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Single-cell entropy for accurate estimation of
differentiation potency from a cell’s transcriptome
Andrew E. Teschendorff1,2,3 & Tariq Enver3

The ability to quantify differentiation potential of single cells is a task of critical importance.

Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation

potency of a single cell can be approximated by computing the signalling promiscuity, or

entropy, of a cell’s transcriptome in the context of an interaction network, without the need

for feature selection. We show that signalling entropy provides a more accurate and robust

potency estimate than other entropy-based measures, driven in part by a subtle positive

correlation between the transcriptome and connectome. Signalling entropy identifies known

cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes,

including those derived from circulating tumour cells. It further reveals that expression

heterogeneity within single-cell populations is regulated. In summary, signalling entropy

allows in silico estimation of the differentiation potency and plasticity of single cells and bulk

samples, providing a means to identify normal and cancer stem-cell phenotypes.
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O
ne of the most important tasks in single-cell
RNA-sequencing studies is the identification and
quantification of ‘intercellular transcriptomic heteroge-

neity’, that is, variation between the transcriptomes of single cells
that is of biological relevance1–4. Although some of the observed
intercellular transcriptomic variation represents stochastic noise,
a substantial component has been shown to be of functional
importance1,5–8. Very often, this biologically relevant
heterogeneity can be attributed to cells occupying states of
different potency or plasticity. Thus, quantification of
differentiation potency, or more generally functional plasticity,
at the single-cell level is of paramount importance. However,
currently there is no concrete theoretical and computational
model for estimating such plasticity at the single-cell level.

Here we make significant progress towards addressing this
challenge. We propose a very general model for estimating
cellular plasticity. A key feature of this model is the computation
of signalling entropy9, which quantifies the degree of uncertainty,
or promiscuity, of a cell’s gene expression levels in the context of
a cellular interaction network. In effect, signalling entropy uses
the transcriptomic profile of a cell to quantify the relative
activation levels of its molecular pathways, and more generally
that of biological processes, as defined over an a priori specified
protein interaction network. We show that signalling entropy
provides an excellent and robust proxy to the differentiation
potential of a cell in Waddington’s epigenetic landscape10, and
further provides a framework in which to understand the overall
differentiation potency and transcriptomic heterogeneity of a cell
population in terms of single-cell potencies. Attesting to its
general nature and broad applicability, we compute and validate
signalling entropy in over 7,000 single cells of variable degrees
of differentiation potency and phenotypic plasticity, including
time-course differentiation data, neoplastic cells and circulating
tumour cells (CTCs). This extends entropy concepts that we have
previously demonstrated to work on bulk tissue data9,11–13 to the
single-cell level. On the basis of signalling entropy, we develop a
novel algorithm called single-cell entropy (SCENT), which can
be used to identify and quantify biologically relevant expression
heterogeneity in single-cell populations, as well as to reconstruct
cell-lineage trajectories from time-course data. In this regard,
SCENT differs substantially from other single-cell algorithms like
Monocle14, MPath15, SCUBA16, Diffusion Pseudotime17 or
StemID18, in that it uses single-cell entropy to independently
order single cells in pseudo-time (that is, differentiation potency),
without the need for feature selection or clustering.

Results
The signalling entropy framework. A pluripotent cell
(by definition endowed with the capacity to differentiate into
effectively all major cell-lineages) does not express a preference
for any particular lineage, thus requiring a similar basal activity of
all lineage-specifying transcription factors9,19. Viewing a cell’s
choice to commit to a particular lineage as a probabilistic process,
pluripotency can therefore be characterized by a state of high
uncertainty, or entropy, because all lineage choices are equally
likely (Fig. 1a). In contrast, for a differentiated cell, or for a cell
committed to a particular lineage, signalling uncertainty/entropy
is reduced, as this requires activation of a specific signalling
pathway reflecting that lineage choice (Fig. 1a). Thus, a measure
of global signalling entropy, if computable, could provide us with
a relatively good proxy of a cell’s overall differentiation potential.
Here we propose that differentiation potential can be estimated in
silico by integrating a cell’s transcriptomic profile with a high
quality protein–protein interaction (PPI) network to define a
cell-specific probabilistic signalling process (in effect, a random

walk) on the network (Methods). Mathematically, this random
walk is described by a stochastic matrix whose entries reflect the
relative interaction probabilities. Underlying the construction of
these probabilities is the assumption that two genes, which can
interact at the protein level, are more likely to do so if both are
highly expressed (Fig. 1a, Methods). Given this stochastic matrix,
global signalling entropy is then computed as the entropy rate
(abbreviated as SR) of this probabilistic signalling process on the
network20 (Fig. 1b, Methods), and can be thought of as
quantifying the overall level of signalling promiscuity of
biological processes within the network. In effect, this quantifies
the efficiency, or speed, with which signalling can diffuse over the
whole network, and therefore measures the number of separate
biological processes which are in some sense ‘active’. Since a
committed, or differentiated cell, preferentially activates and
deactivates specific processes (pathways) in the network, the
expectation is that this would manifest itself as a lower entropy
rate since signalling cannot diffuse to the regions of the network
describing inactive processes.

Signalling entropy approximates differentiation potency. To
test that signalling entropy correlates with differentiation potency,
we first estimated it for 1,018 single-cell RNA-Seq profiles
generated by Chu et al.21, which included pluripotent human
embryonic stem cells (hESCs) and hESC-derived progenitor cells
representing the three main germ layers (endoderm, mesoderm
and ectoderm) (‘Chu et al. set’, Supplementary Table 1, Methods).
In detail, these were 374 cells from two hESC lines (H1 & H9),
173 neural progenitor cells (NPCs), 138 definite endoderm
progenitors (DEPs), 105 endothelial cells (ECs) representing
mesoderm derivatives, as well as 69 trophoblast cells (TB) and
148 human foreskin fibroblasts (HFFs). Confirming our
hypothesis, pluripotent hESCs attained the highest signalling
entropy values, followed by multipotent cells (NPCs, DEPs), and
with less multipotent HFFs, TBs and ECs attaining the lowest
values (Fig. 2a). Differences were highly statistically significant,
with DEPs exhibiting significantly lower entropy values than
hESCs (Wilcoxon rank-sum Po1e� 50) (Fig. 2a). Likewise, TBs
exhibited lower entropy than hESCs (Po1e� 50), but higher
than HFFs (Po1e� 7) (Fig. 2a). Importantly, signalling entropy
correlated very strongly with a pluripotency score obtained using
a previously published pluripotency gene expression signature22

(Spearman correlation¼ 0.91, Po1e� 500, Fig. 2b, Methods).
In all, signalling entropy provided a highly accurate discriminator
of pluripotency versus non-pluripotency at the single-cell level
(AUC¼ 0.96, Wilcoxon test Po1e� 300, Fig. 2c). We note that
in contrast with pluripotency expression signatures, this strong
association with pluripotency was obtained without the need for
any feature selection or training.

To further test the general validity and robustness of signalling
entropy we computed it for scRNA-Seq profiles of 3,256 non-
malignant cells derived from the microenvironment of 19
melanomas (Melanoma set23, Supplementary Table 1). Cells
profiled included T-cells, B-cells, natural killer (NK) cells,
macrophages, fully differentiated ECs and cancer-associated
fibroblasts (CAFs). For a given cell-type and individual,
variation between single cells was substantial and similar to the
variation seen between individuals (Supplementary Fig. 1). Mean
entropy values however, were generally stable, showing little
inter-individual variation, except for T-cells from 4 out of 15
patients, which exhibited a distinctively different distribution
(Supplementary Fig. 1). To assess overall trends, we pooled the
single-cell entropy data from all patients together, which
confirmed that all lymphocytes (T-cells, B-cells and NK cells)
had similar average signalling entropy values (Fig. 2d).
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Figure 1 | The single-cell entropy (SCENT) algorithm. (a) Signalling entropy of single cells as a proxy to their differentiation potential in Waddington’s

landscape. Depicted on the left is a population of cells with cells occupying either a pluripotent (magenta), a progenitor (cyan) or a differentiated state (green).

