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NEDD4 controls spermatogonial stem cell
homeostasis and stress response by regulating
messenger ribonucleoprotein complexes
Zhi Zhou1,2, Hiroshi Kawabe3, Atsushi Suzuki4, Kaori Shinmyozu5 & Yumiko Saga1,6,7

P bodies (PBs) and stress granules (SGs) are conserved cytoplasmic aggregates of cellular

messenger ribonucleoprotein complexes (mRNPs) that are implicated in mRNA metabolism

and play crucial roles in adult stem cell homeostasis and stress responses. However, the

mechanisms underlying the dynamics of mRNP granules are poorly understood. Here, we

report NEDD4, an E3 ubiquitin ligase, as a key regulator of mRNP dynamics that controls

the size of the spermatogonial progenitor cell (SPC) pool. We find that NEDD4 targets

an RNA-binding protein, NANOS2, in spermatogonia to destabilize it, leading to cell

differentiation. In addition, NEDD4 is required for SG clearance. NEDD4 targets SGs and

facilitates their rapid clearance through the endosomal–lysosomal pathway during the

recovery period. Therefore, NEDD4 controls the turnover of mRNP components and inhibits

pathological SG accumulation. Accordingly, we propose that a NEDD4-mediated mechanism

regulates mRNP dynamics, and facilitates SPC homeostasis and viability under normal and

stress conditions.
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P
ost-transcriptional regulation of messenger RNA (mRNA)
translation, sequestration and degradation plays a
crucial role in modulating appropriate spatiotemporal

gene expression. This RNA-based regulation influences many
biological processes, including stem cell homeostasis, embryogen-
esis and stress response1–3. The post-transcriptional regulation
of mRNA is controlled by a complicated repertoire of messenger
ribonucleoprotein (mRNP) complexes4. Therefore, research
into post-transcriptional mechanisms of mRNP dynamics in
organisms in diverse environments is crucial. These dynamics
include mRNP formation and clearance.

P bodies (PBs) and stress granules (SGs) are well-characterized
nonmembranous structures storing nontranslated mRNPs in the
cytoplasm5. PBs usually consist of mRNAs aggregated with
mRNA degradation machinery; in general, these mRNPs are
present at a low level, but can be upregulated if a large pool of
nontranslated mRNAs appears, for example, in spermatogonial
stem cells (SSC), satellite cells or neural stem cells1,3,6. SGs are
aggregates formed under stress conditions such as a low nutrient
supply, heat or hypoxia; SGs are thought to represent a pool of
mRNPs in a state of translational repression5. More recently, SGs
have emerged as participants in the pathogenesis of some diseases
due to formation of pathological aggregates7. Nevertheless,
whether these mRNPs are involved in stress response in germ
cells is largely unknown.

SSCs retain self-renewal capacity and contribute to the
production of spermatozoa throughout the lifetime of a male
animal8. Undifferentiated spermatogonia are located near the
surface of seminiferous tubules that are covered by the basement
membrane and peritubular cells. They are classified as Asingle (As),
Apaired (Apr) or Aaligned (Aal) spermatogonia according to their
morphological features9. In adult testes, NANOS2 and GFRa1 are
markers of SSCs, which are the most primitive As and Apr stem
cell populations. Aal spermatogonia, marked by NGN3, CDH1
and PLZF, are the transient amplifying spermatogonial
progenitor cells (SPCs), which have relatively lower self-renewal
ability10–12. Entry into differentiation is precisely controlled in
response to environmental cues, and downstream signalling
events are synchronized with epithelial stages in seminiferous
tubules13. Sertoli cells secrete glial cell line-derived neurotrophic
factor in a stage-dependent manner and promote self-renewal of
SSCs (ref. 14). Retinoic acid (RA), another stage-dependent
signal, promotes differentiation of germ cells15. These
environmental signals synchronize differentiation of germ cells
and generate a stage-dependent distribution pattern of germ
cells13. Recently, we provided evidence of a post-transcriptional
buffer system controlled by NANOS2-mRNP complexes that
protect GFRa1þNANOS2þ stem cells from differentiation
signals in the seminiferous tubules3. Little is known, however,
about the mechanism of removal of this NANOS2-mRNP barrier
and the eventual induction of SSC differentiation.

Due to the critical functions of these mRNPs in SSCs and the
possible connection to stress-related diseases, it is important to
understand the mechanisms that modulate the assembly of
PBs and SGs, and their disassembly and clearance from SSCs.
One possible regulator is an E3 ubiquitin ligase, NEDD4
(neural precursor cell expressed developmentally downregulated
protein 4-1), which is coimmunoprecipitated with NANOS2 in
male gonads. Accumulation of the NANOS2 protein promotes
mRNP assembly and prevents both proliferation and differentia-
tion of SSCs (refs 3,16), whereas NEDD4 is known to positively
regulate cell growth and differentiation in many types of
adult stem cells17,18. In addition, NEDD4 is the major E3
ligase involved in the clearance of heat-damaged proteins
from the cell19. Furthermore, deletion of Itchy, which encodes
another NEDD4 family member, causes germ cell apoptosis and

subfertility in male mice20. We therefore hypothesized that
NEDD4 participates in both mRNP regulation and the heat-stress
response during spermatogenesis. To test this hypothesis,
we develop systems to genetically manipulate the expression
of NEDD4 in male germ cells. We find that the NEDD4 complex
regulates mRNP dynamics by targeting mRNP to the lysosomal
degradation pathway under normal and heat-stress conditions,
thus facilitating differentiation and survival of SPCs under stress.

