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Bending strain engineering in quantum spin hall
system for controlling spin currents
Bing Huang1, Kyung-Hwan Jin2, Bin Cui2, Feng Zhai3, Jiawei Mei1,2 & Feng Liu2,4

Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its

topological edge states. Here the concept of bending strain engineering to tune the spin

transport properties of a quantum spin Hall system is demonstrated. We show that bending

strain can be used to control the spin orientation of counter-propagating edge states of a

quantum spin system to generate a non-zero spin current. This physics mechanism can be

applied to effectively tune the spin current and pure spin current decoupled from charge

current in a quantum spin Hall system by control of its bending curvature. Furthermore,

the curved quantum spin Hall system can be achieved by the concept of topological

nanomechanical architecture in a controllable way, as demonstrated by the material example

of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological

nanomechanical architecture affords a promising route towards the realization of topological

nano-mechanospintronics.
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A
long-standing interest in spintronics is generating and

transporting spin current (SC) in condensed matter
systems. In the past decades, significant process has

been made towards realization of highly polarized SC with
ferromagnetic materials1,2, in which SC is strongly coupled with
charge current (CC). The discovery of pure spin current (PSC),
for example, spin Hall current, that is decoupled from CC3,4 has
opened up exciting opportunities for spin transport, because it is
expected that the transport of PSC has much smaller energy
dissipation compared with that of conventional SC generated by
ferromagnetic materials. Quantum spin Hall (QSH) system can
exhibit exotic spin transport properties5,6, especially, a transverse
edge PSC of QSH effect can be generated under a four-terminal
device setting. For a conventional flat QSH insulator, there are
two basic properties, time reversal symmetry (TRS) and spin
conservation, which are of special interest. TRS renders the edge
states of a QSH insulator topologically protected to transport
robust SC without elastic back-scattering from non-magnetic
impurities. However, spin conservation mandates that there is no
net SC under a two-terminal device setting in a QSH system5.
Although discovering new mechanism to control the SC and/or
transverse PSC in a QSH system is of great importance for
spintronics, its development is still at its infancy.

Strain engineering has been developed as a well-established
approach to enhance the performance of electronic devices,
such as Si transistors7, by tuning band structure and carrier
mobility of semiconductors8,9. Recently, strain engineering has
been extended to create interesting physical phenomena in 2D
materials10,11, for example, pseudo-magnetic fields12–15 and
superconductivity16 in graphene. Moreover, strain engineering
has also been exploited in materials fabrication through
strain induced self-assembly of nanostructures in heteroepitaxial
growth of thin films17–19 and most recently through
strain partitioned nanomembranes and nanomechanical
architecture20.

In the same spirit of conventional strain engineering of
electronic properties, the strain engineering of topological
properties has been recognized6,21, because strain changes the
bulk band gap of TIs inducing topological phase transitions.
Usually, the form of strain considered is tensional strain via lattice
expansion/compression. In this article, we explore a form of
bending strain engineering to tune the spin transport of QSH
edge states by curvature effect. We demonstrate that for a QSH
system under bending strain, curvature preserves its TRS but
mitigates spin conservation, so that a spin torque occurs to
generate a non-zero SC under a two-terminal device setting,
which can make this system working as a topological half-metal
under a bias. This idea can further be applied to control the
magnitude of transverse PSC of a QSH system by control of its
bending curvature, which has not been achieved in a QSH system
before. In terms of material design, we suggest a possible
approach to grow the self-bending QSH systems via the concept
of ‘topological nanomechnical architecture’, as demonstrated by
the material example of Bi/Cl/Si(111) nanofilm, which may
pave the way for the realization and study of topological
nano-mechanospintronics.