The potency state of each cell is determined by a complex function of the transcriptomic profile x, of the cell. For a given interaction between proteins i and k in

the network, signalling in a given cell occurs with a probability pikBxixk, defining a stochastic matrix P¼ (pik). In a pluripotent state, there is high demand for

phenotypic plasticity, and so promiscuous signalling proteins (that is, those of high connectivity) are highly expressed (red coloured node) with all major

differentiation pathways kept at a similar basal activity level (grey edges). The probability of signalling between protein i and k, pik, is therefore 1/ki where ki is

the connectivity of protein i in the network. Thus the local signalling entropy around node i is maximal. In a differentiated state, commitment to a specific

lineage (activation of a specific signalling pathway shown by red coloured node) means that most pijB0, except when j¼ k, so that pikB1. Thus, local signalling

entropy around node i is close to zero. (b) Estimation of signalling entropy. An overall measure of signalling promiscuity of the cell is given mathematically by

the signalling entropy rate (SR), which is a weighted average of local signaling entropies Si over all the genes/proteins in the network, with weights specified by

p (the steady-state probability satisfying pP¼ p). It is proposed that SR provides a proxy to the elevation in Waddington’s landscape, quantifying differentiation

potential of cells (i.e the number of accessible cell-fates within a given lineage). (c) Quantification of intercellular heterogeneity and reconstruction of lineage

trajectories. Estimation of signalling entropy at the single-cell level across a population of cells, allows the distribution of potency states in the population to be

determined through Bayes mixture modelling which infers the optimal number of potency states. From this, the heterogeneity of potency states in a cell

population is computed using Shannon’s Index. To infer lineage trajectories, SCENT uses a clustering algorithm over dimensionally reduced scRNA-Seq profiles

to infer co-expression clusters of cells. Dual assignment of cells to a potency state and co-expression cluster allows the identification of landmarks as

bi-clusters in potency-coexpression space. Finally, partial correlations between the expression profiles of the landmarks are used to infer a lineage trajectory

network diagram linking cell clusters according to expression similarity, with their height or elevation determined by their potency (signalling entropy).
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Figure 2 | Signalling entropy correlates with differentiation potency of single cells. (a) Violin plots of the signalling entropy (SR) against cell-type (DEP,

definite endoderm progenitors; EC, endothelial cells (mesoderm progenitor derivatives); HFF, human foreskin fibroblasts; hESC, human embryonic stem

cells; NPC, neural progenitor cells; TB, trophoblast cells). Number of single cells in each class is indicated. Total number is 1,018. Wilcoxon rank-sum test

P values between each cell-type (ranked in decreasing order of SR) are given. Diamond shaped data points correspond to the matched bulk samples.

(b) Scatterplot of the signalling entropy (SR, y-axis) against an independent mRNA expression based pluripotency score (TPSC, x-axis) for all 1,018 single

cells. Cell-type is indicated by colour. Spearman Correlation Coefficient (SCC) and associated P value are given. (c) Violin plot comparing the signalling

entropy (SR) between the hESCs and all other (non-pluripotent) cells. P value is from a Wilcoxon rank-sum test. Inlet figure is the associated ROC curve,

which includes the AUC value. (d) Violin plot of signalling entropy (SR) values for non-malignant single cells found in the microenvironment of melanomas.

Number of single cells of each cell-type are given (B, B-cells; CAF, cancer-associated fibroblasts; EndC, endothelial cells; MacPH, macrophages; NK, natural

killer cells; T, T-cells). Wilcoxon rank-sum test P values between EndC and MacPH, and between MacPH and all lymphocytes are given. (e) Signalling

entropy (SR) as a function of differentiation stage within the mesoderm lineage. Differentiation stages include hESCs (pluripotent), mesoderm progenitors

of endothelial cells (multipotent) and differentiated endothelial and white blood cells. Wilcoxon rank-sum test P values between successive stages are

given. (f) ROC curves and AUC values for discriminating the progenitor and differentiated cells within the mesoderm lineage for signalling entropy (SR) and

the t-test pluripotency score (TPSC). (g) Signalling entropy (SR, y-axis) as a function of time in a single-cell time course differentiation experiment, starting

from hESCs at time¼0 h (time of differentiation induction) into definite endoderm (which occurs from 72 h onwards). Number of single cells measured at

each time point is given. Wilcoxon rank-sum test P values between the first four time points and 72 h, and between 72 and 98 h are given. (h) Signalling

entropy (SR, y-axis) as a function of developmental stage in the differentiation of the distal mouse lung epithelium. Number of single cells measured at each

stage is given. Wilcoxon rank-sum test P values between embryonic day 14 (E14) and all other stages are given. (i) Comparison of the SRs in c) (left panel)

to the case where expression values are randomly reshuffled before computation of SR (middle panel). Right panels compare the corresponding ROC

curves and AUC values. (j) As c, but now splitting the hESCs into cells from H1 and H9 lines, and including an additional independent set of 90 single hESCs

profiled with a different NGS platform.
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Intra-tumour macrophages, which are derived from monocytes,
exhibited a marginally higher signalling entropy (Fig. 2d). The
highest signalling entropy values were attained by ECs and CAFs
(Fig. 2d), consistent with their known high phenotypic
plasticity24–27. Importantly, the entropy values for all of these
non-malignant differentiated cell-types were distinctively lower
compared to those of hESCs and progenitor cells from Chu et al.
(Fig. 2a,d), consistent with the fact that hESCs and progenitors
have much higher differentiation potency. To test this formally,
we compared hESCs, mesoderm progenitors, and terminally
differentiated cells within the mesoderm lineage (which included
all ECs and lymphocytes), which revealed a consistent decrease in
signalling entropy between all three potency states (Wilcoxon
rank test Po1e� 50, Fig. 2e). Of note, signalling entropy could
discriminate progenitor and differentiated cells better than the
score derived from the pluripotency gene expression signature22,
attesting to its increased robustness as a general measure of
differentiation potency (Fig. 2f, Supplementary Fig. 2).

Next, we assessed signalling entropy in the context of a
time-course differentiation experiment, whereby hESCs were
induced to differentiate into DEPs via the mesoendoderm
intermediate28. scRNA-Seq for a total of 758 single cells,
obtained at six time points, including origin, 12, 24, 36, 72 and
96 h post induction were available (Methods)28. We observed that
single-cell entropies exhibited a particular large decrease only
after 72 h (Fig. 2g), consistent with previous knowledge that
differentiation into definite endoderm occurs around 3–4 days
after induction28. To demonstrate the validity of signalling
entropy in another species, we next considered a scRNA-Seq data
of cells sampled at different embryonic stages in the development
of the mouse lung epithelium29 (‘Treutlein set’, Supplementary
Table 1, Methods). Signalling entropy decreased continuously
until adulthood in line with a gradual increase in differentiation
(Fig. 2h). Moreover, at embryonic day 18, it could discriminate
alveolar type cells from a recently discovered bipotent progenitor
subgroup29, albeit with marginal significance due to small cell
numbers (Supplementary Fig. 3A).

To demonstrate the critical importance of the interaction
network, we recomputed signalling entropy in the Chu and
Treutlein data sets after randomly reshuffling gene expression
values over the network (100 and 1,000 permutations, respec-
tively). As expected, upon reshuffling, signalling entropy lost its
power to discriminate pluripotent from non-pluripotent cells

(Fig. 2i), and did not exhibit a consistent decrease with develop-
mental stage in Treutlein’s set (Supplementary Fig. 3B).

Robustness to choice of PPI network and NGS platform. Given
the importance of the PPI network, it is therefore equally
important to verify that signalling entropy is robust to the choice
of network. Results were largely unchanged using a different
version of a PPI network (Supplementary Fig. 4). To test the
robustness of signalling entropy across independent studies, we
analysed scRNA-Seq data for an independent set of single-cell
hESCs derived from the primary outgrowth of the inner cell mass
(‘hESC set’30, Supplementary Table 1). Obtained signalling
entropy values were most similar to those of single cells derived
from the H1 and H9 hESC lines, confirming the robustness of
signalling entropy across different studies and next-generation
sequencing platforms (Fig. 2j, Supplementary Table 1).

