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Amazonian forest-savanna bistability and
human impact
Bert Wuyts1,2, Alan R. Champneys2 & Joanna I. House3

A bimodal distribution of tropical tree cover at intermediate precipitation levels has been

presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data

into those from human-unaffected areas and those from regions close to human-cultivated

zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is

significantly enhanced close to cultivated zones. Assuming higher logging rates closer to

cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model

reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than

bistability there is a predictable spatial boundary, a Maxwell point, that separates regions

where forest and savanna states are naturally selected. While bimodality can hence be

explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of

bimodality remaining in the human-unaffected data indicates that there is still bistability,

although on smaller scales than claimed previously.
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I
nternational climate negotiations include a focus on reduced
greenhouse gas emissions from tropical deforestation and the
need for sustainable forest management to enhance sinks.

Such forest management is complicated by the potential existence
of tipping points1 in tropical forests beyond which they may
experience abrupt transitions2–4 to savannas and provide
feedbacks to climate change5. In the Amazon basin, there exists
evidence for tipping points related to two types of feedbacks.
First, simulation and modelling studies have shown that
hydrological feedbacks could cause basin-scale alternative stable
vegetation states6–9. The focus of this paper is on a second
fire-related feedback that has been linked to forest–savanna
bistability in the tropics10–12. Fire spread requires a spatially
well-connected herbaceous layer that occurs only below a certain
tree cover threshold; below this threshold, fire spread opens up
the canopy more, promoting yet better fire spread10. Evidence for
this process was found empirically, via higher fire frequencies and
a bimodal (see Methods) distribution of tropical tree cover for a
certain range of rainfall and seasonality.

A typical characteristic of bistable systems is hysteresis, and in
this context it means that the tipping point of rainfall where
savannas are converted to forest is higher than that where forests
are converted to savannas. In the rainfall range between these two
tipping points tree cover would then be observed to have a
bimodal distribution because both states are possible here.
Simulations of a simple model of bistable tree cover have shown
that spatial heterogeneity can enlarge the observed rainfall range
of bimodality13. This leads to the question of how much of the
observed bimodality is due to hysteresis and how much is due to
spatial heterogeneity associated with independent variation of
other variables that affect stability, such as seasonality, soils and
human impact. This question is especially important as previous
studies inferred a model of bistability that only focused on the
effect of average rainfall10–15. If much of the observed bimodality
turns out to be due to spatial heterogeneity, hysteresis and
bistability may in fact be absent or at least be limited to smaller
spatial scales than previously assumed.

Models have reproduced fire-induced forest–savanna bistability
by parameterizing or simulating the fire-vegetation
feedback13,15,16, or by only assuming a specific dependence of
model parameters on regional climate17. Yet, previous
theoretical18,19 studies have shown that when allowing spatial
interaction, hysteresis and bimodality disappear; instead, there is
an environmentally determined boundary that separates both
states. Only at this boundary, coined the Maxwell point (MP), both
states coexist. Above the MP, one state dominates while below the
MP, the other dominates. Hence, even in the presence of ‘local’
bistability (that is, when not considering spatial interaction), these
models are only ‘globally’ bistable at the MP (that is, still bistable
when considering spatial interaction) (see Methods). Recently,
evidence has been found for this phenomenon in satellite data20 of
tree cover. Still, no empirically testable spatiotemporal model
including the combined effect of all natural and human influences
has been proposed.

In the Amazon region, a gradient of rainfall runs from the dry
southeast, where the dry season can have considerable length, to
the wet northwest, where dry season is short or nonexistent7,21

(Supplementary Fig. 1). Natural vegetation follows this climatic
gradient. From southeast to northwest, there are dry savannas,
moist savannas and eventually tropical forest. Human impact
occurs along the same gradient, with drier areas in the southeast
having been subject to more land-use change than the wetter
northwest. The Amazon region is a good starting point to study
human impact effects since the implications of deforestation and
logging are well studied there and since there are fewer
confounding factors than, for example in Africa, where

presence of large herbivores are known to have an important
additional effect on vegetation22.

It has been demonstrated both empirically4 and with
theoretical models23–25 that human impact can significantly
alter the stability and resilience of ecosystems. Human impact in
the Amazon region encompasses both direct deforestation and
various edge effects around cleared areas such as changes in forest
structure, tree mortality, forest microclimate and biodiversity26.
Deforestation comprises both clearcutting, the conversion of
forested land to food crops or pastures and selective logging, the
removal of only marketable tree species27. Both logged forests and
edges of clearcut provide decreased transpiration rates and thus
lower atmospheric humidity that, along with scattered wood
debris, makes them highly susceptible to fire28,29. After being
burnt once, nearby forest fragments become yet more susceptible
to fire29. While previous empirical studies recognize that human
impact can influence forest stability, they either focused on
bistability in natural systems by excluding affected areas from the
analysis10 or did not explicitly take human impact into account11.

In this work, we examine human impact on Amazonian
forest–savanna bistability. Our key methodology involves three
steps. First, we set up a statistical model that predicts pre-human
forest cover from average rainfall, rainfall seasonality and soils.
Second, we analyse how human impact affects bimodality of tree
cover by considering separately areas that are close to and areas
that are far from human influence, while using the results from
the statistical model in the previous step to remove the
confounding influence of natural spatial heterogeneity associated
with gradients of climatic and edaphic variables. Third, we derive
a spatial stochastic model using observed natural spatial
heterogeneity, while also adding edge effects due to deforestation,
and compare its output with data. The data analysis shows that
without the confounding effect of natural spatial heterogeneity,
substantial bimodality is only observed for places close to
agriculture. The model results indicate that the bimodality close
to agricultural zones can be explained by anthropogenic edge
effects due to logging and fire spread. Model results further show
a sharp boundary between savanna and forest at the MP point,
predictable from climate, soils and distance from human impact.
This shows that hysteresis is not required to reproduce
bimodality. However, some limited remaining bimodality after
accounting for natural and anthropogenic spatial heterogeneity
indicates that there are regions of global bistability, although on
smaller scales than previously recognized.