Results
NEDD4 expression in testes under normal and stress states.
NANOS2 plays an essential role in the maintenance of
both embryonic male gonocytes and adult SSCs (refs 21,22).
In adult testes, NANOS2 and GFRa1 express in As and Apr stem
cell populations (Fig. 1a). NANOS2 is essential to maintain stem
cell state, but the protein has to be cleared for stem cells to enter
the differentiation pathway. To elucidate the mechanism
of NANOS2 protein regulation, we searched for NANOS2-
interacting proteins from male gonadal extracts by immunopre-
cipitation (IP) followed by mass-spectrometric analysis (Supple-
mentary Fig. 1A). We found NEDD4, an E3 ubiquitin ligase, as a
strong candidate of a NANOS2-regulating protein. Given the role
of NEDD4 in controlling the fate of adult stem cells in many
tissues17,18, we tested whether NEDD4 also participates in male
spermatogonia differentiation. We observed broad expression
of NEDD4 in adult testes, but enrichment of NEDD4 was
detected in CDH1þ SPCs (Supplementary Fig. 1B,C). In human
testes, the NEDD4 protein is detectable in seminiferous tubular
germ cells, but its presence is less pronounced in somatic Leydig
cells23. The conserved expression pattern indicated that NEDD4
might function in mammalian testes. Recent reports have
indicated a conserved function of NEDD4 (Rsp5) in target
protein degradation under stress conditions19. As SG formation is
known to protect germ cells from stress24 and heat damage25, we
hypothesized that NEDD4 is involved in mouse spermatogenesis
by regulating heat responses in germ cells. To test this hypothesis,
we subjected both testes and cultured germline stem cells (GSCs)
to heat stress at 42 �C for 20 min according to the previous
report25. Given that the testicular temperature is maintained at
2–4 �C below the core body temperature24, we used 33 �C as a
control treatment (Supplementary Fig. 1D). By staining with the
common SG marker TIAR and the germ cell-specific SG marker
DAZL, we observed strong induction of SG formation25 after
20 min of heat stress (Fig. 1b). Under the control temperature,
NEDD4 was broadly observed in the cytoplasm, but NEDD4
was co-located with DAZL during heat stress (Fig. 1b). This
co-localization with SGs occurred in both CDH1þ and CDH1�

cells (Supplementary Fig. 1E). The changes in subcellular
localization, similar to those of SGs, were also observed for
PABP1 (Supplementary Fig. 1F), which is a component of the
mRNP complex and may be ubiquitinated by NEDD4 or Rsp5, as
reported previously19.

In addition, we found that NANOS2 was also colocalized
with NEDD4 and DAZL (Fig. 1d). A NANOS2-IP assay showed
that it interacted with NEDD4 and PABP1 in GSCs in its
endogenous form (Fig. 1c and Supplementary Fig. 1G,H).
Consistent with this result, a NEDD4 IP study also demonstrated
that NEDD4 interacted with NANOS2, DAZL and PABP1,
but not with TIAR, under both normal and heat-stress conditions
(Fig. 1e). NEDD4 localization in speckles has been observed
during its mediation of protein endocytosis through the
endosomal–lysosomal pathway26,27. This recruitment is usually
mediated by coactivators (NDFIP proteins)28. Staining with an
early endosome marker, transferrin receptor (TfR) revealed that
NEDD-4-positive SGs were localized to endosomes (Fig. 1f).
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These data suggest that germ cell mRNPs are dynamically
modulated under normal and stress conditions, and that NEDD4
may be involved in this process.

NEDD4 function in cultured SSC growth and differentiation.
To assess the possible role of NEDD4 in SSC maintenance, we

conducted a knockdown experiment using cultured GSCs. We
introduced Nedd4 short hairpin RNAs (shRNAs) by means of
the pSico lentivirus, a 4-hydroxytamoxifen (4-OHT)-inducible
conditional knockdown (cKD) system, into Rosa-CreERT2 GSCs
(Supplementary Fig. 2A,B). With this treatment, a reduction
of Nedd4 at both the mRNA and protein levels was observed
after 4 days (Fig. 2a–c). We then monitored the cell recovery rate
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of these GSC lines for 15 days (at 5-day intervals)3,29 and found
that Nedd4-cKD GSCs exhibited a lower rate of cell recovery
(Fig. 2d and Supplementary Fig. 2C). We therefore checked gene
expression using quantitative reverse transcription PCR and
found that the expression of gene markers of spermatogonial
self-renewal (including Nanos2 and Gfra1) was increased, while
differentiation-related transcripts, such as Sohlh1, Sohlh2 and
Taf7l, were downregulated (Fig. 2a), suggesting that NEDD4 is
required to promote SSC differentiation.

Knockdown of Nedd4 in SSCs increased NANOS2 protein levels.
Next, we identified possible targets of NEDD4 in SSCs. NEDD4
targets many proteins involved in cell proliferation and differ-
entiation, such as PTEN, a-synuclein, and IRS1 (refs 26–28,30),
for both proteasomal and lysosomal degradation. Among these
targets, PTEN, a repressor of spermatogonial proliferation31,
did not accumulate in Nedd4-cKD GSCs (Fig. 2b,c), which is

consistent with reports showing that NEDD4 is dispensable for
ubiquitination of PTEN (refs 32,33). NANOS2, a protein that
interacts with NEDD4 (Fig. 1c), was upregulated in Nedd4-cKD
GSCs (Fig. 2b,c). As NANOS2 suppresses both proliferation
and differentiation of SSCs by regulating the fate of mRNAs3,16,
the decreased proliferation and differentiation in Nedd4-cKD
GSCs may be partially attributed to the increased NANOS2
protein level. In line with this notion, the number of NANOS2
foci increased in Nedd4-cKD GSCs (Fig. 2e). Furthermore,
ectopically expressed NEDD4 in GSCs reduced NANOS2
protein (Supplementary Fig. 2D) and increased expression of
NANOS2 targets Sohlh1, Sohlh2 and Taf7l (Supplementary
Fig. 2E). In addition, further expression of NANOS2 repressed
those differentiation targets (Supplementary Fig. 2D,E). These
results indicate that NEDD4 is required for GSC differentiation
by decreasing NANOS2 protein. The NANOS2-mRNP complex
also inhibits the mTORC1 (mammalian target of rapamycin