Comparison of signalling entropy to StemID and SLICE. To
further highlight the importance of the PPI network, we decided
to compare Signalling Entropy to two other entropy-based
potency measures, proposed as part of the StemID18 and SLICE31

algorithms, which we note do not use any network information.
To provide an objective evaluation, we compared the entropy
measures of single cells from well-separated differentiation stages,
or by comparing start and end points in time-course
differentiation experiments, as these cells ought to differ
substantially in terms of potency. Adopting this strategy in four
scRNA-Seq and one bulk RNA-Seq data set, we observed that
signalling entropy was able to provide high discriminative power
in each data set (Table 1). In contrast, we did not find StemID
and SLICE to be as accurate or robust (Table 1).

Correlation with potency is independent of cell-cycle phase.
A major source of variation in scRNA-Seq data is cell-cycle
phase23,32. We explored the relation between signalling
entropy and cell-cycle phase in a large scRNA-Seq data set
encompassing 3,256 non-malignant and 1,257 cancer cells
derived from the microenvironment of melanomas (Melanoma
set23, Supplementary Table 1). A cycling score for both G1-S
and G2-M phases and for each cell was obtained using a
validated procedure23,32,33, and compared to signalling entropy,
which revealed a strong yet highly non-linear correlation

Table 1 | Comparison of signalling entropy to SLICE and StemID as measures of differentiation potency in scRNA-Seq and bulk
RNA-Seq data sets.

Data set Signalling entropy SLICE StemID

scRNA-Seq
Chu1 (Pl4NonPl) P 3e� 132 B1 3e� 58

AUC 0.96 o0.5 0.79
Chu2 (0 h496 h) P 2e� 38 0.94 1e� 22

AUC 0.97 o0.5 0.86
Trapnell (0 h472 h) P 6e� 9 0.0003 2e� 10

AUC 0.74 0.65 0.75
Treutlein (E144Adult) P 5e� 27 6e� 26 5e� 27

AUC 1 0.998 1

Bulk RNA-Seq
Chu3 (Pl4NonPl) P 4e� 5 0.001 0.76

AUC 0.99 0.90 o0.5

Table lists one-tailed Wilcoxon rank-sum test P values and associated (one-tailed) AUCs, testing whether entropy is higher in the pluripotent or multipotent cells compared to the less potent cells in
various scRNA-Seq and bulk RNA-Seq data sets. In Chu1, the comparison is between pluripotent (hESCs, n¼ 374, Pl) and non-pluripotent (n¼644, NonPl) single cells. In Chu2, the comparison is
between hESCs (0 h, n¼ 92) and definite endoderm progenitors sampled 96 h later (n¼ 188). In Trapnell, the comparison is between human myoblasts (0 h, n¼ 96) and differentiated skeletal
muscle cells (72 h, n¼84). In Treutlein, the comparison is between early lung progenitors (E14, n¼45) and mature alveolar cells (n¼46). In Chu3, the comparison is between bulk hESCs (n¼ 7) and
non-pluripotent samples (n¼ 12). In bold-face we indicate the highest or relatively highest AUC values.
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(Supplementary Fig. 5). Specifically, we observed that cells with a
low signalling entropy were never found in either the G1-S or
G2-M phase (Supplementary Fig. 5). In contrast, cells with
high signalling entropy could be found in either a cycling or
non-cycling phase. These results are consistent with the view that
cycling cells must increase expression of promiscuous signalling
proteins and hence exhibit an increased signalling entropy. Thus,
we next asked if signalling entropy correlates with potency when
restricting to non-cycling cells. Using the Chu et al. data set, we
observed that, although discrimination accuracies were reduced
upon correction for cell-cycle phase, signalling entropy could still
accurately classify pluripotent from non-pluripotent cell-types
(AUC40.9, Po1e� 5, Supplementary Fig. 6, Supplementary
Table 2). Consistent with this (and now using both cycling and
non-cycling cells), the correlation between signalling entropy and
potency remained significant when adjusted for cell-cycle scores
(Supplementary Table 2).

Correlation of expression with degree partly drives potency.
To gain further biological insight into signalling entropy, we
derived an approximation for signalling entropy in terms of the
three-way correlation between the transcriptome, connectome
and local signalling entropies (Methods). This approximation
implies that if, on average, network hubs are more highly
expressed than low-degree nodes and if they exhibit an increase in
their local signalling entropy, then this should generally lead to a
more efficient distribution of signalling over the network, and
hence to an increased global signalling entropy12. We thus
posited that in cells with a demand for high phenotypic plasticity
(for example, pluripotent cells), hubs tend to be overexpressed
and exhibit increased signalling promiscuity. Using scRNA-Seq
data from Chu et al.21, we were able to confirm a weak (Pearson
correlation of B0.2) but significant (Po1e� 50) positive
correlation of differential gene expression (between hESCs and
multipotent cells) with connectivity (Supplementary Fig. 7A).
Importantly, the differential local signalling entropy between
hESCs and multipotent cells correlated more strongly with
connectivity (Pearson correlation of B0.64, Po1e� 100,
Supplementary Fig. 7A), thus confirming the notion that the
increased SR in pluripotent cells is also driven by a more
distributed signalling (that is, increased local entropy) at network
hubs. To demonstrate that the Pearson correlation between
transcriptome and connectome can be used to approximate
signalling entropy (SR), we computed it for all 1,018 single cells in
Chu et al., obtaining an excellent agreement with SR (R2¼ 0.96,
Supplementary Fig. 7B), and hence also with potency
(Supplementary Fig. 7C). However, we stress that this Pearson
correlation approximation is not a substitute for SR, since the
definition of SR includes the local signalling entropies (Fig. 1b),
from which important biological information can be extracted.
To demonstrate this, we ranked genes in the network according
to their differential local signalling entropy (Methods) and
performed gene set enrichment analysis (GSEA)34 on the genes
exhibiting the most significant increases in local entropy between
pluripotent (hESCs) and multipotent cells. Top-ranked enriched
biological terms included, besides stemness, genes implicated in
mRNA splicing and encoding mitochondrial ribosomal proteins
(Supplementary Table 3, Supplementary Data 1). This is
consistent with recent studies demonstrating that mitochondrial
activity influences the global transcription and splicing rate of
cells35–37, and that variations in such activity may influence
stemness and differentiation38–42. Finally, we also point out that
signalling entropy and its Pearson correlation approximation are
not equivalent, as there exist networks where both measures yield
very different answers (Methods). For instance, in networks

where hubs are not connected to each other (unlike our PPI
networks where hubs are generally connected to each other), a
positive correlation could lead to a lower signalling entropy
(Supplementary Fig. 7D).

Quantifying single-cell expression heterogeneity with SCENT.
Given that signalling entropy correlates with differentiation
potency, we used it to develop the SCENT algorithm (Fig. 1c).
Briefly, SCENT uses the estimated single-cell entropies to infer
the distribution of discrete potency states across the cell
population (Fig. 1c, Methods). Thus, SCENT can be used to
quantify expression heterogeneity at the level of potency.
In addition, SCENT can be used to directly order single cells in
pseudo-time14 to facilitate reconstruction of lineage trajectories.
A key feature of SCENT is the assignment of each cell to a unique
potency state and co-expression cluster, which results in the
identification of potency clusters (which we call ‘landmarks’),
through which lineage trajectories are then inferred (Methods).