Results
Predicting pre-human forest cover from climate and soils.
Many of the areas that have been savannas for a long time are
colonized by humans. Restricting our analysis to pristine areas in
deriving relations between natural variables and forest would then
possibly lead to biased estimates of natural effects or an under-
estimation of hysteresis in the system, if present. Therefore, we
necessarily start from an estimate of pre-human forest cover that
we take from the World Conservation Monitoring Centre
(WCMC) original cover data set30.

Figure 1a shows the WCMC data of pre-human forest cover
compared with current forest cover, obtained from the MODIS
(Moderate-resolution Imaging Spectroradiometer) vegetation
continuous field (VCF) data set31. Comparing Fig. 1a with
Fig. 2b, one can see that forest areas that have been lost through
deforestation almost exclusively occur in or around agricultural
areas. We performed a logistic regression model on these data,
predicting pre-human forest cover from mean annual rainfall
(MAR in the text, P in the equations), Markham seasonality index
(MSI in the text, M in the equations), topsoil bulk density (r),
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topsoil sand fraction (js) and topsoil clay fraction (jc). The
climatic data were obtained from the TRMM merged satellite-
gauge rainfall data set32 and the soil data from the harmonized
world soil database33. The regression equation for the log odds of
forest occurrence is

gðFðyÞÞ ¼ y0þ y1jsþ y2jcþ y3rþ y4jcrþ y5Mþ y6P; ð1Þ

with coefficients shown in Table 1. The graphical representation
of this equation is the surface in the space of predictor variables
that best separates forest from nonforest, also called the decision
boundary34. The coefficients in Table 1 can be seen as the
components of a vector perpendicular to the decision boundary;
the larger a particular component of that vector, the greater the
influence of the corresponding predictor on occurrence of forest.
The largest effects are a positive effect of MAR, a negative effect of
MSI and a mostly positive effect of soil clay fraction. Using either
MAR or MSI on their own fails to predict forest cover
satisfactorily (Supplementary Fig. 2c,d and Supplementary
Table 1). Only when considering their combined effect
(Supplementary Fig. 2b), is forest cover predicted well. Further
taking into account soils leads to a better prediction of the
Atlantic Forest (Supplementary Fig. 2a versus Supplementary
Fig. 2b). This suggests that moist forests can only exist there due
to favourable soil conditions. The interaction term of density and
topsoil clay fraction implies that the effect of clay depends on
density or the other way round. If we assume the former, the
effect of clay is positive except for exceptionally low-density soils

(o5% density percentile). A positive effect of clay fraction is
consistent with previous empirical studies35. There is also a
separate negative effect of bulk density that is consistent with the
effects of higher soil compaction at higher densities. The more
complicated effect of soils is most likely a consequence of the
nonlinear relation between soil texture and soil hydrology.

Current tree cover in different human impact zones. In this
section we show scatterplots of current tree cover similar to
previous studies10,11, using 2010 MODIS VCF percent tree cover
data31 (MOD44B collection 051) on a 250 m spatial resolution.
Comparing the scatterplots with points sampled from areas close
to human impact versus far from human impact will reveal how
humans affect the dynamics. The spatial distribution of forest
cover is shown in Fig. 2a. Figure 2b shows our subdivision of the
study area in human impact classes. We assume edge effects
operate up to a distance of 3 km from agricultural or urban
areas26 and have termed this the ‘transition’ zone. Areas 43 km
are deemed ‘natural’. For this classification, publicly available
satellite data36,37 (see Methods for details) were utilized.

Figure 3 shows a plot of current tree cover sampled from
natural areas versus MAR (Fig. 3a) and versus MSI (Fig. 3b).
Confirming previous studies, there is a rainfall range of
bimodality, here between 1,400 and 1,900 mm where dense
tree-covered forests and sparse tree-covered savannas both exist
(Fig. 3a). However, there exists a significant difference between
the MSI (colour scale) of forest and savanna, indicating that at
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Figure 1 | Maps of observed and predicted pre-human forest cover. (a) Pre-human forest cover (WCMC Original Forest Cover Map30) compared with

current forest cover (MODIS vegetation continuous fields31). (b) Predicted pre-human forest cover with the logistic regression model shown in Table 1

compared with observed pre-human forest cover. See Supplementary Fig. 2 and Supplementary Table 1 for alternative prediction models.

Table 1 | Logistic regression model and parameters.

gðFðyÞÞ ¼ y0þ y1jsþ y2jcþ y3rþ y4jcrþ y5Mþ y6P;

i hi hi (standardized)

0 Intercept 4.16 1.80
1 Sand 2.38 e�02 6.08 e-01
2 Clay � 1.88 e�01 1.10
3 Density � 5.99 � 9.09 e�02
4 Clay/density 1.83 e�01 4.79 e�01
5 MSI � 7.05 � 1.09
6 MAR 2.90 e�03 2.29

Model fitting was done on 50,000 samples (1 km spatial resolution). All parameters have P values o 1e�04. Forest is predicted where the log odds of forest occurrence gðFðyÞÞ40 (see Methods for
details). The k-agreement index with data is 0.69 (substantial agreement). See Supplementary Fig. 2 and Supplementary Table 1 for alternative prediction models.
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least some of the bimodality may be due to spatial heterogeneity
associated with effects of seasonality that are independent from
those of rainfall. The scatterplot versus MSI (Fig. 3b) shows
similarly that in the MSI range of bimodality, there is a significant
difference between the MAR (colour scale) of forest and savanna.

To properly visualize the anthropogenic effects on bimodality,
we need a measure that combines all predictor variables while
minimizing the confounding effect of natural spatial hetero-
geneity. The best measure for this is the one that quantifies the
distance perpendicular to the decision boundary. This is exactly
what is done by the expression shown in equation (1). As it is also
a measure for the suitability of the natural environment for moist
forest, we refer to it further as the climatic–edaphic forest
suitability (CEFS). Places with a large negative value are naturally
unsuitable and places with a large positive value are suitable. If
the human-unaffected system exhibits hysteresis on large scales,
as suggested by previous work, we should see a wide interval of
bimodality in a scatterplot of current tree cover versus CEFS
where points are sampled from human-unaffected areas. In the
case of absence of hysteresis, CEFS¼ 0 would separate low and
high tree cover in such a scatterplot, and there would be no
bimodality.