4 30 pSico-N4
shRNA1

pSico-N4
shRNA2

NS

NS

NS

DMSO

4-OHT
DMSO

4-OHT

25

20

15

10

5

0
Days 0

pSico-N4 shRNA1
MERGED CDH1 NANOS2

pSico-N4
shRNA1

pSico-N4
shRNA2

pSico-N4
shRNA1 pSico-N4 shRNA1 pSico-N4 shRNA1

DMSO

DMSO

CHX (h)

NANOS2

NEDD4

β-TUBULIN

15

100

55
kDa

0 3 6 9 0 3 6 9

100

75

50

R
at

io
 o

f i
ni

tia
l

N
A

N
O

S
2 

pr
ot

ei
n 

(%
)

25

0
0

a d

b

f g h i

ec

CHX (h)
3 6 9

4-OHT

4-OHT

pSico-N4
shRNA2

p-RPS6
120

90

60

R
el

at
iv

e 
in

te
ns

ity

30

0

PTEN NANOS2

NS

NS
sh

R
N

A
1

sh
R

N
A

2

sh
R

N
A

1
sh

R
N

A
2

sh
R

N
A

1
sh

R
N

A
2

sh
R

N
A

1
sh

R
N

A
2

sh
R

N
A

1
sh

R
N

A
2

sh
R

N
A

1
sh

R
N

A
2

5 10 15

pSico-N4 shRNA1
pSico-N4 shRNA2

3 ** **

**
** **

* *

* * *

***

***
**

**

*

*
*

2

1

0
R

el
at

iv
e 

m
R

N
A

ex
pr

es
si

on
 (

lo
g 2

)

C
el

l n
um

be
r 

(1
05  c

el
l)

4-
O

H
T

D
M

S
O

–1

–2

–3

–4

4-OHT

4-OHT

p-RPS6
37

37
RPS6

2.5

2

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

1.5

1

0.5

0

2.5

2

1.5

1

0.5

0
DMSO4-OHT

DMSO4-OHT

DMSO 4-OHT

PTEN

GFRα1

NANOS2

NEDD4

β-TUBULIN

55

55

15

100

55
kDa

Ned
d4

Nan
os

2

Gfrα
1

Soh
lh

1

Soh
lh

2
Taf

7I
C-k

it
Plzf

Figure 2 | cKD of Nedd4 prevents GSC differentiation. (a) qPCR analysis of the key spermatogonial marker genes in pSico-N4 shRNA1 or shRNA2 GSCs

treated with 4-OHT for 96 h. For each gene, from the average mRNA level in GSCs treated with 4-OHT, we subtracted that in GSCs treated with DMSO

(n¼ 3), and show them here as (log2; ±s.d.). *Po0.05; **Po0.01, t-test. (b,c) pSico-Nedd4 shRNA1 or shRNA2 GSCs treated with DMSO (vehicle)

or 4-OHT (1mM) were harvested for western blotting (b). The filled circles indicate 4-OHT treated groups. (c) Values of relative band intensity for PTEN

and NANOS2 are shown as mean±s.d. ***Po0.001, **Po0.01, t-test. (d) pSico- Nedd4 shRNA1 or shRNA2 GSCs were treated with DMSO or 4-OHT and

then passaged three times at 5-day intervals. The number of cells was counted to determine the cell recovery as an indicator of cell growth. The results are

presented as mean±s.d. (n¼ 3). The number of cells at each time point was compared by a t-test, *Po0.05, t-test. (e) pSico- Nedd4 shRNA1 GSCs treated

with DMSO or 4-OHT for 96 h were fixed, and used for IF with anti-NANOS2 and anti-CDH1 antibodies. The number of NANOS2 foci was increased by the

Nedd4 knockdown. Scale bar, 10mm, n¼ 3. (f,g) pSico- Nedd4 shRNA1 GSCs treated with DMSO (vehicle) or 4-OHT (1 mM) for 96 h were harvested for

western blotting to detect RPS6, phosphorylated RPS6. The data are presented as mean±s.d. (n¼ 3). **Po0.01, ***Po0.001, t-test. (h,i) pSico-Nedd4

shRNA1 GSCs were treated with DMSO (vehicle) or 4-OHT (1 mM) for 96 h and then incubated with CHX (20 nM) for the indicated periods. The cells were

harvested for western blotting to detect the NANOS2 protein. (i) The intensity of bands was measured and shown as mean±s.d. (n¼ 3).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15662

4 NATURE COMMUNICATIONS | 8:15662 | DOI: 10.1038/ncomms15662 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


complex 1) signalling, a pathway crucial for SSC proliferation and
differentiation3,34. In Nedd4-cKD GSCs, phosphorylated
RPS6, a major output for mTORC1 activity was reduced,
(p-RPS6; Fig. 2f,g), which supported our previous observation.
Given that Nanos2 mRNA was upregulated in Nedd4-cKD
GSCs, NANOS2 protein upregulation could be ascribed to the
transcriptional regulation. To verify the translational regulation of
NANOS2 via NEDD4, a cycloheximide (CHX) chase assay was
performed. In the presence of NEDD4, the amount of NANOS2
protein decreased on CHX treatment, while in Nedd4-cKD GSCs,
the amount of NANOS2 protein was stable (Fig. 2h,i), confirming
that NEDD4 modulated NANOS2 protein stability.

Nedd4 deletion reduces spermatogonial cells in vivo. Whole-
body deletion of Nedd4 results in neonatal death35, precluding
analysis of Nedd4-deficient germ cells. Therefore to investigate
the in vivo function of NEDD4 during spermatogenesis, we used a
Nedd4-floxed allele36 with the Cre recombinase under control of
the Nanos3 promoter (Nedd4f/D, Nanos3-Cre). CRE activity was
germ cell specific and almost 100% at postnatal day 1 as shown by
a floxed yellow fluorescent protein (YFP) reporter (Supple-
mentary Fig. 3A). Immunohistochemistry demonstrated the
deletion of NEDD4 protein in the Nedd4 cKO mice
(Supplementary Fig. 3B,C). Histological analyses of 6-week-old

Nedd4f/D;Nanos3-Cre mice showed no obvious defects, even
though testes were smaller than those of controls (Fig. 3a). We
next examined the time-dependent effects of conditional
knockout (cKO) of Nedd4 on testes. The testes from older
Nedd4 cKO mice (3 and 6 months of age) exhibited
a marked reduction in weight (Fig. 3a,b), in line with the
decreased size and cell proliferation observed in other organs30,35.
Furthermore, histological results also showed an increased
number of abnormal testicular tubules with a reduced fraction
of germ cells in 3-month-old Nedd4 cKO mice (Fig. 3c,d).
These results suggest that Nedd4-null germ cells were detrimental
for spermatogenesis, even though the Nedd4 cKO mice were
fertile at least until 6 months.