We first tested SCENT on the scRNA-Seq data from Chu et al.,
which profiled pluripotent and multipotent cells (Supplementary
Table 1). SCENT correctly predicted a parsimonious two-state
model, with a high potency pluripotent state and a lower potency
non-pluripotent progenitor-like state (Fig. 3a). Interestingly, a
small fraction (B4%) of hESCs were deemed to be
non-pluripotent cells (Fig. 3b), consistent with previous observa-
tions that pluripotent cell populations contain cells that are
already primed for differentiation into specific lineages5,6.
Supporting this, these non-pluripotent ‘hESCs’ exhibited
lower cycling scores and higher expression levels of neural
(HES1/SOX2) and mesoderm (PECAM1) stem-cell markers,
compared to the pluripotent hESCs (Supplementary Fig. 8).
Whereas all HFFs and ECs were deemed non-pluripotent, DEPs,
TBs and NPCs exhibited mixed proportions, with NPCs
exhibiting approximately equal numbers of pluripotent and
non-pluripotent cells (Fig. 3b). Correspondingly, the Shannon
index (SI), which quantifies the level of heterogeneity in potency,
was highest for the NPC population (Fig. 3c). In total, SCENT
predicted six co-expression clusters, which combined with the
two potency states, resulted in a total of seven landmark clusters
(Fig. 3d). These landmarks correlated very strongly with cell-type,
with only NPCs being distributed across two landmarks of
different potency (Fig. 3e). SCENT correctly inferred a lineage
trajectory between the high potency NPC subpopulation and its
lower potency counterpart, as well as a trajectory between hESCs
and DEPs (Fig. 3f). The other cell-types exhibited lower entropies
(Fig. 2b, Fig. 3f), and correspondingly did not exhibit a direct
trajectory to hESCs, suggesting several intermediate states which
were not sampled in this experiment.

To ascertain the biological significance of the two NPC
subpopulations (Fig. 3b,e,f), we first verified that the NPCs
deemed pluripotent did indeed have a higher pluripotency score
(Supplementary Fig. 9A), as assessed using the independent
pluripotency gene expression signature from Palmer et al.22

We further reasoned that well-known transcription factors
marking neural stem/progenitor cells, such as HES1, would be
expressed at a much lower level in the NPCs deemed pluripotent
compared to the non-pluripotent ones, since the latter are more
likely to represent bona fide NPCs. Confirming this, NPCs with
low HES1 expression exhibited higher differentiation potential
than NPCs with high HES1 expression (Wilcoxon rank-sum test
Po0.0001, Fig. 3g). Similar results were evident for other neural
progenitor/stem cell markers such as PAX6 and SOX2
(Supplementary Fig. 9B). Of note, NPCs expressing the lowest
levels of PAX6, HES1 or SOX2 were generally always classified by
SCENT into a pluripotent-like state (Fig. 3g, Supplementary
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Fig. 9B). Thus, these results indicate that SCENT provides a
biologically meaningful characterization of intercellular
transcriptomic heterogeneity.

SCENT reconstructs lineage trajectories in differentiation. We
next tested SCENT in the context of a differentiation experiment
of human myoblasts14, involving skeletal muscle myoblasts which
were first expanded under high mitogen conditions and later
induced to differentiate by switching to a low serum medium
(Trapnell et al. set, Supplementary Table 1). A total of 96 cells

were profiled with RNA-Seq at differentiation induction, as well
as at 24 and 48 h after medium switch, with a remaining 84 cells
profiled at 72 h. As expected, signalling entropy was highest in the
myoblasts, with a switch to lower entropy occurring at 24 h
(Fig. 4a). No further decrease in entropy was observed between 24
and 72 h, indicating that commitment of cells to become
differentiated skeletal muscle cells already happens early in the
differentiation process. Over the whole time course, SCENT
predicted a total of 3 potency states, with a distribution consistent
with the time of sampling (Fig. 4b). Cells sampled at
differentiation induction were made up primarily of two

n=1,018 single cells

PS1 PS2

CL1

CL2

CL3

CL4

CL5

CL6

358 20

7 126

0 106

0 159

90 83

618

hESC

NPC

DEP

TB

HFF

EC

355 0 0 0 0 0 0

0 90 83 0 0 0 0

3 0 0 126 0 0 1

0 0 0 0 61 0 0

0 0 0 0 0 159 0

0 0 0 0 0 0 105

0 2 4 6 8 HighHES1
n=108

P=8e–05

NPC-PluriP & high-HES1
NPC-PluriP & low-HES1
NPC-NonPluriP & high-HES1
NPC-NonPluriP & low-HES1

0.905

0.895

0.885

S
R

0.905

0.895

0.885

S
R

mRNA(HES1)

mRNA(HES1)

LowHES1
n=65

EC

HFF

TB

DEP

NPC

hESC

EC

HFF

TB

DEP

NPC

hESC

1.00.80.60.40.20.01.00.80.60.40.20.0

Shannon index (normalized)Prob (state)

Prob(Pl)
Prob(NonPl)

2.5

2.0

1.5

1.0

0.5

0.0

D
en

si
ty

Logit (energy potential)

3.22.82.4

Obs.
FitGauss1 (n=465)
FitGauss2 (n=553)

hESC

NPC
NPC

HFF

DEP

TB

EC
SR

decreasing

PS2-
CL3

PS2-
CL4

PS2-
CL6

PS2-
CL2

PS2-
CL5

PS1-
CL5

PS1-
CL1

a b c

d e f

g

Figure 3 | SCENT identifies single-cell subpopulations of biological significance. (a) Fitted Gaussian mixture model to the signalling entropies of 1,018

single cells (scRNA-Seq data from Chu et al.) using a logit scale for the signalling entropies (x-axis, log2[SR/(1� SR)]). Bayesian Information Criterion

predicted only two-states: a high energy/entropy pluripotent state (magenta-PS1) and a lower-energy non-pluripotent state (cyan-PS2). Number of

cells categorized into each state is indicated in plot. (b) Barplot comparing, for each cell-type, the probability that a cell from this cell population is in the

pluripotent (prob(Pl)) or non-pluripotent state (probe(NonPl)). Cell-types include human embryonic stem cells (hESCs), neural progenitor cells (NPCs),

definite endoderm progenitors (DEPs), trophoblast cells (TBs), human foreskin fibroblasts (HFFs) and endothelial cells (ECs). (c) Barplot of the

corresponding Shannon Index for each cell-population type. (d) Distribution of single-cell numbers between inferred potency states and co-expression

clusters, as predicted by SCENT. In brown, we indicate ‘landmark clusters’ which contain at least 5% of the total number of single cells. (e) Distribution

of single-cell-types among the seven landmark clusters. (f) Inferred lineage trajectories between the seven landmarks which map to cell-types. Border

colour indicates potency state: magenta¼ PS1, cyan¼ PS2. (g) Left panel: scatterplot of signalling entropy (SR) vs mRNA expression level of a neural

stem/progenitor cell marker, HES1, for all NPCs. NPCs categorized as pluripotent are shown in magenta, NPCs categorized into a non-pluripotent state are

shown in cyan. NPCs of high and low HES1 expression (as inferred using a partition-around-medoids algorithm with k¼ 2) are indicated with triangles and

squares, respectively. Right panel: corresponding boxplot comparing the differentiation potency (SR) of NPCs with low versus high HES1 expression. P value

is from a one-tailed Wilcoxon rank-sum test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15599 ARTICLE

NATURE COMMUNICATIONS | 8:15599 | DOI: 10.1038/ncomms15599 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


potency states (Fig. 4c, PS1 & PS2), which differed in terms of
CDK1 expression, consistent with one subset (PS1) defining a
highly proliferative subpopulation and with the rest (PS2)
representing cells that have exited the cell cycle (Supplementary
Fig. 10). In total, SCENT predicted four landmarks, with one
landmark defining undifferentiated (t¼ 0) myoblasts of high
potency (Fig. 4d). Another landmark of lower potency contained
cells at all time points, with cells expressing markers of
mesenchymal cells (for example, PDFGRA and FN1/LTBP2)
(Fig. 4d). Cells from this landmark which were present at
differentiation induction exhibited intermediate potency
expressing low levels of CDK1 (Supplementary Fig. 10, Fig. 4d),
suggesting that these are ‘contaminating’ interstitial mesenchymal
cells that were already present at the start of the time course, in
line with previous observations14,15. Importantly, SCENT
correctly predicts that the potency of all these mesenchymal
cells in this landmark does not change during the time-course,
consistent with the fact that these cells are not primed to
differentiate into skeletal muscle cells, but which nevertheless aid
the differentiation process14,15. Another landmark of
intermediate potency predicted by SCENT defined a trajectory

made up of cells expressing high levels of myogenic markers
(MYOG & IGF2) from 24 h onwards (Fig. 4d). Thus, this
landmark corresponds to cells that are effectively committed to
becoming fully mature skeletal muscle cells. The final landmark
consisted of cells exhibiting the lowest level of potency and
emerged only at 48 h, becoming most prominent at 72 h (Fig. 4d).
As with the previous landmark, cells in this group also expressed
myogenic markers, and likely represent a terminally differentiated
and more mature state of skeletal muscle cells. In summary,
SCENT inferred lineage trajectories that are highly consistent
with known biology and with those obtained by previous
algorithms such as Monocle14 and MPath15. However, in
contrast to Monocle and MPath, SCENT inferred these
reconstructions without the explicit need of knowing the time-
point at which samples were collected.