Results
Model of curved quantum spin Hall systems. We start from a
curved QSH system on a hexagonal lattice, as shown in Fig. 1a.
We define a center angle between the left and right edge of a
curved ribbon, ye, to represent the magnitude of bending
curvature. Following Kane and Mele5, a QSH Hamiltonian
contains two minimal terms, H¼H0þHso. Assuming a
sufficiently large spin-orbit coupling (SOC), the gap is

insensitive to the changes in hopping or a small staggering
potential, then the bending will not qualitatively change the H0

term. Thus, our central attention will be the SOC term. Especially,
bending changes the directions of orbital angular momenta,
which in turn changes the spin directions subject to the
spin-momentum locking property. As we will show below,
mechanical bending can generate non-zero spin conductance in a
curved QSH system under a two-terminal device setting. All the
features of curved QSH systems are intrinsic, which will have
profound effects on spin transport properties, independent of
specific QSH materials considered.

Concretely, we study a simplified (px, px) four-band model
Hamiltonian in a hexagonal lattice22,23 (Fig. 1a, upper panel), we
have

H0 ¼
X

n;i

enic
y
nicni�

X
mj;nih i

tmj;ni cymjcniþ h:c:
� �

; ð1Þ

Hso ¼ ilso

X
ni;njh ih i

cynir � eni�enj
� �

cnj: ð2Þ

In H0, cyni ¼ ðc
y
ni"; cyni#Þ are electron creation operators on atom n

with orbital iA{px, py}; eni and tmj,ni are electronic on-site energies
and hopping integrals, respectively. tmj,ni¼Amj,ni(pps)
þ (emj � eni�Amj,ni)(ppp), where Amj,ni¼ (emj � emn)(eni � emn). eni

represents the unit vector along the orbital i of atom n, and emn is
the unit vector directed from site m to n. (pps) and (ppp) are
Slater–Koster integrals24. Thus, the value of tmj,ni depends on the
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Figure 1 | Curvature dependent electronic structures of QSH ribbons.

(a) Flat and curved structures of a zigzag-edge ribbon with hexagonal

lattice. The ye, defined as the center angle between the two edges of the

curved structure, effectively represents the bending curvature. The

coordinate axes are also indicated. The periodic direction of ribbon is along

x direction. (b) Band structures of flat (ye¼0�) and curved (ye¼ 180�)

zigzag-edge ribbons with 40 atoms per unitcell. (c) Spin angles ys (for both

conduction and valence bands) of two double-degenerated edge states as a

function of ye.
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relative position and directional cosines between mj and ni
orbitals at a given ye. When ye is changed, the contribution
(projection) of (pps) and (ppp) to tmj,ni changes. In our
calculations, eni are set to zero and only the nearest neighbour
(NN) hoppings are taken into account. In Hso, lso is a constant,
defining the SOC strength, and r is the Pauli vector. In the flat
QSH system, ye¼ 0�, eni� enj¼±ez, and spins lie strictly along
the z direction. When yea0�, upon bending, all the physical
observables, for example, px,y orbitals, eni and spin directions r
in equations (1 and 2), are rotated accordingly by an angle of
f relative to the x-axis (see Supplementary Fig. 1 for the
definition of f).

Figure 1b shows the band structures of flat (ye¼ 0�) and curved
(ye¼ 180�) QSH ribbons (see Supplementary Fig. 2 for the band
structures of other ye cases), calculated using the TB parameters
of (pps)¼ 6.38 eV, (ppp)¼ � 2.66 eV (refs 24,25) and
lso¼ 0.9 eV. The topological Dirac edge states are clearly seen
around Fermi level in both cases, which are double-degenerated.
For ye¼ 0�, the two forward-propagating edge states along
opposite boundary have opposite spin orientations along ±z
axis, and the spin S ¼ ‘

2 r of edge state Pauli matrix can be
described by sz basis. The spin angle ys, defined as the angle
between the spin vectors of two edge states, is 180� (Fig. 1c) for
ye¼ 0�. For yea0�, bending shows little effect on the shape and
degeneracy of edge states, but it significantly changes spin
orientation, as shown in Fig. 1c. On bending, S can be expressed
as a linear combination of sy and sz, and the net spin direction in
the whole system is along the y axis, which can be expressed in sy

basis. The larger the ye, the larger the net sy spin component. Our
calculations establish a simple relationship between ys and ye as
ysþ ye¼ 180�.