To clarify the function of NEDD4 in germ cells, we analysed
germ cell properties in testes from 3- and 6-month-old Nedd4
cKO mice. We confirmed that the GATA1þ Sertoli cell numbers
were unchanged in Nedd4 cKO mice (Fig. 3e,f). Consistent with
our observation that Nedd4 was enriched in CDH1þ SSC (Fig. 1),
the CDH1þ SPC number was reduced by deletion of Nedd4 in
male germ cells (Fig. 3e,g). The decrease in the SPC population
was also revealed by PLZF staining (Supplementary Fig. 3D,E).
PLZF is a factor important for control of the size of the SPC
pool11. Consequently, the number of meiotic germ cells was also
reduced in Nedd4 cKO testes (Supplementary Fig. 3F). However,
no obvious apoptotic germ cells were observed in Nedd4 cKO
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testes (Supplementary Fig. 3G). These results suggest that deletion
of Nedd4 reduced the SPC pool size.

NEDD4 regulates SSC homeostasis through NANOS2 in vivo.
We next investigated the cause of the reduction in the SPC
pool. Given that NEDD4 is important for both proliferation
and differentiation of cultured GSCs (Fig. 2), we compared
the proliferation among those CDH1þ progenitor cells by
costaining for the mitosis marker Ki67. The number of CDH1þ

SPCs was reduced in Nedd4 cKO testes (Figs 3g and 4a,b).
The relative number of Ki67-positive cells in CDH1þ SPCs
was also reduced (by half) as compared with the number in

control mice (Fig. 4a,c). As NANOS2 is a strong inhibitor
of both SSC differentiation and proliferation3,16, and because
NEDD4 was found to control the stability of NANOS2 in
cultured GSCs (Fig. 2), we next examined NANOS2 expression
in vivo. In control testes, NANOS2þ SSCs were limited to
the most primitive As and Apr cells (Fig. 1a), which constitute
B30% of the CDH1þ SPC pool. In contrast, this proportion was
100% in Nedd4 cKO testes (Fig. 4d,e). Indeed, in Nedd4 cKO
testes, the NANOS2þ population was greater than GFRa1þ

cells, even though they are almost the same population
(most primitive As and Apr SSCs) in control testes (Suppleme-
ntary Fig. 4A). The NANOS2 protein was observed even in
early meiotic cells in Nedd4 cKO testes, but not in control testes
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(Supplementary Fig. 4B). These results suggest that the NANOS2
protein was hardly cleared in the absence of Nedd4;
thus, stabilized NANOS2 may be responsible for the reduction
of SPC pool.

We also analysed mTORC1 signalling and found stage-
dependent activation of p-RPS6 (Fig. 4f)34 in both somatic and
CDH1þ spermatogonia in adult testes (Fig. 4f, Supplementary
Fig. 4C,D) in agreement with the recent reports showing
stronger activation of mTORC1 after RA treatment34. In
contrast, mTORC1 signalling is suppressed in NANOS2þ

SSCs3. Therefore, we considered that clearance of NANOS2 was
a prerequisite for RA-induced mTORC1 activation in CDH1þ

SPCs during the spermatogenic epithelial cycle. As expected, in
the absence of Nedd4, mTORC1 activation was barely detectable
in CDH1þ SPCs, even in the RA-rich stages VII–XI of tubules
(Fig. 4f,g). Therefore, the lower mitotic activity of SSCs must
be due to the impaired mTORC1 activity by stabilized
NANOS2 in Nedd4 cKO mice, and this may be the cause of
the smaller stem cell pool and the decreased testes mass. In
conclusion, NEDD4 controls the SPC pool size by regulating
NANOS2 stability during the normal epithelial spermatogenetic
cycle.

Nedd4 affects SG clearance after heat stress in GSCs. Under
heat-stress conditions, NANOS2 was recruited to SGs (Fig. 1d).
As heat stress changed the subcellular localization of NEDD4 to
SGs in GSCs, and NEDD4 interacted with mRNP components
such as NANOS2, DAZL and PABP1, we hypothesized that
NEDD4 modulates SG dynamics under heat stress. We first tested
our supposition using Nedd4-cKD GSCs. After incubation of
control and Nedd4-cKD GSCs at 42 �C, a number of SGs
with NANOS2 was formed, and they were located in early
endosomes (TfR; Supplementary Fig. 5A). When we returned the
heat-shocked cells into a 33 �C incubator for 3 h (Fig. 5a), SGs
with NANOS2 were disassembled in control GSCs, but this
disassembly rarely occurred in Nedd4-cKD GSCs (Fig. 5b). Thus,
we theorized that NEDD4 facilitates clearance of SGs after
heat stress. To test this idea, we used two other SG markers,
DAZL and TIAR. When GSCs were cultured at 33 and 37 �C,
few SGs formed in either the control or Nedd4-cKD GSCs
(Fig. 5c,f). SG formation was increased when those GSCs were
cultured at 42 �C for 20 min (Fig. 5d,f). When these cells were
returned to the 33 �C incubator, the majority of the SGs were
cleared in the control GSCs, while 40–50% of SGs persisted in
Nedd4-cKD GSCs even after 3 h of recovery (Fig. 5e,f). SG
clearance defects are observed when the autophagy pathway is
blocked or Valosin-containing protein (VCP), an ubiquitin
segregase that helps extract polyubiquitinated proteins, is
knocked down2. Thus, we next tested whether SG clearance is
mediated by the endosomal–lysosomal pathway by treating
GSCs with chloroquine (CLQ) after heat stress. CLQ treatment
blocked almost all SG clearance (B95%), similar to that seen in
Nedd4-KD GSCs (Fig. 5g and Supplementary Fig. 5B,C). These
results confirmed that the endosomal–lysosomal pathway
mediates SG clearance in GSCs, and that NEDD4, an E3 ligase,
is important for this process.