SCENT detects drug resistant cancer stem cell phenotypes.
Cancer cells are known to be less differentiated and to acquire a
more plastic phenotype compared to non-malignant cells. Hence
their signalling entropy should be higher than that of
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non-malignant cell-types. We confirmed this using scRNA-Seq
data from 12 melanomas (Melanoma set23, Supplementary
Table 1), for which sufficient normal and cancer cells had been
profiled (Fig. 5a, Supplementary Fig. 11). Although there was
some variation in the signalling entropy of cancer cells between
individuals, this variation was relatively small in comparison to
the difference in entropy between cancer and normal cells.
Combining data across all 12 patients, demonstrated a dramatic
increase in the signalling entropy of single cancer cells compared
to non-malignant ones (Wilcoxon rank-sum test Po1e� 500,
Fig. 5b).

Since signalling entropy is increased in cancer and correlates
with stemness, it could, in principle, be used to identify putative
cancer stem cells (CSC) or drug resistant cells. To test this, we
first computed and compared signalling entropy values for 38
acute myeloid leukaemia (AML) bulk samples from 19 AML

patients, consisting of 19 diagnostic/relapse pairs43. Confirming
that signalling entropy marks drug resistant cell populations, we
observed a higher entropy in the relapsed samples (paired Wilcox
test P¼ 0.004, Fig. 5c). For one relapsed sample, scRNA-Seq for
96 single-AML cells was available (AML set, Supplementary
Table 1). We posited that comparing the signalling entropy values
of these 96 cells would allow us to identify a CSC-like subset
responsible for relapse. Since in AML there are well accepted CSC
markers (CD34, CD96), we tested whether expression of these
markers in high entropy AML single cells is higher than in low
entropy AML single cells (Fig. 5d). Both CD34 and CD96 were
more highly expressed in the high entropy AML single cells
(Wilcox test P¼ 0.008 and 0.032, respectively, Fig. 5d).

We next computed signalling entropies for 73 CTCs derived
from 11 castration resistant prostate cancer patients (CTC-PrCa
set, Supplementary Table 1), of which five patients exhibited
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progression under treatment with enzalutamide (an androgen
receptor (AR) inhibitor) (n¼ 36 CTCs), with the other six
patients not having received treatment (n¼ 37 CTCs)44.
Although of marginal significance, signalling entropy was
higher in the CTCs from patients exhibiting resistance (Wilcox
test P¼ 0.047, Fig. 5e). Among putative prostate CSC markers
(for example, CD44, CD133, KLF4 and ALDH7A1)44, we observed
a positive association of signalling entropy with ALDH7A1
expression, suggesting that ADLH7A1 (and not other markers
such as CD44) may mark specific prostate CSCs which are
resistant to enzalutamide treatment (Fig. 5f).

Regulation of single-cell expression heterogeneity. It has been
proposed that expression heterogeneity of cell populations is
regulated in the sense that the transcriptomes of individual cells
within the population differ in a manner which optimizes an
objective function, such as pluripotency or homeostasis3. To test
whether signalling entropy can predict such regulated expression
heterogeneity, we compared the distribution of single-cell
entropies to the signalling entropy of the bulk population.
Specifically, we devised a ‘measure of regulated heterogeneity’
(MRH), which measures the likelihood that the signalling entropy
of the cell population could have been observed from picking a
single cell at random from that population (online Methods,
Fig. 6a). We first estimated MRH for the data from Chu et al., for
which matched bulk and scRNA-Seq data is available. We first
note that although for bulk samples entropy differences between
cell-types were smaller, that they were nevertheless consistent
with the trends seen at the single-cell level (Supplementary
Fig. 12, Fig. 2c). The MRH for each of the six cell-types (hESCs,
NPCs, DEPs, TBs, HFFs and ECs) in Chu et al., revealed evidence
of regulated heterogeneity, with the entropy values of bulk
samples being significantly higher than that of single cells
(Fig. 6b). As a negative control, the signalling entropy of the
average expression over bulk samples did not exhibit regulated
heterogeneity (normal deviation test P¼ 0.30, Fig. 6b), as
required since bulk samples are not linked in space or time and
represent non-interacting cell populations.

We note that for the previous analysis, matched bulk RNA-Seq
data is not absolutely required since bulk samples can be
approximated by averaging the expression profiles of individual
cells in the population. We verified this, although, as expected, the
entropy values for the true bulk samples were always marginally
higher, in line with the fact that single-cell assays only capture a
subpopulation of the bulk sample (Fig. 6c). We also verified that
MRH results were not driven by the larger number of dropouts in
scRNA-Seq data. Specifically, we simulated bulk samples by
aggregating single cells representing the same cell-type and then
resampling transcript counts matching to the average number of
transcripts seen in single cells (Methods). We observed that
signalling entropy of the simulated bulk did not alter appreciably
upon downsampling and that results were unchanged
(Supplementary Fig. 13).

Next, we repeated the MRH analysis for T-cells and B-cells
found in melanomas (Melanoma set, Supplementary Table 1), for
which sufficient numbers of single cells had been profiled. In all
cases, signalling entropies of the bulk were much higher than
expected based on the distribution of single-cell entropies
(Supplementary Fig. 14). Evidence for regulated expression
heterogeneity was also seen among the melanoma cancer cells
from each of 12 patients (combined Fisher test Po1e� 6,
Supplementary Fig. 15). We also analysed RNA-Seq data for 96
single cancer cells from a relapsed patient with acute myeloid
leukaemia(AML set43, Supplementary Table 1). The signalling
entropy for the AML cell population was 0.88, significantly larger

than the maximal value over the 96 cells (SR¼ 0.82, Normal
deviation test Po0.001, Fig. 6d). Again, as a negative control we
analysed all 19 bulk AML samples at relapse and diagnosis,
treating bulk samples from independent AML patients as if they
were single cells from a common population. Estimating the
signalling entropy of the average expression profile over all 19
bulk samples did not reveal a value significantly higher than that
of the individual bulk samples (normal deviation test P¼ 0.32,
Fig. 6d).

Discussion
Although Waddington proposed his famous epigenetic landscape
of cellular differentiation many decades ago10, it has proved
challenging to construct a robust molecular correlate of a cell’s
elevation in this landscape. Here we have made significant
progress, demonstrating that the differentiation potency and
phenotypic plasticity of single cells, be they normal or malignant,
can be estimated in silico from their RNA-Seq profile using
signalling entropy. As we have seen, signalling entropy can
accurately discriminate pluripotent from multipotent and
differentiated cells, without the need for feature selection or
training, outperforming a pluripotency gene expression signature
and providing a more general measure of differentiation potency.

Importantly, signalling entropy should not be confused with
other transcriptional entropy measures, which are estimated over
populations of single cells45,46. For instance, the ‘transcriptional
entropy’ of Richard et al.45 is estimated for single genes across
single cells, and therefore reflects the amount of intercellular
heterogeneity in the expression of a given gene. Our signalling
entropy measure is estimated for a single cell across genes in the
context of a large gene network, which therefore incorporates
systems-level information and is genome-wide (Fig. 1a,b). While
the signalling entropy of single cells will influence the amount of
transcriptional heterogeneity and entropy as defined by Richard
et al., the precise relation between the two entropies is non-trivial.
Indeed, we have here shown how we can assign single cells into
potency states, from which a SI over the whole cell population
(that is, using the distribution of potency states over single cells)
can then be estimated (Fig. 1c). This SI is more analogous to the
transcriptional entropy of Richard et al. Indeed, we have shown
how this SI is higher in a population of NPCs than in a
population of hESCs (Fig. 3c). Thus, the SI has nothing to do with
potency as such, that is, it does not measure the average
differentiation potency of single cells in a cell population. In
contrast, our signalling entropy does measure potency of single
cells in a cell population. Thus, there is no requirement for our
single-cell signalling entropy measure to exhibit a peak before a
critical cell-fate transition occurs45,46. In contrast, the SI of a cell
population derived from signalling entropy may exhibit the
expected hallmarks of criticality. It will be interesting in future to
test this with upcoming high-resolution time course and genome-
wide scRNA-Seq data.