Spin transport in curved quantum spin Hall systems. Curvature
does not remove TRS in curved QSH systems, and spin/charge
currents with opposite polarity still propagates in opposite
directions along the edges, as shown in Fig. 2a–c (from Fig. 2a–c:

ye increases from 0� to 180�), which is also reflected by the
unchanged edge band structures (Fig. 1b). However, curvature
mitigates spin conservation; spins are no longer conserved along
the edges, for example, they adiabatically rotate on the curved
sides of edges, which is expected to modify non-equilibrium
spin transport properties in curved QSH systems under a bias.
Specifically, edge spin rotation in Fig. 2a–c is achieved by creating
an Sy component in addition to Sz. At two opposite edges of a
QSH ribbon, the Sz components are antiparallel (pointing in the
opposite directions at opposite edges) but the Sy components
are parallel (pointing in the same directions at opposite edges)
to each other along the same direction of charge current.
Consequently, a conventional (flat) QSH insulator conducts only
CC but not SC under a two-terminal device setting because only
the Sz component is present, while a curved QSH insulator can
conduct both CC and SC arising from the emergence of Sy

component.
Quantitatively, we can calculate the two-terminal charge and

spin transmission coefficients of QSH ribbons with different ye

using non-equilibrium Green’s function formalism in the
linear-response regime26 as

Ta Eð Þ ¼ Tr saGLG
r Eð ÞGRG

a Eð Þ½ �; ð3Þ

where GL=R ¼ i �L=R ��yL=R

h i
indicates the interaction between a

central scattering area and left/right lead, whose self-energy is
SL/R. Gr=a Eð Þ is the retarded/advanced Green’s function, whose
definition is Gr Eð Þ ¼ H�ðEþ iZÞþ�Lþ�R½ �� 1 or Ga Eð Þ ¼
Grð Þy. When a¼ 0, sa represents unit matrix for charge

conductance; when a¼ x, y, z, sa represents the Pauli matrices
for spin conductance27. Both source/drain and central scattering
area are made of the same material to reveal the intrinsic
transport properties.

At the QSH regime (plateau region), our calculations show that
the charge conductance G is insensitive to curvature and remains
at its quantized value, as shown in Supplementary Fig. 3,
but the spin conductance GSy (here GSx ¼ GSz ¼ 0) becomes
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Figure 2 | Curvature dependent spin conductances of QSH ribbons. (a–c) Schematic diagrams of spin current and charge current flowing along the edges

as the ye increases from 0� (a) to 180� (c). A pair of edge states counter propagate along all four edges subject to TRS. The spins rotate adiabatically along

the curved edges. The highlight of spin directions at the two opposite edges under the same charge current flow direction þ kx is shown in the bottom of

a–c. (d) Calculated spin conductance GSy GSx ¼ GSz ¼ 0
� �

for the QSH ribbons with different ye in a two-terminal device setting. (e) The values of GSy in the

QSH regime (plateau region) in d as a function of ye, which can be perfectly described by the equation of GSy ¼ sinðye
2 Þ � e

2p.
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ye-dependent and no longer quantized. As shown in Fig. 2d, GSy

gradually increases from 0 (ye¼ 0�) to e
2p (ye¼ 180�) with the

increasing ye in the QSH regime under a two-terminal device
setting, consistent with the increased Sy component (Fig. 1c). The
spin conductance GS can only take the forward-propagating edge
modes, whose direction is given by the direction of external bias.