In Fig. 4 we show the scatterplots, using the 2010 VCF data
versus CEFS (stratified on CEFS), sampling separately from areas
close by and far from human impact. The scatterplots also
indicate via a colour scale the median of the tree cover change

between 2000 and 2010. When looking across the entire
nonagricultural area (naturalþ transition class, Fig. 4a) the
observations confirm previous findings10,11; with overlapping
forest (defined here as 440% tree cover) and savanna (5–40%)
states for CEFS in the range from about � 0.9 to 2.5. However,
when looking at the areas distant from human influence (Fig. 4b)
we find less overlap of savanna and forest states (� 0.9 to 0.8),
with a sharp front around CEFS¼ 0. For the transition areas
(Fig. 4c), the range where the two states overlap is much wider
(� 0.9 to 5). We cannot verify based on this analysis whether the
treeless state (o5% tree cover) occurs as a discontinuous
transition from the savanna state (Fig. 4b) as CEFS is the
optimal combination of predictors for the savanna–forest
transition and not for the treeless–savanna transition. Besides,
there has been criticism about inferring such properties over
short tree cover ranges from the MODIS VCF data38–40.

Looking at the colour scale in Fig. 4, we can draw tentative
conclusions about the underlying causes of tree cover change. The
increasing effects of fire and drought with decreasing CEFS (see
below) mean that below a CEFS¼ 0, high/intermediate tree cover
areas experience considerable losses. Natural areas with positive
CEFS experienced a tree cover increase between 2000 and 2010
with median values of up to 20% in 10 years (Fig. 4b). This is
presumably due to recovery from natural disturbance or a
response to environmental change. In transition areas, dense
forests experience losses at all CEFS values (Fig. 4c).
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Figure 3 | Scatterplot of tree cover in natural areas. (a) Tree cover versus (and stratified on) mean annual rainfall (MAR) with Markham seasonality index

(MSI) as colour scale and (b) Tree cover versus (and stratified on) Markham’s seasonality index with MAR as colour scale. In the rainfall range of

bimodality (1,400–1,900 mm), the differences of seasonality between forest (440% tree cover) and savanna (o40% tree cover) were found significant

with a t-test and also with the nonparametetric Mann–Whitney test (PE0). This is also the case for the rainfall differences in the bimodality range of

seasonality (0.45–0.62) (PE0).
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Figure 2 | Study area with tree cover and human impact classes. (a) Map of MODIS VCF tree cover in 2010. (b) Human impact classes (colours),

excluded areas (white).
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To complement these data, we have also looked at the AQM
(área queimada; burnt area in Portuguese) fire occurrence data41

in the study area. Observed fire frequencies are lower at the very
lowest and at the higher end of tree cover, with a hump in the
middle (Supplementary Fig. 4b). This is consistent with the
intermediate fire-productivity hypothesis42. At the low end, in dry
treeless areas (o5% tree cover), which occur mainly in the
Sechura–Atacama deserts along the Peruvian and Chilean
coastline, grass occurrence is very low21. Hence here, the lack
of flammable material prevents fire occurrence or spread. At
intermediate tree cover, in savannas, fires are not limited by fuel
but by drought frequency. At high tree cover, droughts are less
frequent, allowing the canopy to close at cost of the flammable
grassy layer, resulting in lower fire frequencies. We further
produced a relative histogram of fire frequencies as a function of
tree cover and annual water deficits to see how dryness affects fire
frequency (Supplementary Fig. 3). The tree cover value below
which fire occurrence becomes important increases steadily with
dryness. Fire frequencies are highest in savanna areas, with tree
cover of B5–40% and annual water deficits of B400–800 mm
(Supplementary Fig. 3). Above 800 mm, tree cover is very low
while fire frequencies are low too, indicating that water limitation
is affecting trees severely here.

Mathematical model. To explain these findings, we set up a
stochastic partial differential equation model43, inspired by the
ordinary differential equation model in ref. 15, for the effect of
fire on the following cover types: forest tree, savanna tree, savanna
sapling, grass and bare soil. The model has as natural external
variables the spatial distribution of observed MAR (P) and
edaphic suitability for forest (p). Deforestation is taken into
account by having a forest removal term that decays
exponentially with distance to the agricultural/urban class (d).
These external variables influence the dynamics by affecting
growth and mortality rates in the equations. In modelling fire, we
include both local fire and fire spread between pixels
(see Methods section for more detail). The humped shape of
fire frequency versus tree cover also arises in the model, leading to
a good match between fire rate data and modelled fire rates
(Supplementary Fig. 4b). In the model, this shape is caused by the
high fraction of bare pixels in treeless areas, reducing the amount
of fire-prone material at low tree cover, and the assumed reduced
fire occurrence at high tree cover (above B40% tree cover).

The results are plotted in Fig. 5e–h and show the necessity of
both logging and fire diffusion from agricultural areas to
reproduce the patterns seen in the observations (Fig. 5a-d; see
also Supplementary Movies 1 and 2). Inclusion of these effects
results in little overlap between the states for natural areas, just as
in the data (Fig. 5c,g). Logging alone (Fig. 5l) or fire alone
(Fig. 5p) is insufficient to cause forest–savanna shifts in the
transition region similar to the data (Fig. 5d). Note that in our

model logging is not necessary to have fires creeping into the
forest. Anywhere along the front, independently of whether it is
determined by climate/soils or by human impact, fires will spread
into the forest. As in the data, the treeless state mainly occurs
along the arid Peruvian–Chilean coastline. In the data, there is
much more noise in the range of CEFS where savannas occur
(� 5 to 0) and some remaining overlap around CEFS¼ 0.

To explain the model findings, we created a phase diagram by
running the model on a 50� 50 lattice, starting from random
initial conditions, for all relevant combinations of d and P
(Fig. 6a). Figure 6b shows the prediction of these states in space
based on this diagram. Only around the point where savanna and
forest are equally stable, that is, the MP, do forest and savanna
coexist (Fig. 6a,e). Places that are drier or closer to human-
affected zones end up in a homogeneous savanna (or treeless)
state (Fig. 6a,d), while places that are wetter or further from
human impact end up in a homogeneous forest state (Fig. 6a,f).
The almost perfect agreement with the model run on the whole
study area (Fig. 5e) indicates that forest, savanna and treeless
states can be predicted based on P, M, d and p.