Deletion of Nedd4 reduces thermotolerance of spermatogonia.
Based on the data from Nedd4-cKD GSCs, we next examined
the function of NEDD4 in thermotolerance in vivo. Mammalian
testes are located in the scrotum, which has a temperature
below the core body temperature. Artificially induced crypto-
rchidism or forced heat stress on the testes causes apoptosis of
germ cells25,37. On the other hand, the spermatogonia population
under heat-stress conditions induces SG formation to resist

heat stress25. We next studied whether both rapid formation
of SGs during stress and dynamic clearance of SGs soon
after stress would contribute to the survival of SSCs. We first
examined the effects of long-term heat stress on spermatogenesis
(Supplementary Fig. 6A). A single heat stress (20 min) did not
affect spermatogenesis, but repeated heat stress (7–21 days,
20 min per day) reduced testes weight and spermatogenesis
(Supplementary Fig. 6B,C). We then compared apoptosis among
different germ cell populations. Increased c-PARP staining was
observed in SYCP3þ meiotic cells after 7 days of heat stress
(Supplementary Fig. 6D,E), while most CDH1þ cells did not
undergo apoptosis (Supplementary Fig. 6F,G). This result is
consistent with a previous study showing that spermatogonia are
more resistant to heat stress because of rapid formation of SGs25.
To test whether NEDD4 is also involved in the clearance of
SGs upon heat stress in vivo as seen in GSCs, we decided to
compare the responses in the control and Nedd4 cKO testes after
7 days of heat stress (Fig. 6a). After a 1-day recovery, SGs were
disassembled successfully in control testes but not in Nedd4 cKO
testes (Fig. 6b). In addition, a greater proportion of CDH1þ SPCs
underwent apoptosis in Nedd4 cKO testes than in control testes
(Fig. 6c,d). This phenomenon resulted in a further reduction
of the CDH1þ SPCs pool by Nedd4 deletion (Fig. 6c,e). Similar
results were obtained with cultured GSCs. Under normal
conditions, a low level of NEDD4 did not affect survival of
GSCs. During heat stress, however, Nedd4-cKD GSCs formed SGs
normally, but they had difficulty in clearing the SGs and started to
die. As a result, during the 4-hr recovery period, the apoptosis
index increased in Nedd4-cKD cells as compared with control
cells (Fig. 6f,g). To further trace the defects of the CDH1þ

SPC pool in Nedd4 cKO testes, we used a 30-day recovery time,
which is almost equal to one round of spermatogenesis15.
In control testes, CDH1þ cells were protected from heat
stress and subsequently recovered, thus spermatogenesis was
well reconstituted after 1 month (Supplementary Fig. 6H,I). In
contrast, damaged CDH1þ stem cells by heat stress in Nedd4
cKO testes resulted in marked loss of germ cell development
(Supplementary Fig. 6H), and the abnormal testicular tubules
with reduced germ cell reached to B70%, whereas it was
only 30% in the littermates of Nedd4 cKO mice without heat
treatments (Supplementary Fig. 6I). Our results demonstrate that
NEDD4 safeguards SSCs from heat stress to secure long-lasting
spermatogenesis in males.

NEDD4 directly targets NANOS2 for degradation. Our
experiments indicate that NEDD4 is required for the main-
tenance of the SPC pool in normal spermatogenesis, and it is
important to clear SGs formed in the heat-stress conditions. To
explore the underlying molecular mechanism of how NEDD4
works, we investigated the relationship between NEDD4 and
NANOS2 in more detail. We expressed MYC-NEDD4 and
FLAG-NANOS2 in HEK 293T cells and examined the interac-
tion. The results showed that NEDD4 was coimmunoprecipitated
with NANOS2 (Fig. 7a), as was expected, based on the
endogenous interaction of NEDD4-NANOS2 in GSCs (Fig. 1c,e).
Subsequently, we performed an in vitro pull-down assay using
glutathione S-transferase (GST)-NEDD4 and MBP-NANOS2
purified from Escherichia coli, and confirmed the direct
interaction of NEDD4 and NANOS2 (Fig. 7b). To further
confirm the interaction in vivo and to visualize the dynamics of
protein interaction, we conducted a bimolecular fluorescence
complementation (BiFC) assay38 (Fig. 7c). After transfection of
the plasmids encoding N-terminal and C-terminal nonfluorescent
VENUS (NTV and CTV) fragments to NEDD4 and NANOS2,
respectively, we monitored the signals from reconstituted VENUS
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as readout of NANOS2 and NEDD4 interaction (Fig. 7c–g and
Supplementary Fig. 7A,B). As NANOS2 is localized to PBs in
male germ cells39, we used the PB marker RCK to determine
whether the NANOS2-NEDD4 complex was localized to PBs. We
found that some portion of NANOS2 localized to RCK-positive
P-bodies. However, the signal from the VENUS protein did not
co-localize with the RCK signals, indicating that the interaction
between NANOS2 and NEDD4 occurred in other organelles
(Fig. 7e, Supplementary Fig. 7B). Accordingly, we tested other
markers and found that VENUS signals colocalized with endo-
some (TfR, Fig. 7f and Supplementary Fig. 7B) and lysosome

(LAMP1, Fig. 7g and Supplementary Fig. 7B) markers, indicating
that the NANOS2-NEDD4 complex was recruited to the
endosome-lysosome pathway, which supports our previous
results using GSCs (Fig. 1f, Supplementary Figs 4 and 5A).

