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Tunable transmission of quantum Hall edge
channels with full degeneracy lifting in split-gated
graphene devices
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Zheng Han1,2, Vincent Bouchiat1,2, Hermann Sellier1,2 & Benjamin Sacépé1,2

Charge carriers in the quantum Hall regime propagate via one-dimensional conducting

channels that form along the edges of a two-dimensional electron gas. Controlling their

transmission through a gate-tunable constriction, also called quantum point contact, is

fundamental for many coherent transport experiments. However, in graphene, tailoring

a constriction with electrostatic gates remains challenging due to the formation of p–n

junctions below gate electrodes along which electron and hole edge channels co-propagate

and mix, short circuiting the constriction. Here we show that this electron–hole mixing is

drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the

full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full

channel pinch-off. We demonstrate gate-tunable selective transmission of integer and

fractional quantum Hall edge channels through the quantum point contact. This gate control

of edge channels opens the door to quantum Hall interferometry and electron quantum optics

experiments in the integer and fractional quantum Hall regimes of graphene.
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I
n two-dimensional electron gases formed in semiconductor
heterostructures, confinement of electron transport through
nano-patterned constrictions has led to tremendous advances

in quantum transport experiments1. Chief among key devices,
operating both at zero magnetic field and in the quantum Hall
(QH) regime under strong magnetic field, is the quantum point
contact (QPC): a gate-defined narrow and short constriction that
enables control over the exact number of transmitted electronic
modes between two reservoirs of electrons, leading to
conductance quantization2–7. In the QH regime, fine-tuning of
transmission across the QPC via electrostatic gating has become
essential for many experiments based on electron tunnelling
and charge partitioning, such as shot noise measurements8,9, QH
interferometry10,11 and electron quantum optics12,13.

Yet, in monolayer graphene, demonstration of QPC operation
in split-gate geometry remains challenging. The major hurdle
precluding engineering split-gated constrictions stems from the
gapless graphene electronic band structure14. Depletion of an
electron-doped region with a gate electrode indeed leads to
a hole-doped region, creating a conducting, gapless p–n junction
that inevitably short circuits the constriction.

The alternative route that consists in confining electron
transport through etched constrictions has long been difficult
due to the fact that physically etched constrictions in
low-mobility devices are subject to electron localization by
disorder and charging effects15–18. Recent improvements in
device fabrication techniques have solved these issues with
a significant rise of graphene mobility, mitigating disorder
effects. In turn, remarkable etched constrictions in suspended
graphene flakes were realized, showing clear conductance
quantization upon varying the global device charge carrier
density at zero magnetic field19, and later confirmed
in encapsulated graphene devices20.

In the QH regime, tunability of the QPC constriction with
split-gate electrodes is mandatory to control the transmission of
QH edge channels and the tunnelling between counter-propagat-
ing QH edge channels. However, the p–n junction formed
along gate electrodes also poses problems as electron-type
QH edge channels co-propagate along the junction with
hole-type edge channels, as illustrated in Fig. 1a. First
experiments in devices equipped with a single top gate have
shown that disorder promotes charge transfer between these
co-propagating electron and hole edge channels, leading to
chemical potential equilibration21–23. Recently, it has been shown
that the use of boron nitride (hBN) substrates that considerably
reduce disorder can suppress equilibration effects at the p–n
interface in single top-gate devices24. The origin of this
suppression remains unclear and could result from the opening
of a gap at the charge neutrality point as observed in some
graphene-on-hBN devices25,26. For the split-gate defined QPC
geometry, experiments in graphene QPC devices operating on
the fourfold degenerate Landau levels (LLs) showed that the
presence of QH edge channel mixing is also detrimental
as it creates a short circuit of the constriction via localized
channels beneath the split gates (red channels in Fig. 1a), thus
hindering gate control of QH edge channel transmission
hrough the QPC27,28.

In this work we employ high-mobility hBN/graphene/hBN van
der Waals heterostructures29,30 to take advantage of the full
symmetry breaking of the LLs and the emergence of an energy
gap between electron and hole LLs that significantly mitigate
QH edge channel mixing. The heterostructures are equipped
with back-gate and split-gate electrodes to realize QPC devices
operating in the QH regime. By continuously changing
the graphene electron densities in the bulk and beneath the
split-gates, we identify the exact edge channel configurations for

which QH edge channels are immune to short circuiting. This
enables to selectively gate-tune the transmission of both integer
and fractional QH edge channels through the QPC, eventually
leading to full pinch-off.