Discussion
The data analysis shows that after accounting for the most
relevant sources of natural spatial heterogeneity, there is still
bimodality between Amazonian forest and savanna states, but it is
less extensive than previously thought and largely restricted to the
transition regions within 3 km of urban/agricultural land.
The model shows that much of the Amazonian bimodality in
transition regions can be explained by anthropogenic edge effects
involving increasing forest removal towards agricultural areas and
resulting increases of fire occurrence and spread. Hence, for the
Amazon region, the data and the model support the notion that
bimodality in rainfall-tree cover plots of the spatially aggregated
data in previous research10–12 is mostly due to spatial
heterogeneity13 associated with rainfall seasonality, soils and
human impact, and not due to a large-scale hysteresis. Instead, as
in theory of bistable systems with sufficient spatial
interaction19,20, there are two spatially distinct zones of savanna
and forest states with their boundary occurring at the MP.
The location of the MP is predictably dependent on climate, soils
and distance to human impact. Bimodality over large ranges of
predictor variables as found in previous studies arises hence
because they did not consider the joint effect of all relevant
variables but focused only on that of MAR (see Fig. 3), or
anthropogenic edge effects are ignored when the data are spatially
lumped (see Supplementary Fig. 6). Furthermore, the bimodality
found in previous studies was consistent with models of
bistability because the models did not include spatial
interaction that allows fire to seep into forested areas. Even in
spatially explicit percolation models16, such spilling effects at the
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forest–savanna boundary were not conceptualized, as fire only
percolates on flammable clusters, to which forest does not belong.

However, the small amount of remaining bimodality in the
data for natural areas around the MP shows that a role of
hysteresis on smaller scales cannot be ruled out. If the system
truly does not have hysteresis, as in the model, the remaining
overlap could be due to additional unmodelled spatial hetero-
geneity, such as topography, radiation, temperature, variation of
plant physiology, fire/drought resistance of forest and natural
edge effects or spatiotemporal stochasticity from, for example,
interannual climate variability or longer-range fire spread.
Among the effects of spatial heterogeneity, we expect that
fire/drought resistance of forest may play a relatively large role.
Even though we only considered moist lowland forests by
excluding dry and montane forests from our analysis, different
adaptations of moist lowland forests to drought and fire may still
explain small but discernible differences in the MP. Furthermore,
an important next step in validating spatial forest–savanna
models is the explanation of the distribution of dry forests based
on an understanding of their adaptations to drought and fire.
Natural edge effects related to microclimatic differences and
increased windthrow44 may explain some of the remaining
overlap. As most edge effects occur within a couple of hundreds
of metres from the edge26, the overlap they cause is expected to be
much smaller than that caused by logging. The stochastic effect of
interannual climate variability45,46 and of the occurrence of
relatively rare but large fires47 would blur the MP into a small

overlap region, where both savanna and forest can occur. If we
did in this study account sufficiently for the effects of
heterogeneity and stochasticity, the remaining overlap is due to
bistability and hysteresis on a smaller scale than previously
recognized. One possible explanation for hysteresis is the
existence of vegetation–climate feedbacks6–9. Earlier studies
based on simple nonspatial models have shown that such
feedbacks could amplify the hysteresis associated with feedbacks
on smaller scales13,48.

If, as assumed in previous studies, the whole rainfall range of
bimodality were due to hysteresis10–12,15, there would be two
tipping points—one at low rainfall for forest–savanna transitions
and another at high rainfall for savanna–forest transitions.
Forests would only recover naturally after rainfall has increased
beyond the upper tipping point. Our results suggest that such
large rainfall increases are not necessary for forest recovery since
there is limited hysteresis, with both tipping points close to the
MP. Consistent with the phase diagram in Fig. 6a, the MP will
shift as agriculture expands. Naturally deterministic forests near
to these expansions will turn into deterministic savannas closest
to agricultural zones and into globally bistable (see Methods)
areas a bit further away, up to the point where anthropogenic
edge effects decay to zero. Similarly, naturally bistable forests in
close proximity of agricultural expansions will turn into
deterministic savannas. However, as the human effects operate
on a much smaller scale than the natural effects do, the zones of
global bistability around agricultural areas will be much more
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narrow than the globally bistable area due to the natural
gradients. Therefore, in naturally deterministic areas, changes to
land management practices around human-impacted areas would
be sufficient to enable forest recovery. In the areas that were
globally bistable before human expansion, a slight improvement
of climatic conditions may be necessary in addition. Theory
suggests that the front speed during forest recovery will be a
function of how close the forest’s conditions are to the natural
MP18,19,49. The more the climatic and edaphic favourability of a
secondary forest is beyond that given by the MP, the faster the
recovery will occur. This is consistent with the climate-dependent
resilience found in recent research on secondary forest recovery50.

Notwithstanding the remaining uncertainty about the existence
of hysteresis on a smaller spatial scale, we have shown that most
of the previously observed bimodality of tree cover in the
Amazon basin can be explained by natural and anthropogenic
spatial heterogeneity. This was overlooked in previous studies
because they ignored space. In their data analysis, spatial
heterogeneity of other variables than rainfall was not taken into
account, and in their models, spatial interaction was not captured.
As this led to large ranges of bimodality in the data and large
hysteresis loops in the model, data and models agreed not due to
being valid but due to biases that worked in the same direction for
both. A greater understanding will now be required of how other
important processes and phenomena such as longer-range fire
spread effects, hydrological feedbacks6–9, regional adaptations of
forests to drought/fire, interannual climate variability45,46 and
climate change may cause or affect48 local hysteresis, and how
they influence the MP. The effects of certain feedbacks may not
be inferable from a merely spatial analysis or a limited temporal
record. Therefore, hydrological feedbacks may still cause basin-

scale hysteresis associated with vegetation–climate interaction.
Nonetheless, both the local-scale fire feedback and the regional-
scale hydrological feedback exist due to spatial interactions that—
as we have shown—can be crucial to the dynamics and therefore
should not be ignored in future models of tropical vegetation,
whether conceptual or for simulation.