Furthermore, we can make some general arguments to
illustrate the effects of ye on the GS of a QSH system. Actually
it is legal for us to implement a local coordinate (unitary)
transformation on the curved QSH system

HC ! ~H ¼ RyHCR; R ¼
Y

m

Rd
mRs

m; ð4Þ

such that we can transform our curved system HC into a flat one

~H. Here Rd
m is spin-independent deformations and Rs

m ¼

ei

P
i
ðSx ÞimfðmÞ
‘ is the spin rotation for electron operators cmi of all

orbitals i on atom m. If the Rashba effect HR is ignored, we
can find that the total rotated spin z-component ~Sz ¼ RySzR is
conserved, ½~Sz; ~HC� ¼ 0, and the spin Chern number ~Cs in the flat
system is well defined28. The spin conductances at both left and

right edges have only non-zero z-component g
~Sz
L;R ¼

~Cs
2 � e

2p. These
results are well established for a flat QSH system. If we go back
to the original curved reference frame, we have the edge

spin conductance, g
Sy

L;R ¼ sinðfL;RÞ
~Cs
2 � e

2p ; gSz
L;R ¼ cosðfL;RÞ

~Cs
2 � e

2p
(see details in Supplementary Note 1). By definition, the net spin

conductance is given as GSy ¼ g
Sy
L � g

Sy
R

2 ; GSz ¼ gSz
L � gSz

R
2 . Therefore,

in the curved system, fðLÞ ¼ �fðRÞ ¼ ye
2 ;

~Cs ¼ 2, then spin
conductance is

GSy ¼ sin
ye

2

� �
� e

2p
; GSz ¼ 0: ð5Þ

This conclusion agrees well with our calculations, as shown in
Fig. 2e. We want to emphasize that all these features of curved
QSH systems are intrinsic, having profound effects on spin
transport properties independent of specific QSH materials
considered.

Tunable spin currents in curved quantum spin Hall systems.
On the basis of the same physical mechanism, curvature can also
modify the transverse PSC of QSH systems, because this PSC is
only contributed by the Sz components which decreases with the
increased Sy components, and the quantization of the spin Hall
conductance in a QSH system is only guaranteed when Sz is
conserved29.

More generally, we provide a comparison between the charge
and spin transport properties of curved QSH devices and those of
conventional (flat) QSH devices in both two- and four-terminal
device settings within the Landauer–Büttiker30 framework, as
shown in Fig. 3. In terms of transport, with two terminals, the
curved QSH (Fig. 3b,c, upper panel) device conducts both CC and
SC (0 to e

2p

� �
V), which is significantly different from the flat QSH

device that conducts only CC (Fig. 3a, upper panel). A curved
QSH device can effectively work as a topological half-metal for
spin injection, that is, it transports topologically protected
completely spin-polarized charge current, and the density of SC
can be tuned by the curvature. With four terminals, the flat QSH
device conducts a longitudinal CC (I1) and a transverse PSC Is

t

� �
(Fig. 3a, lower panel), while the curved QSH device with
0oyeo180� (Fig. 3b, lower panel) conducts both longitudinal
CC I1 and SC Is

l (contributed by Sy component), as well as a
transverse PSC Is

t (contributed by Sz component). Interestingly, Is
t

Is
l

� �
continues to decrease (increase) with increasing ye subject to

the conservation of total spin, S¼ Syþ Sz, and finally Is
t vanishes

at ye¼ 180� (Fig. 3c, lower panel).
In terms of robustness against elastic back-scattering from

non-magnetic impurities, the curved and flat QSH devices are the
same, as they are protected by TRS. In terms of conductance
quantization, charge conductance is integer-quantized in unit
of e2

h in both flat and curved QSH devices, as shown in
Supplementary Fig. 3. However, spin conductance is only
integer-quantized in unit of e

4p in the flat but not in the curved
QSH device, hence in the latter the spin conductance, arising
from the Sy components, is not conserved for different ye

(Fig. 2e). Moreover, the curved QSH systems can also exhibit
some similar transport properties to quantum anomalous Hall
systems, as shown in Supplementary Fig. 4. Therefore, curvature,
induced by bending strain, can be employed to dramatically tune
the topological SC and transverse PSC in the a curved QSH
system for various spintronics applications.