Next, we investigated the possibility of NANOS2 being a direct
target of NEDD4 and that NANOS2 could be ubiquitinated by
NEDD4. To test this possibility, we conducted an in vitro
ubiquitination assay. MBP-NANOS2 was incubated with or
without GST-NEDD4, or ubiquitin, and we found that signals of
high molecular weight appeared in western blotting using the
anti-NANOS2 antibody only when MBP-NANOS2 was incubated
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with GST-NEDD4 and ubiquitin (Fig. 7h). Interestingly, the level
of the parent band of MBP-NANOS2 showed a clear reduction
after the ubiquitination reaction. To further test whether
NANOS2 could be ubiquitinated by endogenous NEDD4 or
not, we introduced MYC-NANOS2 to mouse embryonic
fibroblast (MEF) cells established from both wild type (WT)
and Nedd4 knockout (KO) mice. NANOS2 was successfully
ubiquitinated in WT MEF cells, but this ubiquitination
was abrogated in Nedd4 knockout MEF cells (Supplementary
Fig. 7C). These results indicate that NEDD4 has the potential to
ubiquitinate NANOS2 efficiently.

Given that NEDD4 recruitment is known to be mediated
by the coactivator of NEDD4, NDFIP2 (ref. 28), we investigated

localization of NDFIP2 using the BiFC assay and found
that NDFIP2 also colocalized with the NEDD4/NANOS2
complex (Supplementary Fig. 7A,B), further supporting our
hypothesis that the NANOS2 protein is degraded via a NEDD4/
NDFIP2-mediated endosomal–lysosomal pathway. To examine
whether complex formation of NEDD4 and NDFIP2 promotes
NANOS2 ubiquitination in vivo, FLAG-tagged NANOS2
was expressed in HEK293 cells with or without MYC-NEDD4
and MYC-NDFIP2. Immunoprecipitated FLAG-NANOS2
was subjected to SDS–polyacrylamide gel electrophoresis
(SDS–PAGE) and western blotting using anti-FLAG, anti-MYC
and anti-ubiquitin antibodies (Fig. 7i). The protein complex
including FLAG-NANOS2 was ubiquitinated by MYC-NEDD4,
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and overexpression of MYC-NDFIP2 further promoted this
ubiquitination (Fig. 7i). Furthermore, we found that a GSC
differentiation-inducing factor, RA, induced expression of
NDFIP2, which may enhance the degradation of NANOS2
protein (Supplementary Fig. 7D). These results are consistent
with previous observations that NDFIP2 acts as a coactivator
to promote auto-ubiquitination of the NEDD4/NDFIP2
complex and degradation of its targets through the lysosomal

pathway28,40. Our previous data demonstrated that a mutant
NANOS2 lacking N-terminal amino acids (DN10) has a much
higher stability in Hela cells41, indicating that the N-terminus
of NANOS2 functions as a degron. By Co-IP assay, we found
that DN10-NANOS2 rarely interacted with both NEDD4
and NDFIP2 (Supplementary Fig. 7E,F). We further confirmed
this by performing CHX chase assay and found that
DN10-NANOS2 was much more stable than WT NANOS2
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(Supplementary Fig. 7G,H). Taken all together, we concluded that
the N-terminal of NANOS2 serves as a binding region for the
NEDD4/NANOS2 complex, thereby leading it to lysosomal
degradation.

Discussion
An elaborate post-transcriptional network involving mRNP
granules controls the fate of many adult stem cells1,6. We
recently suggested that NANOS2-mRNP complexes establish a
‘post-transcriptional buffer’ system in SSCs to maintain their
stemness3,16. However, the mechanisms underlying the dynamic
regulation of mRNP granules are poorly understood. In the
present study, we demonstrated that the E3 ubiquitin ligase,
NEDD4, modulates mRNP dynamics in SSCs under both normal
and heat-stress conditions (Fig. 8). In the absence of NEDD4,
mRNP proteins like NANOS2 were stabilized in differentiating
SSCs, thereby slowing down the general proliferation and differe-
ntiation of SSCs. Under heat-stress conditions, the dynamics of
mRNPs facilitate the stress response in SSCs. The rapid formation
of mRNP SGs is known to be important for germ cell survival
during heat stress25. Our findings indicate that clearance of SGs is
also necessary for the cells to recover from heat stress. This
process is driven by NEDD4-mediated endosomal–lysosomal
degradation.

We found that one important function of NEDD4 in SSCs is
regulation of the state of mRNPs by targeting NANOS2 and/or
other substrates for degradation. Given the strong inhibitory
effects of NANOS2 on SSC differentiation, clearance of NANOS2
should be a prerequisite for progression to differentiation16. We
believe that the negative regulation of NANOS2 by NEDD4 plays
a key role in the initiation of SPC differentiation. During sperma-
togenesis, RA signalling acts as an inducer of differentiation42.
We showed that NDFIP2, a target of NEDD4 was upregulated by
RA signalling. NDFIP2 also recruits NEDD4 family proteins to
endosomes or lysosomes and functions as a coactivator to
promote degradation of target proteins28. Thus, we propose that
the RA-NEDD4 complex cascade enhances NANOS2 protein
degradation, thereby initiating SSC differentiation. NANOS2
effectively captures and silences target mRNAs, such as Sohlh1,
Sohlh2 and Taf7l, which are important for spermatogonial
differentiation3,39. In the absence of Nedd4, however, those
mRNAs are still captured by the stabilized NANOS2 protein, and
this situation inhibits differentiation. Consequently, the NANOS2
targets were hardly translated. Therefore, spermatogonia were
arrested in a NANOS2-positive state with poor differentiation.