Results
Split-gated high-mobility graphene devices. High-mobility
samples were fabricated following the recent tour de force
in graphene device fabrication techniques using van der
Waals pick-up30 that produces remarkably clean encapsulation
of graphene in between two hBN flakes (see Supplementary
Information for details). In this configuration a top hBN
layer serves naturally as a high-quality dielectric for gating.
Suitable etching of the hBN/graphene/hBN structure enables
deposition of both contact electrodes on the edge of the hetero-
structure and split-gate electrodes in a single metal deposition
step.

In this study two different devices were fabricated, each
showing quantitatively identical behaviours (see Supplementary
Information). We present here the results of an hBN (17 nm)/
graphene/hBN (32 nm) structure patterned in a 2 mm wide Hall
bar with 6 contacts, and split gates of 150 nm gap located in the
central part of the device (see Fig. 1a,b). The SiO2(285 nm)/Siþþ
substrate serves as a back gate. The six contacts enable
measurement of three voltages (see Fig. 1b) in four-terminal
configurations, leading to the longitudinal and diagonal resis-
tances RL and RD, and the Hall resistance RH. All measurements
were carried out at a temperature of 0.05 K.

Figure 1c shows a map of RL versus back-gate and split-gate
voltages, Vbg and Vsg respectively, at zero magnetic field. The
charge neutrality point (CNP) of the bulk graphene—the
resistance peak independent of Vsg—is located at VCNP

bg ¼ � 1V,
indicating very small residual doping. The diagonal line drawn by
a second peak in RL indicates charge neutrality in the split-gated
region of graphene. Its slope corresponds to the ratio of
capacitances between back-gated and split-gated regions
(Csg/Cbg¼ 7) and hence provides a way to assess quantitatively
for the charge carrier density beneath the split gates
(using Cbg¼11:1 nF cm� 2).

Analysis of transport properties at Vsg¼ 0V leads to a mean
free path of 1.8 mm that coincides with the width of the Hall bar,
and a bulk mobility superior to 200 000 cm2V� 1 s� 1 at a charge
carrier density of nB1012 cm� 2. These, together with signatures
of negative nonlocal resistance (Supplementary Fig. 1), demon-
strate ballistic transport in the device.

The quality of our device is also apparent in the resolution
of broken symmetry states of graphene in the QH
regime at moderate magnetic field (B). Figure 1d shows a colour
map of RL versus Vbg and B taken at Vsg¼ 0V (see
Supplementary Fig. 2 for hole doping). In this Landau
fan diagram, RL¼ 0 blue strips indexed by their respective
integer value of the bulk filling factor nb¼ nf0/B (n is the
carrier density and f0¼ h/e the flux quantum with e the electron
charge and h the Planck constant) signal the presence
of QH states. In addition to the usual graphene sequence nb¼ 4(
Nþ 1

2)¼ 2, 6, 10... where N is the LL index, broken symmetry
states at nb¼ 1 and at half-filling nb¼ 4, 8, 12, are visible at fields
as low as B¼ 3 T. At B45 T, LL degeneracies are fully lifted for
N¼ 0, 1 and 2 with clear additional minima at nb¼ 1, 3, 5, 7 and
9. Importantly, the n¼ 0 state that separates electron from hole
states at VCNP

bg shows insulating behaviour with a diverging RL,
consistent with previous reports pointing to a gapped
ground state31–35. At our highest B (14 T), these broken
symmetry states are furthermore accompanied by fractional QH
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plateaux that are pronounced in the Hall conductance
(Supplementary Fig. 3).

QPC operation in the integer QH regime. Let us now investigate
the control of integer QH edge channels by split-gate electrodes
defining the QPC. We begin with a set of data taken at B¼ 7 T in
the n-doped regime (Vbg4VCNP

bg ). Figure 2a displays the colour
map of the diagonal conductance GD¼ 1/RD across the split gates
versus Vbg and Vsg. For negative Vsg, conductance plateaux
quantized in units of e2/h draw diagonal strips spanning a large
range of Vbg, this voltage controlling the bulk filling factor
nb (labelled on the right axis). At positive Vsg, these diagonal
strips break up into rhombi that are horizontally delimited by the
width of the bulk QH plateaux, centred at integer values of nb.
Diagonal grey dotted lines index the expected filling factor
beneath the split gates, ng, related to the local charge carrier
density (extracted from Fig. 1c). These lines, together with
nb labels, give the exact QH edge channel configuration beneath
the split gates and in the bulk at any (Vbg; Vsg).