The ability of signalling entropy to independently order
single cells according to differentiation potency is a central
component of the SCENT algorithm, which, as shown here, can
help quantify and identify biologically relevant intercellular
expression heterogeneity and cell subpopulations. Indeed, key
findings which strongly support the validity of SCENT are the
following: (i) using SCENT we were able to correctly predict that
a hESC population contains a small fraction of cells of lower
potency which are primed for differentiation, (ii) SCENT inferred
that an assayed NPC population was made up two distinct
subsets, correctly predicting that only the lower potency subset
represents bona fide NPCs (as determined by expression of
known neural stem cell markers) and (iii) in a time-course
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differentiation experiment of human myoblasts, SCENT
correctly identified a contaminating interstitial mesenchymal cell
population, whose potency did not change appreciably during the
experiment. We note that this particular insight is not readily
obtainable using other algorithms such as Monocle or MPath14,15.
Thus, the ability of SCENT to assign single cells and cell
subpopulations to specific potency states thus adds novel insight
and functionality over what can be achieved with other existing
algorithms. Alternatively, signalling entropy could be combined
with existing algorithms like Monocle14 or DPT17,47 to empower
their inference, since signalling entropy provides a more
unbiased, independent, approach to ordering single cells in
pseudo-time, that is, it constitutes an approach which does not
need prior knowledge such as the time point or markers of
specific cell-types.

In a proof of principle analysis, we further demonstrated the
ability of SCENT to identify putative drug resistant CSCs,
encompassing two different cancer types (AML and prostate

cancer), including CTCs. The ability to quantify stemness in
cancer cell populations, either in tissue or in circulation, is a task
of enormous importance. As shown here, as well as in our
previous work on bulk cancer tissue9,11,13, signalling entropy is,
so far, the only single sample measure to have been conclusively
demonstrated to robustly correlate with stemness in both normal
and cancer cells. Indeed, a recent study by Gruen et al.18 explored
a very different measure of transcriptome entropy, but which was
not demonstrated to correlate well with differentiation potency or
cancer. Likewise, signalling entropy is a more general measure
of stemness/plasticity outperforming existing pluripotency
expression signatures, as shown here and previously11.

Importantly, signalling entropy also provides a computational
framework in which to understand differentiation potency at the
macroscopic (cell population) level from the corresponding
potencies of single cells. As shown here, signalling entropy of
cell populations, be they normal or malignant cells, exhibit
synergy, with the entropy of the bulk being substantially higher
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Figure 6 | Signalling entropy predicts regulated expression heterogeneity of single-cell populations. (a) Definition of the measure of regulated

expression heterogeneity (MRH). The MRH is a z-statistic, obtained by measuring the deviation of the signalling entropy (SR) of the bulk expression profile

from the mean of single-cell entropies, taking into account the variability of single-cell entropies in the population. (b) Barplots of MRH for each cell-type

population from Chu et al., representing the degree to which the signalling entropy of the cell population is higher than that of single cells. P values are from

a one-tailed normal-deviation test. Dashed line indicates the line P¼0.05. AvgBulkS compares the signalling entropy of the average expression over all bulk

samples to that of the individual bulk samples, indicating that although the RHM is positive (signalling entropy increases), that it is not significantly higher

than that of the individual bulk samples. (c) Scatterplot of the signalling entropy of bulk samples (y-axis), representing six cell-types (hESCs, NPCs, DEPs,

TBs, HFFs, ECs) against the corresponding signalling entropies of these cell populations obtained by first averaging the expression profiles of single cells

(‘Simulated Bulk’, x-axis). R2 value and P value are given with green dashed line representing the fitted regression. Observe how the signalling entropy of

bulk samples is always higher than that obtained from first averaging expression of single cells, in line with the fact that the assayed single cells are a

subpopulation of the full bulk sample. (d) Left panel: comparison of the signalling entropy of an acute myeloid leukemia (AML) bulk sample (red line and

point) to the signalling entropies of 96 single-AML cells (blue) from that bulk sample. P value is from a one-tailed normal deviation test. Right panel:

comparison of the MRH value for the matched 96 single cells and bulk AML sample (SCs) to the MRH values obtained by comparing the signalling entropy

of the average expression over 19 AML bulk samples to the signalling entropies of each individual AML bulk sample. The 19 AML bulk samples come in

pairs, obtained at diagnosis (dgn) and relapse (rel), which are shown separately. P values are from a one-tailed normality deviation test.
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than the entropy values of single cells. While no existing assay can
measure all single cells in a population, we nevertheless
demonstrated that our result is non-trivial, since mixing up bulk
samples (to serve as a negative control) did not reveal such
synergy. We also showed that these results were not confounded
by the larger number of dropouts in scRNA-Seq data.
Biologically, increased potency of a cell population as a result
of synergistic cell–cell interactions, supports the view that features
such as pluripotency are best understood at the cellular
population level3.

Finally, it is important to discuss the technical and biological
properties of signalling entropy that underlie its robustness as a
measure of differentiation potency. First of all, gene expression
values enter the computation of signalling entropy only as gene
ratios. Taking ratios of gene expression values and introducing a
regularization term to offset dropouts, makes the resulting
inference much less sensitive to the sequencing depth, absolute
scale and normalization procedure of scRNA-Seq data. Second,
signalling entropy is estimated over a fairly large number of genes
(8,000–10,000), making it naturally robust to single gene
dropouts. Third, its biological robustness stems in part from
differentiation potency being encoded by a subtle positive
correlation between the transcriptome and connectome, similar
to our previous observations in the context of cancer12. Since
there is no reason to expect that technical dropouts in scRNA-Seq
should correlate with the connectivity of the corresponding
protein in a PPI network, such technical effects are expected to
average out. Finally, it is worth emphasizing in this context
that signalling entropy provided a more accurate and robust
measure of differentiation potency than other transcriptomic
entropy-based measures (those used in StemID and SLICE) which
do not use network information.

To conclude, signalling entropy and the SCENT algorithm
provide a computational framework to advance our
understanding of single-cell biology. We envisage that SCENT
will be of great value for quantifying biologically relevant
intercellular heterogeneity and for identifying putative normal
and cancer stem-cells from scRNA-Seq data.

Methods
Single cell and bulk RNA-Seq data sets. The main data sets analysed here, the
NGS platform used and their public accession numbers are listed in Supplementary
Table 1. Below is a more detailed description of the samples in each data set:

Chu et al. set. This RNA-Seq data set derives from Chu et al.28 This set
consisted of four experiments. Experiment-1 generated scRNA-Seq data for 1,018
single cells, composed of 374 hESCs (212 single cells from H1 and 162 from H9 cell
line), 173 NPCs, 138 DEPs, 105 mesoderm-derived ECs, 69 TB cells and 159 HFFs.
Experiment-2 is a time course differentiation of single cells, specifically of hESCs
induced to differentiate into the definite endoderm, via a mesoendoderm
intermediate. Time points assayed were before induction (t¼ 0 h, n¼ 92), 12 h
after induction (12 h, n¼ 102), 24 h (n¼ 66), 36 h (n¼ 172), 72 h (n¼ 138) and
96 h (n¼ 188). Experiment-3 matches experiment-1 and consists of RNA-Seq data
from 19 bulk samples: 7 representing hESCs, 2 representing NPCs, 2 TBs, 3 HFFs,
3 ECs and 2 DEPs. Experiment-4 consists of 15 RNA-Seq profiles from bulk
samples, profiled as part of the time-course differentiation experiment
(Experiment-2), with three samples per time-point (12 h, 24 h, 36 h, 72 h, 96 h).