Rashba and disorder effects. It is interesting to consider the
Rashba and other disorder effects on the electronic and transport
properties of curved QSH systems. First, we have considered a
simplified NN hopping Rashba spin-orbital term HR (refs 5,31) in
which the difference of symmetry between px and py orbitals are
neglected:

HR ¼ ilR

X
mj;nih i

cymjðr�emnÞzcni: ð6Þ

The strength of HR is determined by lR. Thus, the Hamiltonian
becomes H¼H0þHsoþHR. As shown in Supplementary Fig. 5,
when lR is increased from 0 to 0.9 eV (the value of lso), the
Rashba effect can significantly reduce the original SOC band gap,
but the topological properties are unchanged as long as the SOC
band gap is not closed. Importantly, the Rashba effect will not
change the spin orientation of edge states and the curvature can
still be applied to generate a significant non-zero spin con-
ductance in a QSH system, as demonstrated in Supplementary
Fig. 6.

Second, we have considered the effects due to random on-site
energies eni, that is, by randomly changing the eni of all the atoms
in H0 term in equation (1), which can simulate the effects from
substrate or impurity or by many-body interactions through
self-energy corrections. The variations of the eni from the initial
values up to 1.0lso are considered, as shown in Supplementary
Fig. 7. The random eni can effectively lift the degeneracy of edge
states, but it will not affect the spin rotations of edge states.
As shown in Supplementary Fig. 8, random eni effects will not
change the overall shape of charge and spin conductance
spectrums or alter our main conclusions.

Third, we have considered the random-atomic-position (RAP)
effect, which can account for the electron–phonon interactions or
thermal effect. We assume all the atoms are displaced from their
equilibrium positions in any given direction by a maximum
distance of 0.125 Å. This will effectively change the hopping term
tmj,ni in H0 in equation (1), even if the changes in (pps) and (ppp)
are negligible. Similar to the random eni effect, the RAP effect also
lifts the degeneracy of edge states, as shown in Supplementary
Fig. 9. However, it will not affect the transport properties of QSH
ribbons, as shown in Supplementary Fig. 10.

Finally, it is also important to note that inelastic back scattering
can still occur in the presence of many-body interactions in a
QSH system, which may induce a finite conductivity32. However,
the recent experiment measurements in InAs/GaSb bilayer33

system indicate that even the helical edge modes are in a strongly
interacting regime, the quantized conductance plateaus can still
survive in a broad regime.
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Concept of topological nanomechanical architecture. A
practical idea to realize bent QSH systems is nanomechanical
architecture of strained nanofilms, which has been proven a
powerful method to fabricate nanomembranes, nanotubes, partial
or half nanotubes, and nanocoils17,18,34. The general process of
nanomechanical architecture proceeds with growth of strained
nanofilms on a sacrificial substrate followed by patterning and
release (through removal of the sacrificial substrate) of the
nanofilms, which will roll-up into different tubular shapes as
pre-designed by strain engineering (see Supplementary Movie 1
for this concept). Suppose one can apply the same process to a
QSH nanofilm, then strain engineering of topological boundary
states is realized to tune the edge spin orientations in a
controllable manner.

Furthermore, it is a parallel process that can facilitate mass
production of identical partial cylindrical QSH arrays35, which
will function ideally as a robust spin injector device with high
spin current density, as demonstrated in Supplementary Fig. 11,
while spin polarization can be switched by changing the bias
direction. Compared with the traditional magnetic materials, for
example, ferromagnetic metals, the QSH system based spin
injectors are topologically protected, robust against structural
distortion or impurity scattering; the helical Dirac edge states
support also ultra-fast SC transport.