Methods
Study area. We delineate our study area with geographical coordinates 12.5�N,
� 23�S, � 81.5�W and � 34.5�W. All analyses of spatial data have been restricted
to the land area contained within the bounds of this rectangle. As in ref. 10, we
exclude all areas above 1,500 m altitude (with the SRTM DTM51 data set) because
other effects than rainfall (for example, temperature) may become important there.
Additionally, places above 1,500 m altitude generally have complex topography and
microclimate such that interpolation errors are greatest in these regions. We have
also excluded wetlands and areas around major rivers, since tree cover may be
affected in various ways there due to permanent high water availability, flooding
and human impact, and may introduce more noise, although these areas are
spatially relatively restricted. We have further excluded areas where forests may
have specific or regionally distinct adaptations to drought, fire or altitude. These
include all montane and dry forests as defined by the WWF ecoregion database52.

Observed tree cover. Tree cover data was obtained from the satellite-derived
MODIS continuous vegetation fields data set31. Areas where at least three out of
seven periods used for reconstruction of tree cover in 2000 or in 2010 were affected
by cloudiness or satellite-related issues (Supplementary Fig. 7) were excluded from
the analysis to mitigate the influence systematic errors. Systematic errors tend to
depress tree cover estimates due to the lowering effect of cloudiness on normalized
difference vegetation index. We expect random errors to be reduced by using the
median tree cover change as a robust population estimate of the change between
2000 and 2010 in Fig. 4.

Recently, the MODIS VCF data set has received some criticism38 since the
method used to estimate tree cover from remote-sensed data (classification and
regression tree (CART) analysis) can introduce artificial discontinuities and hence
multimodality in the data, even if the underlying tree cover data are uniform. This
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Figure 6 | Model states predicted from steady states at the end of simulations on a square lattice for all relevant combinations of MAR and distance

to agriculture. (a) State diagram as function of distance from agriculture (d) and MAR (P) (example with average seasonality and soil conditions). Between

savanna and forest, the colour scale represents the proportion of the lattice that is occupied by adult trees. The solid black line shows where the Maxwell

point lies, that is, where this proportion settles to a stationary value that is not 0 or 100%. The dotted line shows the Maxwell point for high seasonality

(MSI¼0.86, 95% percentile) and the dashed line for low seasonality (MSI¼0.12, 5% percentile). (b) Classification of the study area using P, M, d and p.

(c–f) Example simulations: (c) initial condition, (d–f) final states with d and P values at the points indicated in a.
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indicates the importance of using data sets that use alternative methods to produce
tree cover estimates when testing the multistability hypothesis, particularly since
CART methods have been widely used in mapping ecological variables based on
remote-sensed data. Nevertheless, a follow-up correspondence explored the error
distribution in the MOD44B data set in more detail using local ground
measurements to show that the previously found bimodality of tree cover is not
attributable to bias in the calibrations39. They also concluded that the data are not
well resolved below 20–30% tree cover and may not be useful for comparing over
ranges smaller than B10% tree cover. While the critics acknowledge the use of the
VCF data to detect course patterns, they maintain that we should be wary of
potential biases produced by CART methods40. Hence, we cannot deduce from
these data whether the treeless state is a continuous or discontinuous transition.
Nevertheless, in our work we mainly focus on forest–savanna bistability and
therefore our conclusions are expected to be unsensitive to this issue.

Pre-human forest cover. The United Nations Environment Programme–World
Conservation Monitoring Centre (UNEP-WCMC) data of pre-human forest
cover30 is the result of a combination of potential forest cover maps, satellite data
and expert knowledge on ecoregions. In the source material it is mentioned that the
data represent forest cover before the arrival of the ‘modern man’. However, even
before colonization, advanced societies existed. For instance, in South America,
sophisticated knowledge of land management methods by fire53 caused large
impacts on the environment. The size of these societies was reduced with 90% by
disease due to first contact with European colonists, followed by a substantial
decrease in fire activity, as evidenced by frequency of charcoal particles in
paleoenvironmental records53. An estimation of human impact during this
transition54 shows that it took two centuries for human impact to recover up to the
same level again. If precolonial human impact would have created savannas, this
amount of time was likely enough for forest to fully recover again. We assume
therefore that the data represent forest cover before emergence of methods that
have a substantive impact on the environment, whether right before the arrival of
modern man or somewhat earlier.

Soil data. We took the data on top soil (top 30 cm) sand fraction, clay fraction and
bulk density from the Harmonized World Soil Database33 and used them as
predictors of pre-human forest and as variables in the model. See Supplementary
Fig. 1c–e for their maps. Note though that the quality of these data are lower than
that of the climate and vegetation data.

Fire data. We chose the AQM burnt area data set of INPE (Instituto Nacional de
Pesquisas Espaciais)41 and not the commonly used MODIS burnt area data since
the former has better agreement with high-resolution LANDSAT data on burnt
area, with a lower number of omission errors, and was calibrated to work
specifically for Brazil instead of globally.

Climate data and processing. MAR and MSI55 were derived from the 0.25� merged
gauge-remote-sensed data of the Tropical Rainfall Measuring Mission (TRMM
3B43)32, with a temporal coverage from 1998 to 2010. Merging remote-sensed and
gauge data balances their respective errors caused by biases and the inhomogeneous
distribution of weather stations respectively. MAR and MSI are defined as

MAR ¼1=13
X2010

y¼1998

X12

m¼1

py;m;

MSI ¼

P12

m¼1

pm

����

����
P12

m¼1

pm

;

ð2Þ

where py,m represents rainfall in month m of year y and pm a vector with magnitude
the multi-year monthly average of the mth month in the year and as phase mp/6. MSI
varies between 0 and 1, with higher values meaning higher seasonality. For maps of
MAR and MSI, see Supplementary Fig. 1a,b.

It was found previously that both MAR and mean dry season length correlate
with tree cover10. Therefore, scatterplots that serve to find parameter ranges where
bistability is likely to occur should either be plotted as function of both MAR and
mean dry season length or of one variable that captures both effects. We used mean
CEFS for this purpouse that additionally takes into account the effect of soils (see
main text). To see how all used climatic variables in this text correlate, see
Supplementary Fig. 8.