Melanoma set. This scRNA-Seq data set derives from Tirosh et al.23, and
consists of 4,645 single cells derived from the tumour microenvironment of 19
melanoma patients. Of these, 3,256 are non-malignant cells, encompassing T-cells
(n¼ 2,068), B-cells (n¼ 515), NK cells (n¼ 52), Macrophages (n¼ 126),
endothelial cells (EndC, n¼ 65) and CAFs (n¼ 61). The rest of single cells profiled
were malignant melanoma cells (n¼ 1,257).

AML set. This set derives from Li et al.43 A total of 96 single cells from a
relapsed AML patient (patient ID¼ 130) were profiled. In addition, 38 paired bulk
AML samples were profiled from 19 patients (all experiencing relapse), with 19
samples obtained at diagnosis and with the other matched 19 samples obtained at
relapse.

hESC set. This set derives from Yan et al.30 It consists of 124 single-cell profiles,
of which 90 are from different stages of embryonic development, with 34 cells
representing hESCs. These 34 hESCs were derived from the inner cell mass, with
eight cells profiled at primary outgrowth and 26 profiled at passage-10. The 90

single cells from the pre-implantation embryo were distributed as follows: Oocyte
(n¼ 3), Zygote (n¼ 3), 2-cell embryo (n¼ 6), 4-cell embryo (n¼ 12), 8-cell
embryo (n¼ 20), morulae (n¼ 16) and late blastocyst (n¼ 30).

Trapnell et al. set. This scRNA-Seq set derives from Trapnell et al.14 It consists
of a time-course differentiation experiment of human myoblasts, which profiled a
total of 372 single cells: 96 cells at t¼ 0 (time at which differentiation was induced),
96 at t¼ 24 h after induction, another 96 at t¼ 48 h after induction and 84 cells at
72 h post induction.

CTC-PrCa set. This scRNA-Seq data set derives from Miyamoto et al.44 We
focused on a subset of 73 single cells from castration resistant prostate cancers, of
which 36 derived from patients who developed resistance to enzulatamide
treatment, with the remaining 37 derived from treatment-naı̈ve patients.

Treutlein set. This scRNA-Seq data set derives from Treutlein et al.29 There are
a total of 201 single cells assayed at four different stages in the developing mouse
epithelium, including embryonic day 14, 16, 18 and adulthood. At E18, a subset of
single cells were characterized into alveolar type-1 and type-2 cells (AT1 & AT2), as
well as a putative bipotent (BP) subgroup.

The single-cell entropy algorithm. There are five steps to the SCENT algorithm:
(1) estimation of the differentiation potency of single cells via computation of
signalling entropy, (2) inference of the potency state distribution across the
single-cell population, (3) quantification of the intercellular heterogeneity of
potency states, (4) inference of single-cell landmarks, representing the major
potency-coexpression clusters of single cells and (5) lineage trajectory (or
dependency network) reconstruction between landmarks. We now describe each
of these steps:

Computation of signalling entropy. The computation of signalling entropy for a
given sample proceeds using the same prescription as used in our previous
publications9,11. Briefly, the normalized genome-wide gene expression profile of a
sample (this can be a single cell or a bulk sample) is used to assign weights to the
edges of a highly curated PPI network. The construction of the PPI network itself is
described in detail elsewhere11, and is obtained by integrating various interaction
databases which form part of Pathway Commons (www.pathwaycommons.org)48.
The weighting of the network via the transcriptomic profile of the sample provides
the biological context. The weight of an edge between protein i and protein j,
denoted by wij, is assumed to be proportional to the normalized expression levels of
the coding genes in the sample, that is, we assume that wijBxixj. We interpret these
weights (if normalized) as interaction probabilities. The above construction of the
weights is based on the assumption that in a sample with high expression of i and j,
that the two proteins are more likely to interact than in a sample with low
expression of i and/or j. Viewing the edges generally as signalling interactions, we
can thus define a random walk on the network, assuming we normalize the weights
so that the sum of outgoing weights of a given node i is 1. This results in a
stochastic matrix, P, over the network, with entries

pij ¼
xjP

k2NðiÞ xk
¼ xj

ðAxÞi
;

where N(i) denotes the neighbours of protein i, and where A is the adjacency
matrix of the PPI network (Aij¼ 1 if i and j are connected, 0 otherwise, and with
Aii¼ 0). The signalling entropy is then defined as the entropy rate (denoted Sr)
over the weighted network, that is,

Sr ~xð Þ ¼ �
Xn

i¼1

pi

X

j2NðiÞ
pij log pij;

where p is the invariant measure, satisfying pP¼p and the normalization
constraint pT1¼ 1. The invariant measure, also known as steady-state probability,
represents the relative probability of finding the random walker at a given node in
the network (under steady-state conditions that is, long after the walk is initiated).
Nodes with high values thus represent nodes that are particularly influential in
distributing signalling flux in the network. In the steady-state we can assume
detailed balance (conservation of signalling flux, that is, pipij ¼ pjpji), and it can be
shown9 that pi¼ xi(Ax)i/(xTAx). Given a fixed adjacency matrix A (that is, fixing
the topology), it can also be shown9 that the maximum possible Sr among all
compatible stochastic matrices P, is the one with P ¼ 1

g v� 1 � A � v where #

denotes product of matrix entries and where v is the dominant eigenvector of A,
that is, Av¼ lv with l the largest eigenvalue of A. We denote this maximum
entropy rate by maxSr, and define the normalized entropy rate (with range of
values between 0 and 1) as

SR ~xð Þ ¼ Sr ~xð Þ
maxSr

:

Throughout this work, we always display this normalized entropy rate.
Inference of potency states. In this work, we show that signalling entropy (that is,

the entropy rate SR) provides a proxy to the differentiation potential of single cells.
We can model a cell population as a statistical mechanical model, in which each
single cell has access to a number of different potency states. For a large collection
of single cells we can estimate their signalling entropies, and infer from this
distribution of signalling entropies the number of underlying potency states using a
mixture modelling framework. Since SR is bounded between 0 and 1, we first
conveniently transform the SR value of each single cell into their logit scale, that is,
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y(SR)¼ log2(SR/(1� SR)). Subsequently, we fit a mixture of Gaussians to the y(SR)
values of the whole cell population, and use the Bayesian information criterion
(as implemented in the mclust R-package)49 to estimate the optimal number K of
potency states, as well as the state-membership probabilities of each individual cell.
Thus, for each single cell, this results in its assignment to a specific potency state.

Quantifying intercellular heterogeneity of potency states. For a population of N
cells, we can then define a probability distribution pk over the inferred potency
states. For K inferred potency states, one can then define a normalized SI:

SI ¼ � 1
log K

XK

k¼1
pk log pk;

which measures the amount of heterogeneity in potency within the single-cell
population (1¼ high heterogeneity in potency, 0¼ no heterogeneity in potency).

Inference of co-expression clusters and landmarks. With each cell assigned to a
potency state, we next perform clustering (using the scRNA-seq profiles) of the
single cells. We use the partitioning-around-medoids (PAM) algorithm with the
average silhouette width to estimate the optimal number of clusters, a combination
which was found to be among the most optimal clustering algorithms in
applications to omic data50. Clustering of the cells is performed over a filtered set of
genes that are identified as those driving most variation in the complete data set, as
assessed using singular value decomposition (SVD). In detail, we perform a SVD
on the full z-scored normalized RNA-Seq profiles of the cells, selecting the
significant components using random matrix theory (RMT)51 and picking the top
5% genes with largest absolute weights in each significant component. The final set
of genes is obtained by the union of those identified from each significant
component. PAM clustering (with a Pearson distance correlation metric) of all cells
results in the assignment of each cell into a co-expression cluster, with a total
number of np cell clusters. Thus, each cell is assigned to a unique potency state and
co-expression cluster. Finally, landmarks are identified by selecting potency-state
cluster combinations containing at least 1–5% of all single cells. Importantly, each
of these landmarks has a specific potency state and mean signalling entropy value,
allowing ordering of these landmarks according to potency.

Inference of lineage trajectories. For each landmark in step-4, we compute
centroids of gene expression using only cells that are contained within that
landmark and defined only over the genes used in the PAM clustering. Partial
correlations52,53 between the centroid landmarks are then estimated to infer
trajectories/dependencies between landmarks. Significant positive partial
correlations may indicate transitions between landmarks. Since each landmark has
a signalling entropy value associated with it, directionality is inferred by comparing
their respective potency states.