Self-bending behaviours of Bi/Cl/Si(111) films. To demonstrate
the feasibility of the above concept, we have further performed
first-principles calculations to study the evolution of topological
edges states of a QSH Bi/Cl/Si(111) nanofilm under self-bending
driven by the nanomechanical architecture process. It has been
predicted that a surface based QSH state forms in a hexagonal
Bi overlayer deposited in the halogenated Si(111) surface, that is,
Bi/Cl/Si(111)36. If one grows a ultrathin Si(111) film on a
sacrificial SiO2 substrate before Cl adsorption and Bi deposition,
then the resulting Bi/Cl/Si(111) nanofilm is readily subject to the
nanomechanical architectural process, sell-rolling into a tubular
shape (including a partial cylinder) on releasing from the
underlying SiO2 substrate.

The Si(111) surface functionalized with one-third monolayer
(ML) of Cl exhibits a

ffiffiffi
3
p
�

ffiffiffi
3
p

reconstruction37,38. When 1 ML Bi
is deposited on the Cl/Si(111) surface, the most stable structure of
Bi atoms adopts a hexagonal Bi lattice (Fig. 4a)36. The Bi lattice
has an in-plane lattice constant of 3.87 Å, B20% larger than that

of free-standing Bi layer. This gives rise to a large tensile surface
stress of 0.12 eV Å� 1 in the top surface of Bi/Cl/Si(111), obtained
from first-principles calculations. On the other hand, the bottom
surface of Bi/Cl/Si(111), which might be bare (or H-passivated)
during the release process from the underneath substrate, has a
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much smaller surface stress of � 0.04 (or B0.00 eV Å� 1).
Therefore, there can exist a stress imbalance between the
top and bottom surface of Bi/Cl/Si(111) nanofilm, which
provides a driving force for self-bending. Using the surface
stress difference Ds as input, we can estimate the bending
curvature k of Bi/Cl/Si(111) nanofilm as a function of film
thickness t using Stoney formula39 k¼ (6Ds)/(Ct2), as shown in
Fig. 4b, where C¼ E/(1� n2) is a constant related to Young’s
modulus E and Poisson ratio n of Si.

As an important strategy in nanomechanical architecture,
besides changing film thickness, another effective way to control
the bending curvature of the rolled-up tubular structure is to
grow lattice-mismatched multilayer film to partition the amount
of misfit strain and tune the driving force for bending.
Specifically, SiGe film is often used for this purpose, as Ge lattice
is B4.2% larger than Si lattice and the growth SiGe film is a
well-established technique. To verify this idea, we have taken the
bilayer system of Bi/Cl/SiGe(111) film (two atomic layers of Si
and Ge each) as an example, and the calculated total imbalanced
‘surface’ stress in this system is 0.21 eV Å� 1, about two times
larger than that of Bi/Cl/Si(111). We can estimate the bending
curvature of Bi/Cl/SiGe(111) nanofilm as a function of total film
thickness t from Timoshenko formula40 k¼ (6Ds/Est2)g and

g ¼ ð1þbÞ3
1þ 4abþ 6ab2 þ 4ab3 þ a2b4, where a¼ Ef/Es, Ef and Es are Young’s

modulus of Si and Ge, respectively, b¼ tf/ts is the ratio of Si
thickness tf and Ge thickness ts, and t¼ tfþ ts. The result
is shown in Fig. 4b, confirming a larger bending curvature than
Bi/Cl/Si (111) system.

Next, we use first-principles calculations to directly simulate
the self-bending curvature of a nanoribbon of finite width made
of Bi/Cl/SiGe(111) nanofilm, as shown in Fig. 4c,d.
For comparison, we again choose two atomic layers of Si and
Ge. The edges are along the zigzag edge direction of Bi lattice and
passivated with H atoms to remove dangling bonds.
The calculated self-bending curvature of Bi/Cl/SiGe(111) is
0.0136 nm� 1, which agrees quite well with the estimation from
Timoshenko formula, that is, 0.0119 nm� 1.

