculated for both coding regions and whole genomes.

For coding variants, we defined missense or missense plus LoF variants as
functional variants. We counted the number of functional DVs and neutral
(intergenic) DVs in each isolate (population x) and the corresponding general
population (population y). The ratio between the fraction of DV variants from the
isolated population (corrected by the count of intergenic variants) and the
corresponding fraction of DV variants from its general population was defined as
the DVxy statistic. If DVxy is equal to 1, there is no enrichment for the functional
DVs in the isolate; less than 1 indicates depletion, and greater than 1 indicates
enrichment.

DVxy coding¼ % DVx missense
% DVx intergenic

% DVy missense
% DVy intergenic

�

For the whole genome, we used different CADD score cut-offs and bins. We
calculated a DV statistic by stratifying the variants according to their CADD scores
(0–5, neutral variants; 5–10, mildly deleterious; 10–20, deleterious; and greater than
20, highly deleterious) for each isolate and its closest general population. We finally
calculated a ratio of the fraction of DV variants (from each class) between the
isolate and its general population, and vice-versa. The following formula shows the
DVxy-wg calculation for variants with CADD score between i and j in an isolate
and its general population.

DVxyCADDðijÞ¼
% DVx CADDi� jð Þ
% DVy CADDi� jð Þ

The 95% confidence interval for each calculation was obtained by randomly
sampling data from 20 chromosomes 100 times.

SVxy analysis. We further investigated the relaxation of purifying selection in the
isolated populations using SVs. Here, we also used the minimum-sample-size data
set. Another new statistic, SVxy, was developed to measure the ratio of missense
versus synonymous singletons per gene in each population, as well as the ratio of
the sum of singletons in all genes which have at least one singleton in the pair of
the populations (one isolate and one general population). We counted the number
of missense singletons and synonymous singletons per gene in each population,
and SVgene was calculated as:

SVgene¼ SV missense countþ 1ð Þ
SV synonymous countþ 1ð Þ

SVgene41 indicates relaxation of purifying selection; SVgene¼ 1 indicates neu-
trality; and SVgeneo1 indicates purifying selection.

We then divided the gene list into essential genes30 and non-essential genes
(the rest), and calculated a statistic, GSV, for each population, defined as:

GSV¼ percentage of essential genes with SVgene41/percentage of non-essential
genes with SVgene41

We finally calculated a statistic, SVxy, which is the ratio of SVpop of each isolate
to SVpop of its general population. SVpop for each isolate and its general
population was calculated using all genes which have at least one singleton in the
pair of the populations and defined as SVpop¼S (SV missense counts)/S(SV
synonymous counts).

We used the same annotation as in the variant counts. We calculated a
confidence interval for each estimate using bootstrapping of 80% of the genes
100 times.

Correlation analyses. We calculated pair-wise correlation coefficients between the
Isx values, population-genetic measurements ROH, F, FST, and number and length
of LD blocks, as well as the newly developed statistics DVxy and SVxy using the
Pearson correlation in R.

Positive selection analyses. We calculated genome-wide pairwise derived allele
frequency differences (deltaDAF) for each pair of populations (an isolate and its
general population) as described previously31 using the matched-sample-size data
set. We also carried out PCAdapt analyses32 for each pair of populations using the
whole data set. Both analyses look for high derived allele frequency variants in the
isolates, and will not be affected by sample size. Finally, we ran the SDS method33

using the whole UKO and UKG data sets, which have the largest sample sizes for
both isolate and its general population, and thus the greatest power for this method.

Data availability. Amalgamated genotype calls across all populations studied are
available through the European Genome/Phenome Archive (EGAD00001002014)
with Data Access Agreement described in Supplementary Information.
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