Prediction of pre-human forest cover from natural variables. We performed a
logistic regression on the above-mentioned data of estimated pre-human forest
cover to test which variables significantly affect natural forest cover, justify the use
of them in our model and to be able to construct an optimal combination of
predictor variables that captures all relevant predictor information in one variable.
The regression was done on a random sample of 50,000 points on a spatial reso-
lution of 1 km. We performed ridge logistic regression to assure that dependence
between the predictors was not an issue. We exclude highlands (41,500 m),

montane/drought-adapted forests and wetlands. The used climatic variables are
mean annual rainfall (P) and the Markham seasonality index (M). Used edaphic
variables are topsoil sand (js) and clay (jc) fraction, and topsoil bulk density (r).
The dichotomous response variable is forest occurrence. The logistic regression was
used to classify places as forest or nonforest via demarcation of a decision boundary
in the space of predictor variables, where the log odds equals zero, meaning that the
probability of forest occurrence equals 50%. Forest is predicted beyond this
boundary, where the log odds is greater than zero, or,

gðFðyÞÞ¼ ln½F=ð1� FÞ� ¼ h:y40; ð3Þ

with F(y)¼ [1þ exp(� h.y)]� 1 the probability of forest occurrence given y, where
h is the vector (y0, y1, y2, y3, y4, y5) and y the vector (1, js, jc, r, jc, r, m)T. In
ref. 11, logistic regression has been applied using mean annual rainfall instead of
CEFS, and without taking into account human impact, data quality and altitude/
drought adaptations.

Tree cover versus CEFS scatterplots. The scatterplots of remote sensed tree
cover (250 m spatial resolution) against CEFS were made at tree cover resolution
(as in refs 10,11) by generating high-resolution maps of CEFS via spline
interpolation. Due to the high number of pixels in the study area on this resolution,
we chose to make scatterplots from a random spatial subsample of the data set,
stratified by CEFS. We did this by taking 100 samples out of 50 consecutive CEFS
intervals between � 7.5 and 5. The tree cover (TC) data are available for 11 years
(2000–2010), and therefore we can also analyse TC stability based on its dynamics
rather than just its spatial distribution. By binning tree cover change between the
years 2000 and 2010 in two-dimensional bins of [CEFS,TC(2000)] space [with bin
width (CEFS;TC)¼ (0.25; 3%)], we reconstructed the net growth as function of
CEFS and TC by calculating the median in each of the bins. This analysis was done
for each of the human impact classes. It has to be noted that regions with CEFS
lower than about � 5 occur far less in the study area (Supplementary Fig. 1f).
Above this value of CEFS, the observed frequencies in the different bins of CEFS
are fairly comparable. Hence, in those drier places with CEFS lower than about
� 5, which occur almost exclusively in the Sechura and Atacama desert ecoregions
in Western Peru and Chile, sampling will be denser and therefore prone to biases.
Nonetheless, here we almost exclusively focus on the forest–savanna front that
occurs around CEFS¼ 0. Scatterplots of tree cover versus MAR/MSI were pro-
duced in the same way.

Subdivision into classes of degree of human impact. Based on the rationale
that human impact decreases with distance from agricultural and urban areas,
we subdivided the study areas into different classes of human impact. We used
two data sets for this purpose: MODIS land cover [IGBP (International
Geosphere-Biosphere Programme) classification]37 (500 m resolution) and the
pasture intensity variable of the Agricultural Lands data set36 that is the result of
downscaling subnational statistics on a 10 km grid via remote-sensed land cover
data. The agricultural and urban class in Fig. 2b contains those areas that consist
of cropland (land cover classes 12 and 14), have a pasture intensity higher than
0.5 or are urban (land cover class 13). The transition class contains the areas that lie
not further than 3 km from these agricultural/urban areas. The natural class
consists of areas further than 3 km from the agricultural/urban class. We chose the
value of 3 km as it is slightly higher than the value of 2.4 km found for the largest
edge effects26.

The data on pasture intensity were interpolated to 250 m resolution by
subdividing every 10 km2 pixel into 1,600 250 m2 subpixels and allocating the
intensities proportionally to Hi,j/Hj, where Hi,j stands for herbaceous cover in the
ith subpixel of pixel j. The data on herbaceous cover were taken from the MODIS
VCF data31.

Separating forest and savanna. We chose 40% as threshold to separate forest
from savanna based on analyses of fire occurrence versus tree cover.
Supplementary Fig. 3 shows a plot of observed fire occurrence in the study area as a
function of tree cover and annual water deficit. This plot is based on annual fire
and tree cover data from between 2005 and 2014 (in nonimpacted places). It shows
that the tree cover value where fire occurrence increases sharply increases with
increasing dryness. That the fire feedback occurs from higher tree cover values in
drier areas should have an effect on which tree cover values are observed at the
forest side of the forest–savanna transition. Nonetheless, most burning occurs
below about 40% as shown in Supplementary Fig. 3. Likewise, due to the
fire–vegetation feedback, there are very few areas with tree cover between 40 and
60% compared with outside that range. Therefore, the actual choice of the
threshold in this range does not really matter much.

Previous studies have also found 40% as the threshold based on data
analysis12,56. The 40% result is also consistent with percolation theory on two-
dimensional (2D) square lattices. The problem of fire spread in grasses is equivalent
to what is called ’site percolation’ on 2D square lattices with nearest neigbours
neighbourhood, for which a percolation threshold of 59% has been found57,58. The
59% refers to the density of the medium over which the percolation occurs—in our
case the grass layer. Therefore, the tree cover value is 100� 59%¼ 41%. The
percolation threshold generally depends on the type of percolation (‘site’ versus
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‘bond’), the type of lattice (square, triangular, honeycomb and so on), its dimension
(1D, 2D, 3D) and its neighbourhood structure (only nearest neighbours, nearest
neighbours and next nearest neighbours and so on). That the threshold in savannas
is close to the one for nearest neighbour 2D site percolation suggests that on
average, patches of grass in savannas are connected as nodes in a square lattice. The
lowering of the grass density threshold with dryness (Supplementary Fig. 3)
suggests that the effective connectivity is increased by dryness.