Mammalian SGs are known to be cytoplasmic, nonmembra-
nous aggregates that are assembled in response to stressors such
as heat or toxic chemicals1,25,43. In the present study, we provide
lines of evidence to show that dynamic regulation of SGs by the
Nedd4 complex plays a crucial role in thermotolerance of SSCs.
First, we found that, after heat stress, most SGs were colocalized
with NEDD4 and with endosomes or lysosomes (Fig. 1), which
are typical membrane structures usually involved in endocytosis
and protein degradation. Second, both Nedd4-cKD GSCs and
Nedd4 cKO testes exhibited a decreased ability to clear SGs
after heat stress (Figs 3 and 6). Third, we identified several
SG components, such as NANOS2, DAZL and PABP1, which
are modulated by NEDD4; among them, NANOS2 was directly
targeted by NEDD4 for degradation. Finally, in the absence of
NEDD4, SSC survival was reduced.

We demonstrated that NEDD4 is involved in the regulation of
major components of germ cell mRNPs. This process must be
important for targeting of SGs to the autophagy pathway2 because
heavy ubiquitination of SGs is observed in mammalian cells44 and
knockdown of VCP, an ATPase for extraction of ubiquitinated
proteins from the cellular complex for degradation, blocks the
clearance of SGs2,45,46. In SSCs, strong enrichment of NEDD4 may
mediate ubiquitination of SG components in germ cells; thus, after
stress, specific components must be selectively guided for
lysosomal degradation. In addition, NEDD4 is the major E3
ligase for protein quality control after heat stress. The most
important mediator of the interaction of NEDD4 and its targets in
this process is the adaptor complex Hsp40-Ydj1 (ref. 19). A recent
study indicated that the Hsp40-Ydj1 complex colocalizes with SGs
after heat stress and is necessary for the clearance of these
granules47. Furthermore, a loss of function of DjA1, the mouse
homologue of Ydj1, leads to a severe defect in spermatogenesis48.
Our study and others have shown that SSCs exhibit greater heat-
stress resistance than differentiated cells25. Based on the above
observations, we believe that this phenomenon can be attributed to
greater NEDD4 activity, by which mRNPs are recruited to SGs
after heat stress and are rapidly cleared in the recovery period. The
regulation of mRNPs by the NEDD4 complex ensures sufficient
flexibility in the stress response of SSCs.

In conclusion, our data provide evidence of a protein
degradation pathway mediated by NEDD4 that regulates mRNP
complexes, and controls adult stem cell differentiation and
survival. This mechanism may provide insights into other areas of
adult stem cell research and/or pathogenesis of stress-induced
diseases.

Methods
Mouse maintenance and manipulations. Rosa-CreERT2 and Nanos3-Cre mice
were maintained and used as a tool to conditionally induce gene deletion21.
Nedd4flox/flox mice were used to delete Nedd4 specifically in germ cells36. All mice
were maintained in a C57BL/6/MCH background; we used mice less than 1 year
old for phenotype analysis. For heat-stress experiments, 12–16 weeks old male mice
were used. To administer heat stress to the mice, we followed a reported protocol25.
The mice were anaesthetized and then placed in a 33 �C or 42 �C water bath;
each heat stress lasted for 20 min per day (and some mice received daily
heat stresses for 7–21 days). All animal experiments were conducted with the
approval of the Institutional Animal Care and Use Committee of the National
Institute of Genetics, Japan.

Cell culture. MEFs derived from C57BL6 embryos (isolated at day 13.5
post-coitum) were used as feeders for GSC culture. MEF cells treated with
mitomycin-C were plated on 0.1% gelatin-coated dishes before GSC culture.
Rosa-CreERT2 GS cell line was generated in our lab. To establish Rosa-CreERT2

GSC lines, postnatal mouse testes (day P5) from Rosa-CreERT2 mice were digested
into cell suspension and then seed into 12-well plates for colony formation.
GSC colony were moved to feeder cells and cultured with StemPro medium
(Thermo) supplement with rat glial cell line-derived neurotrophic factor
(20 ng ml� 1, R&D systems), mouse EGF (20 ng ml� , BD Bioscience) and human
FGF2 (10 ng ml� , Life Technology). To induce CRE activity in GSCs carrying
Rosa-CreERT2, 4-OHT (1mM) was added to the GSC medium at the indicated time
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points. RA (100 nM; Wako) was used to induce mTORC1 signalling and GSC
differentiation. CLQ (10 mM; Sigma-Aldrich) was used to inhibit lysosomal
degradation. The 293T cell line (CRL-3216) purchased from ATCC was used for
lentivirus production.

Plasmids. Full-length sequences of Nanos2, Nedd4 and Ndfip2 were subcloned
from a GSC cDNA library into the pCMV-FLAG and pcDNA3.1-MYC plasmids.
Nanos2 and Nedd4 were subcloned in to pCSII-EF for lentivirus production.
For the GST pull down assay, Nedd4 was subcloned into the pGEX-5X vector
(GE Healthcare). Constructs were verified by sequencing.

Immunofluorescence and immunohistochemistry. Cultured GSCs grown on
MEF cells in chamber slides (8 well, IWAKI) were washed in PBS, fixed in
4% paraformaldehyde for 15 min at room temperature then permeabilized in PBS
with 0.3% Triton-X 100 for 15 min. After washing with PBST (PBS with 0.1% Tween
20), cells were blocked using 5% BSA in PBS before incubation with primary
antibodies overnight at 4 �C. Testes for IF were fixed in 4% paraformaldehyde
overnight at 4 �C and then embedded in paraffin or optimum cutting temperature
compound (O.C.T.), and processed for haematoxylin and eosin and immunostaining.
After primary and secondary antibody incubation, slides were counterstained with
DAPI and mounted in the mountant permaFluo (Thermo), then analysed using an
Olympus FV1200 confocal microscope (Olympus). Antibodies used are described in
the Supplementary Methods.