A fast Pearson correlation approximation. Under certain assumptions (to be
discussed below), there is a useful approximation to signalling entropy, which also
provides important biological insight. It entails first using an approximation for the
steady-state probability (invariant measure) p. As before, in the steady-state, we
can assume the detailed balance condition (conservation of signalling flux: that is,
pipij ¼ pjpji), so that the invariant measure satisfies piBxi(Ax)i (ref. 9). If we
now take a global mean field approximation, that is, if we replace the expression
values of the neighbours of gene i, with the mean expression value over all genes
in the network, it then follows that piBxiki, where ki is the connectivity of
gene/protein i in the network. Hence, SR ¼

P
i piSi �

P
i

xikiSi, which is
effectively the three-way correlation between the transcriptome, connectome and
local signalling entropies. If we assume further that the dynamic range of local
signalling entropies Si ¼ �

P
j2NðiÞ pij log pij is small (which for realistic PPI

networks is often the case12), and also assuming that the local entropies correlate
positively with node-degree, we obtain that SRB xiki, that is, the signalling entropy
is approximately the Pearson correlation of the celĺs transcriptome and the
connectome from the PPI network.

Importantly, we stress that (i) this approximation is an empirical one which
works reasonably well for the realistic PPI networks considered here, and (ii) that
the signalling entropy and its Pearson correlation approximation are not
equivalent, since there exist networks where the two measures give widely different
answers. In particular, if a network has scale-free topology, but with the hubs
not connected to each other, then a positive correlation between expression and
connectivity may not lead to a higher signalling entropy. For instance, if the
low-degree nodes (‘bottlenecks’) linking the hubs have very low expression then
signalling flux cannot be distributed over the network, leading to a lower entropy
rate compared to an expression configuration where all genes have similar
expression values (Supplementary Fig. 7). For realistic PPI networks, hubs are
generally connected to each other and for these type of networks, the Pearson
approximation works well. We note that for a 8,393 node network with 300,916
edges, the computation of SR for 100 samples takes B370 s on an Intel Xeon CPU
E3-1575M 3.00 GHz, whereas that of its Pearson correlation approximation only
takes 1/10 s, thus although the approximation is computationally much faster, the
computation of SR for 1 sample only takes about 4 s.

Ranking genes according to differential local entropy. Since signalling entropy
is obtained as a weighted average over local signalling entropies (that is,
SR ¼

P
i piSi) with the local entropies defined by Si¼�

P
j2NðiÞ pij log pij , the

latter can be used to identify genes in the network where the signalling flux

distribution differs between two phenotypes. Specifically, we use the normalized
version of the local signalling entropy, defined by NSi ¼ � 1

logki

P
j2NðiÞ pij log pij ,

which is bounded between 0 and 1, thus allowing genes of different connectivity to
be compared. Thus, for each gene and each sample, we can compute a local entropy
and genes can then be ranked according to the difference in local entropy using an
empirical Bayes framework11,54 to derive moderated t-statistics which reflect the
significance in differential local entropy. Adjustment for multiple-testing was
performed using the Benjamini–Hochberg procedure.

Gene set enrichment analysis. We performed GSEA on the top-ranked
genes, ranked according to differential local entropy between pluripotent and
non-pluripotent cells. Specifically, we focused on the genes exhibiting increased
local signalling entropy in pluripotent cells, and focused on a range of thresholds
(top 500, 600, 700, 800, 900 and 1,000) to assess robustness. Enrichment was
performed using a one-tailed Fisher’s exact test, as implemented by us previously55.
Enrichment was assessed against the Molecular Signatures Database (http://
software.broadinstitute.org/gsea/msigdb)34.

Application to mouse scRNA-Seq data. In our application to mouse scRNA-Seq
data, we first converted mouse gene Ensembl IDs into their human homologues
using the AnnotationTools Bioconductor package56. Only those mapping to a
unique human homologue were considered. The resulting set of genes were then
integrated with our human PPI network.

Estimation of cell-cycle and TPSC pluripotency scores. To identify single cells
in either the G1-S or G2-M phases of the cell-cycle we followed the procedure
described in ref. 23. Briefly, genes whose expression is reflective of G1-S or G2-M
phase were obtained from refs 32,33. A given normalized scRNA-Seq data matrix is
then z-score normalized for all genes present in these signatures. Finally, a cycling
score for each phase and each cell is obtained as the average z-scores over all genes
present in each signature.

To obtain an independent estimate of pluripotency we used the pluripotency
gene expression signature of Palmer et al.22, which we have used extensively
before11. This signature consists of 118 genes that are overexpressed and 39 genes
that are underexpressed in pluripotent cells. The TPSC score for each cell with
scRNA-Seq data is obtained as the t-statistic of the gene expression levels between
the overexpressed and underexpressed gene categories. Optionally, the scRNA-Seq
is z-score normalized beforehand and the t-statistic is obtained by comparing
expression z-scores. However, we note that the z-score procedure uses information
from all single cells, so the fairest comparison to signalling entropy means we ought
to compare expression levels. We note that the TPSC scores obtained from z-scores
or expression levels were highly correlated and did not affect any of the conclusions
in this paper.

Comparison analysis of bulk and single-cell RNA-Seq data. Since SR can be
computed for each single cell, one can compare the predicted entropies of bulk
samples (cell population) to those of the single cells making up that population. To
test whether the entropy of the bulk deviates markedly from that of single cells, we
computed a z-score, by comparing the entropy of the bulk to that of the single cells
where the latter distribution is modelled as a Gaussian. This z-score is called MRH,
since it assesses whether the transcriptomes of single cells differ in a regulated
synergistic manner, increasing entropy (potency) well above that of single cells. In
the case where matched bulk samples were not available, we simulated bulk
samples in two distinct ways. In one approach, we simply averaged the single-cell
transcriptomes before computing SR. In a second approach, which corrects for the
large number of dropouts present in scRNA-Seq data, by first aggregate the
transcript counts of all single cells, and then downsample counts so as to match to
the average number of transcripts per single-cell. Robustness to the specific
downsampling draw was tested by performing 100 Monte-Carlo samplings.

Other entropy measure proxies for differentiation potency. Briefly, we describe
two other entropy-based measures for approximating differentiation potency in a
single-cell context, but which do not make use of a PPI network. One measure is
part of the StemID algorithm18. However, the original StemID algorithm does not
estimate differentiation potency of single cells. Instead it provides estimates for
single-cell clusters, which are inferred by clustering the expression profiles of single
cells. Thus, for a given cluster

k, StemID computes a potency which is proportional to dEk, where

dEk � medianc2k Ecð Þ�minl medianc2l Ecð Þð Þ;

where Ec is the information entropy of cell c, defined by Ec ¼ �
PN

g¼1 qgc log qgc

(where N is the number of genes and where qgc is the normalized number of
reads mapping to gene g in cell c). Thus, to objectively compare to our signalling
entropy measure, which does not use information of other cells when estimating
potency of a given cell, we here use Ec as the potency estimate from StemID.
Another information entropy-based measure is part of the SLICE algorithm,
proposed by Guo et al.31 Briefly, in this approach, genes are first clustered into
related GO-terms to define m functional gene clusters. For a given cell c, relative
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activity of each functional cluster k is estimated from the average expression of
genes mapping to that cluster. These activity scores are then normalized so that
they can be interpreted as probabilities qkc, and subsequently the potency of cell c is
estimated as the information entropy Hc¼EB½ �

Pm
k¼1 qkc log qkc where the

expectation is taken over a number of bootstraps over genes. We compute this
information entropy using the R-script provided in Guo et al.31

Code availability. Signalling entropy is available as part of the Single Cell Entropy
(SCENT) R-package and is freely available from github: https://github.com/aet21/
SCENT.

Data availability. All data analysed in this manuscript is already publicly available
from the following GEO (www.ncbi.nlm.nih.gov/geo/) accession numbers:
GSE72056, GSE83533, GSE75748, GSE36552, GSE52529, GSE67980 and
GSE52583. All data is also available on request from the authors.
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