Furthermore, there is also the question of whether low tree cover (o40%) really
represents savanna and high tree (440%) cover forest. Savanna trees rarely grow
higher than 15 m while forests reach canopy heights of B40 m. This was addressed in
a recent study59, where they compared the VCF tree cover data set with satellite data
on canopy height. The high agreement of the low cover with the low canopy height
and the high cover with the high canopy height mode confirmed that the VCF data
separates savannas and forests well. However, some low cover areas were found to have
high canopies, indicating degraded forests. Using the same data set, we verified where
these high height low cover areas (415 m and o40%) lie and found them to be
almost exclusively in or close to transition areas (Supplementary Fig. 9). This suggests
that our transition class indeed captures anthropogenic degradation.

Bimodality and local versus global bistability. We use the term bimodality when
seeing both forest and savanna states exist at the same rainfall/seasonality/climate–
edaphic forest suitability. Bistability and hysteresis are system-dynamic properties
while bimodality only refers to the statistical distribution of a variable, tree cover in
this case. We further use the term local bistability for existence of alternative stable
states for a parameter range in models without spatial interaction. If there are still
alternative stable states for a certain parameter range despite having spatial
interaction, we use the term global bistability. When only talking about bistability,
we refer to global bistability, as this is what would be observed in nature.

Model. To explain the findings from the data analysis, we set up a stochastic43

partial differential equation model inspired by ref. 15 for the effect of fire (F) on the
following cover types: forest tree (F), savanna tree (T), savanna sapling (S), grass
(G) and bare soil (B) depending on space x and time t, expressed as fraction of
space occupied,

@t S¼gSðM; PÞGT � qðFÞS�mSðM; PÞS� gFðM; PÞSF� r0S1ð�;YÞ þsGxS;

@t T ¼ qðFÞS�mT ðM;PÞT � gFðM; PÞTF� r0T1ð�;YÞ;

@t F ¼ gFðM; PÞðGþ SþTÞF� bFF�mFðM; P; pÞF� rðdÞF1Yþ sðGþ SþTÞxF

@t B ¼ mGðPÞG� gGðPÞBG;

@t G ¼ � @t S� @tT � @tF� @t B;

@tF ¼ f ðM; P; p;Gþ SÞ�FþDr2f ðM;P;p;Gþ SÞ:
ð4Þ

The model has as external variables the spatial distribution of observed MAR (P),
MSI (M), soil suitability for forest (p) and of the distance to the agricultural/urban
class (d). These external variables influence the dynamics by affecting growth and
mortality rates (gi and mi) in the equations. The f is a stochastic variable that
models local fire occurrence, with fire probability an increasing sigmoidal function
of total fire-prone cover (Gþ S) and the cover value where this function increases
steeply being a function of M, P and p (see Supplementary Fig. 4c,d). Fire diffusion
between cells is captured by the term Dr2f so that forest close to savanna will be
more affected by fire than forest encircled by other forest. When a cell burns, a
fraction b of forest cover is removed. The q represents sapling recruitment into
adults and is a linearly decreasing function of fire. The choice of gi(M,P) is based on
the assumption that growth rate saturates when water limitation is less severe.
mi(M,P,p) was chosen to parameterize the increased mortality due to severe water
limitation beyond a certain threshold. The only assumed human effect on savanna
saplings and adult trees is a constant high removal rate r0 in human-managed
zones at times with human impact, or (x,t) E (X,Y), where (X,Y) is the set of all
locations and times with occurrence of human impact. Forest cover removal r(d) is
higher at closer distances d to agricultural/urban areas at times when human
impact occurs (t E Y). We estimated soil suitability for forest p is a variable
constructed as follows,

p ¼ y1jsþ y2jc þ y3rþ y4jcr� pc; ð5Þ
where parameters yi have been taken from the logistic regression model (Table 1)
and pc is the value where the modelled effect of soil is zero. Finally, sxi is
spatially/temporally uncorrelated Gaussian noise with variance s2. The variance is
further scaled with the relative availability of space that the cover type can colonize.

All plant species are conceptualized as cover fractions, such that for all time and
space,

BþGþ SþT þ F¼1: ð6Þ
In a similar way to ref. 15, we have assumed the following competitive hierarchy

BoGoSoToF ð7Þ
by allowing F to colonize areas occupied by S, T and G; S to colonize areas occupied
by only G; and G to colonize areas only occupied by B. G is also the default cover
type, meaning that mortality of trees other than competition by other tree types

results in conversion to G. Bare soils can only form in dry places of grass cover. We
assumed a continuous transition between bare soil and grass cover (and hence no
grass–bare bistability). As shown by Supplementary Fig. 4a, savanna trees were
assumed more drought resistant retaining low mortality and high growth rate for
drier conditions than forest trees. The model functions and parameters used are
shown in Supplementary Tables 2 and 3. The functions gi(M,P), mi(M,P,p),
f(M,P,p,Gþ S) are plotted in Supplementary Fig. 4a.

The fire component has the following form,

@tF¼f ðM;P;p;CÞ�FþDr2f ðM; P; p;CÞ; ð8Þ
where C¼Gþ S¼ 1-T-F-B represents fire-prone cover. Fire occurrence consists of
local fire occurrence f(M,P,p,C) and fire spread Dr2f. The chosen local fire
occurrence function has a sigmoidal shape, with zero burning at low fire-prone
cover, a steep increase around a critical cover value Cc and maximal burning at
cover value C44Cc (Supplementary Fig. 4c,d), where Cc is a function of M, P and p
(Supplementary Fig. 4e,f). The f(M,P,p,C) is shorthand for the random variable
constructed via a Bernoulli trial Bernoulli (p) with

p¼pðM; P; p;CÞ¼ 1
I

1
1þ expf� kf ½C�CcðM; P;pÞ�g ; ð9Þ

where I is the minimum fire return interval, Cc the fire-prone cover value where fire
occurrence steeply decreases with C and kf the steepness of this decrease. This
logistic function is shown in Supplementary Fig. 4c,d as a function of C. Such a
sigmoidal shape is similar to the ones derived from percolation models16. In
percolation models, the percolation threshold is fixed. Here, we let this threshold
vary as a function of climate and soils by choosing Cc as a function of M, P and p,

CcðM; P; pÞ¼1� 1� C0

1þ exp½ � kMðM�M0Þþ kPðP�P0Þþ kpðp� p0Þ�
: ð10Þ

A varying percolation threshold is not strictly necessary to get bistability in the
model but it improves the comparability with fire data. Having a percolation
threshold that is not fixed is a representation of the dependence of fire fuel effective
connectivity and density with climate and soils.