Coimmunoprecipitation and western blotting. For the mass spectrometry
analyses, 100 testes from either WT or transgenic E15.5 embryos expressing
FLAG-tagged NANOS2 were used for generation of extracts. The supernatants
were then mixed with 30ml of anti-FLAG M2 affinity beads (Sigma-Aldrich) and
incubated on a rotator for 3 h at 4 �C. After 5 washes with wash buffer, the beads
were boiled in sample buffer, and then, the eluates were separated by SDS–PAGE
and visualized with the Silver Quest silver staining kit (Invitrogen). Both gels for
WT and transgenic lanes at the same molecular weight were excised, and then
analysed by the mass spectrometry unit of the Center for Developmental Biology,
RIKEN. The resulting tryptic peptides of mass data were matched against the
NCBInr database using the Mascot or Sequest programs. The proteins only
in the transgenic gel but not in the WT gel were identified as candidates for
NANOS2-associated proteins.

For the IP from HEK 293T cell extracts, MYC-tagged NEDD4 or Ndfip2,
FLAG-tagged NANOS2, and NANOS2 mutant and HA-tagged ubiquitin were
cloned into pcDNA3.1 (Invitrogen), and then transfected into HEK 293T cells. The
supernatants were then mixed with 20 ml of anti-FLAG M2 affinity beads (Sigma)
and incubated on a rotator overnight at 4 �C. After five washes with wash buffer as
previously described, the beads were boiled in sample buffer and the eluates were
analysed by western blotting analyses. For the IP from WT and Nedd4 KO MEF
cell extracts, MYC-NANOS2 was transfected. Cells were then lysate with SDS
containing lysis buffer; the supernatants were mixed with anti-MYC antibody and
incubated with on a rotator overnight at 4 �C. After 5 washes, the beads were boiled
in sample buffer and the eluates were analysed by western blotting analyses.
GSCs (B1� 106 cells) were gently collected, washed in ice cold PBS before
lysing in an equal volume of lysis buffer containing 50 mM Tris pH 7.4, 1% NP-40,
0.25% Na-deoxycholate, 150 mM NaCl and 1 mM EDTA supplemented with
Protease inhibitor cocktail (Roche) and 0.1 mM PMSF (Wako), for 1 h on ice, and
centrifuged at 20,000g for 10 min. Supernatant was mixed with 2� loading buffer
and applied to an SDS page gel. Antibodies used are described in the
Supplementary Information. Horseradish peroxidase conjugated secondary
antibodies were from Cell Signaling Technology. Quantification of scanned blots
was performed using ImageJ software. Uncropped scans of the most important
western blots were shown in Supplementary Fig. 8.

Nedd4 shRNA knockdown. Nedd4 shRNAs were designed by online software
from Invitrogen as previously reported3. After screening, effective Nedd4 shRNA
sequences were inserted in the Lentiviral vector (pSICO; Addgene). Insert oligos
were as follows: Nedd4 shRNA1: 50- T GGGCTTGTGTAATGAAGATCATTCA-
AGAGATGATCTTCATTACACAAGCCCTTTTTTC -30 ; 50-TCGAGAAAAA-
AGGGCTTGTGTAATGAAGATCATCTCTTGAATGATCTTCATTACACA-
AGCCCA -30 . Nedd4-shRNA2: 50- T GCACATCCTTCTGAAACTACTTTCAA-
GAGAAGTTTCAGAAGGATGTGCTTTTTTC -30 ; 50-TCGAGAAAAAAGCA-
CATCCTTCTGAAACTACTTCTCTTGAAAGTTTCAGAAGGATGTGC A -30 .
A pSICO vector containing scramble shRNA was used as negative control. For
generation of the lentivirus, 293T cells were transfected with a combination of
pSICO vector and packaging plasmids using PEI (Sigma) according to the
manufacturer’s instructions. Lentivirus-containing supernatant was collected in
GSC medium 48 h after transfection. GSCs (Rosa-CreERT2) were infected with the
lentivirus supplemented with 6 mg ml� 1 polybrene (Sigma). Four days after
infection, cells were sorted by green fluorescent protein and re-plated to establish
stable GSC lines. After expansion, cells were used to conditionally induce Nedd4 or
scramble shRNAs.

Quantitative reverse transcription polymerase chain reaction. Total RNA was
harvested from cells and tissue using Trizol reagent (Invitrogen) according to the

manufacturer’s instructions. Cultured GSCs were gently washed off from feeder
cells before resuspending in Trizol. RNA samples were further treated with
DNAase I (Ambion) and then used for first strand cDNA synthesis using a
Superscript III first strand synthesis kit (Invitrogen). For quantitative PCR reac-
tions on cDNAs, a KAPA SYBR FAST qPCR Kit was used together with
gene-specific primers. Primers used are described in the Supplementary Table 1.

GST pull down assay. MBP-NANOS2 protein was expressed in the E.coli BL21
(DE3) strain and purified with Amylose Resin (New England Biolabs).
GST-NEDD4 and GST proteins were expressed in the E.coli BL21 Star (DE3)
strain. Bacterial pellets were sonicated in a binding buffer (25 mM HEPES-KOH
[pH 7.4], 150 mM NaCl, 0.1% NP-40, 1 mM DTT, 1 mM EDTA and 1 mM PMSF).
The supernatants were mixed with 1 mg of MBP-NANOS2 for 2 h at 4 �C and then
mixed with glutathione-sepharose 4FF (GE Healthcare) followed by further
incubation for 2 h. The precipitates were separated by SDS–PAGE and analysed
by western blotting with anti-NANOS2 antibody or by CBB (Coomassie brilliant
blue) staining.

Ubiquitination assay. The in vitro ubiquitination assay was conducted in a total
volume of 25 ml consisting of 50 mM Tris, 0.5 mM ATP, 100 nM E1 (Enzo), 1 uM
E2 UbcH7 (Enzo), 2.5 mM ubiquitin, 0.5 mg GST-NEDD4 and 2mg MBP-NANOS2.
The reaction mixture was incubated at 30 �C for 3 h. The reaction was stopped
by the addition of 2� SDS sample buffer and proteins were separated on
10% SDS–PAGE gels.

Statistical analysis. Significance of differences in cell recovery, SG numbers, cell
numbers and germ cell counting results was assessed by the two-tailed t-test.

Data availability. Data supporting the findings of this study are available within
the article and its Supplementary Information; all data supporting findings are
available on reasonable request.
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