Electronic properties of curved Bi/Cl/SiGe(111) films. After the
self-bending curvature of Bi/Cl/SiGe(111) is determined, three
different ribbon widths are used to simulate three different ye,
which are 61�, 126� and 180�, as indicated, respectively, in Fig. 4d,
for topological edge state calculations. As Bi pz orbitals are
passivated by the top Si atoms on the substrate, the remaining
Bi pxþ py orbitals realize a QSH phase, which can be described by
a four-band TB model Hamiltonian of equations (1 and 2).
The calculated band structures for these three ye cases, along with
the case of ye¼ 0�, is shown in Fig. 5a, where the existence of
linearly dispersive Dirac bands crossing the Fermi level indicates
a nontrivial band topology. The Dirac edge states persist with
bending, as expected from their topological origin to be robust
against structural deformation. After bending, the degeneracy of
the two edge states are slightly lifted when the energy moves away
from the Fermi level because of the broken symmetry.

Figure 5b,c shows the evolution of the spin direction of the
conduction and valence edge states slightly off the Dirac point.
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Figure 5 | Electronic structures of Bi/Cl/SiGe(111) ribbons. (a) First-principles calculated band structures of four Bi/Cl/SiGe(111) ribbons at different

bending angle ye, 0�, 61�, 126� and 180�, respectively. The bulk bands are marked in yellow region. (b) Spin rotations of conduction band edge states at a k

momentum slightly off Dirac point (X), as marked in a. (c) Same as b but for valence band edge states.
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For ye¼ 0�, the spins are aligned normal to the ribbon plane
(z-axis) and the two edge spins are orientated antiparallel
(ys¼ 180�) with each other. On bending, as shown in Fig. 5b,
for conduction band edge states the spins rotate counterclockwise
(clockwise) for the left (right) states as ye increases. When ye

reaches B180�, spins are rotated into almost parallel along the
y-axis at both edges (ys¼ 4�). Similar behaviour is found
for valence band edge states, as shown in Fig. 5c. Thus, our
first-principles calculations of a real QSH material not only can
confirm the concept proposed, but also suggest a promising way
to realize topological spintronics materials by nanomechanical
architecture.

Discussion
We have theoretically proposed a concept of bending strain
engineering of spin transport in QSH systems, which is generally
applicable to all QSH materials and especially suited for surface or
interface-based QSH states on or inside a thinfilm. It affords a
promising route towards realization of robust QSH-based spin
injectors with 100% spin polarization. A curved QSH system may
be potentially realized by subjecting a QSH nanofilm to
nanomechanical architecture process. Our finding opens an
interesting avenue to topological nano-mechanospintronics,
enabling generation and transport of spin current by mechanical
bending of a QSH system. It significantly advances our
fundamental knowledge of spin transport properties, as well as
broadens the scope of nanotechnology into topological materials
and devices and vice versa.

Methods
First-principles calculations. First-principles calculations based on the density
functional theory were performed within the generalized gradient approximation of
PBE form for the exchange-correlation of electrons as implemented in the VASP
Package41. The projected-augmented-wave method was used to describe the atomic
potentials. The SOC was included at the second variational step using the
scalar-relativistic eigen-functions as a basis. A cutoff energy of 450 eV was used for
the expansion of wave functions and potentials in the plane-wave basis. Sufficient
k-point meshes were used for sampling the Brillouin zone. The atomic structures of
all the calculated systems were fully relaxed until the Helmann-Feynman forces
were o0.02 eV Å� 1. To simulate the nanoribbon structures in the plane-wave
basis, we employed the supercell method. Both the edge-to-edge and layer-to-layer
distances between adjacent ribbons are set 420 Å, to eliminate artificial
interactions between neighbouring cells.

Data availability. The data that support the findings of this study are available
from the first author and corresponding author on request.
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