In agreement with empirical studies, fire in our model affects savanna trees by
reducing the recruitment of savanna saplings into savanna trees. We did this by
choosing

qðFÞ ¼ q0ð1� dFÞ ð11Þ
such that recruitment is reduced with a factor d in fully burnt areas. For a more detailed
justification of the model structure with regard to empirical studies, see ref. 15. Mortality
of forest trees by fire is affected by removing a fraction b in burnt areas.

Near the forest edge, more area is affected by logging26. We assume an
exponential decay of logging rate with distance from the forest edge,

rðdÞ ¼ r0 exp � krdð Þ ð12Þ
In places where there is agriculture (whereð1x2�Þi ¼ 1), clearcutting is modelled as
a constant high removal rate (r0) of trees and saplings caused by land management.
In the transition zones, deforestation rate decays as a function of distance r(d) from
these agricultural areas. We further neglect diffusion of cover types
(DFr2F¼DSr2S¼ 0) compared with the effect of fire diffusion. Note hence that
the only spatial interaction in our model comes from the fire spread term.

We use no-flux boundary conditions. The model is initialized (t¼ 0) with
random cover values and run for 300 time steps, before which steady state was
reached. Then, deforestation was switched on until the end of the simulation
(t¼ 500), before which steady state was reached again.

Discretized fire model and its interpretation. After discretizing and showing
spatial and temporal dependence in the fire equation, we obtain,

Fðtþ 1Þ�FðtÞ ¼ f ½M;P; p;CðtÞ��FðtÞ�DLf ½M;P; p;CðtÞ�;
Fðtþ 1Þ ¼ ðI�DLÞf ½M;P; p;CðtÞ�;

ð13Þ

where we have written the spatial dependence as column vectors containing all the
values at all discrete spatial locations. Using L ¼ D�A (Laplacian matrix¼ degree
matrix� adjacency matrix) and writing for one particular location,

Fiðtþ 1Þ ¼ f ½Mi;Pi; pi;CiðtÞ� þD
X

xj2NðxiÞ
faijf ½Mj;Pj;pj;CjðtÞ� � f ½Mi; Pi; pi;CiðtÞ�g;

ð14Þ
where for every variable X, Xi is shorthand for X(xi) and N(xi) refers to the
neighbourhood of xi. Hence, fire occurrence at any location is then local fire
occurrence plus D times the differences with its nearest neighbours. We keep Fo1
throughout the simulation.

The reason for choosing this fire model form is that fire percolates through
space such that fires occurring on separate discretized spatial units cannot be
considered as isolated from each other, and that several empirical studies have
found that contagion of fires from cultivated/cleared areas into the forest are major
causes of extra forest loss next to direct deforestation/logging26–29. Since areas close
to the forest edge are often logged, this contagion process is reinforced. In our
model, the contagion effect is modelled by the Dr2f term, with D the strength of
this effect (D¼ 0.1 in our model).
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Phase diagram. To delineate the boundary between savanna and forest in the
diagram, the model was run on a 100� 100 square lattice for every combination of
values in a 100� 100 (d,P)-parameter grid, storing the proportion of the lattice that
is colonized by forest after 300 and 500 time steps, where forest means
FþT440%, starting from random initial conditions (with S(0)þT(0)þ F(0)þ
B(0)¼ 1), and with periodic boundary conditions. Then, the difference in forest
fraction was calculated by subtracting the earlier from the later simulated forest
fraction. The MP occurs where this difference is zero and where the steady state
forest fraction is not 0 or 1. Around the MP, convergence is very slow due to a slow
front propagation speed. The treeless state was delineated based on the local model
by finding for which value of P savanna tree cover becomes zero. By fitting an
exponential function to the MP in (d,P), the forest state could be predicted in space
(Fig. 6b), with the effect of M and p taken into account by substituting in this
exponential equation P by

P� KM

KP
ðM� �MÞþ KS

KP
ðp� �pþp0Þ: ð15Þ

Software. Data. All geoprocessing was done with an interface of GRASS7
(grass.osgeo.org) with SciPy (scipy.org), using the GRASS-Python scripting library
(grasswiki.osgeo.org/wiki/GRASS_Python_Scripting_Library).

Modelling. We used MATLAB 2015a (uk.mathworks.com) to run the model
using our own vector Euler–Maruyama scheme. We used time step Dt¼ 1y and
spatial resolution Dx¼ 1 km. Such a high resolution was necessary to model fire
contagion, human impact and their interaction that occur on small spatial scales.
The required memory was provided by the high memory nodes of Blue Crystal, the
high-performance computer of the University of Bristol (bris.ac.uk/acrc).

Plots and figures. Plots and figures were created using SciPy, Matlab 2015a and
Mathematica 10 (wolfram.com/mathematica). Maps were drawn with GRASS7.

Data availability. All data used in this study except the fire occurrence data
are publicly available from the web. The original forest cover dataset is available
from the UNEP-WCMC database (old.unep-wcmc.org/generalised-original-and-
current-forests1998_718.html). VCFs are available from the Land Processes
Distributed Active Archive Center (lpdaac.usgs.gov/dataset_discovery/modis/
modis_products_table/mod44b). The TRMM 3B43 rainfall data set is available
from the Tropical Rainfall Measuring Mission database (trmm.gsfc.nasa.gov).
Soil information is available on the Harmonized World Soil Database (webarchi-
ve.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML). Crop and pas-
ture intensity information can be found on Earth Stat (www.earthstat.org). The
MODIS IGBP Land cover product is available from the Land Processes Distributed
Active Archive Center (lpdaac.usgs.gov/dataset_discovery/modis/mod-
is_products_table/mcd12q1). The SRTM digital elevation model can be found on
CGIAR-CSI database (srtm.csi.cgiar.org). WWF Terrestrial ecoregions can be
found on the World Wildlife Fund website (www.worldwildlife.org/publications/
terrestrial-ecoregions-of-the-world). The computer code used for this study is
available from the corresponding author on request.
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