We first focus on the negative Vsg regime where the
charge carrier density below the split gates is lower than the
graphene bulk density, as is required for confining bulk QH edge
channels into the QPC. Inspecting the conductance strips we note
that their slope does not match the lines of constant ng. The
shallower slope rather indicates a smaller capacitive coupling to
the split-gate electrodes and hence a region of the graphene
device with a charge carrier density in between those of the

bulk and the split gates. This region is nothing but the QPC
saddle-point constriction that is capacitively coupled to both
the back-gate and the split-gate electrodes. We thus introduce
a third filling factor nQPC related to the charge carrier density in
the QPC (see Fig. 1a). In the following, we demonstrate that this
framework provides a fully consistent understanding of our data.

For negative Vsg, the filling factor configuration is
ngonQPConb, where inner bulk edge channels are expected to
be successively back-reflected at the QPC (see, for example,
Fig. 1a). We first discuss the diagonal strips in yellow, red and
dark red. Near zero split-gate voltage, charge carrier density is
homogeneous in the whole graphene device, and ng¼ nQPC¼ nb
with nb¼ 2, 3 and 4, respectively. At these points the conductance
values of 2e2/h, 3e2/h and 4e2/h are those of the respective bulk
QH plateaux defined by nb. The key feature of this series of strips
is that their conductance remains constant for any higher nb and
any lower ng, indicating that only 2, 3 and 4 QH edge channels
remain transmitted across the QPC, even if the number of edge
channels increases in the bulk or decreases below the split gates.
This clearly demonstrates that the strip conductance depends
on the filling factor in the QPC and hence on the number
of transmitted bulk edge channels. The diagonal conductance
thus follows:

GD¼
e2

h
nQPC ð1Þ

where nQPC counts the number of transmitted edge channels, as
expected for standard QPC devices6. Consequently, we can index
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Figure 1 | QPC device on hBN/graphene/hBN heterostructure. (a) Schematic of the device showing graphene encapsulated in hBN (top hBN flake

semitransparent) with electrodes contacting the graphene on the edge of the heterostructure. Edge channels formed at high magnetic field are shown as

red (hole) and blue (electron) channels. nb, ng and nQPC are the filling factors in the bulk, split gates and QPC regions, respectively, and determine the

number and type of edge channels present. For this schematic, nb¼ 2, ng¼ � 1 and nQPC¼ 1. (b) Scanning electron micrograph of the device showing the

measurement configurations. White dotted lines show the graphene edge buried below the hBN top layer. Scale bar is 1 mm. (c) Longitudinal resistance RL
as a function of back-gate and split-gate voltages at zero magnetic field. (d) Landau fan diagram of longitudinal resistance measured at 0.05K and

Vsg¼0V. Indexed blue strips indicate bulk QH states. (e) Energy diagram showing degeneracy lifting of the N¼ � 1, 0 and 1 LLs into broken symmetry

states indexed by the filling factor n. Arrows indicate the spin polarization of each electron (blue) and hole (red) level. Grey dashed arrows indicate the

specific spin-selective equilibration restricted to the N¼0 LL.
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nQPC according to (1) with the conductance value of each strip
(the resulting values are labelled at the top of Fig. 2a).

This picture is further borne out by looking at the closing of the
QPC with decreasing Vsg from zero at fixed Vbg. Figure 2c shows
line cuts of GD versus nQPC extracted from Fig. 2a at nb¼ 3 and 4.
The dark red curve taken at nb¼4 exhibits a plateau of GD¼4 e2=h
at nQPC¼ 4 when four bulk QH edge channels are transmitted.
Reducing nQPC to three by decreasing Vsg enables only three edge
channels to pass through the QPC, leading to a plateau of
GD¼3 e2=h, and similarly for nQPC¼ 2 at lower Vsg. Therefore,
closing the QPC by reducing the split-gate voltage leads to
successive back scattering of the inner edge channels demonstrat-
ing QPC operation in the integer QH regime.

Upon further closing the QPC, the situation becomes more
complex. Decreasing Vsg to nQPC¼ 1 does not result in a
conductance of e2/h, but ð3=2Þ e2=h (green strip in Fig. 2a).
Likewise, the conductance strips at nQPC¼ 0 and nQPC¼ � 1
should show full pinch-off with GDE0, but instead we observe
conductance plateaux at Be2/h and � 0:85 e2=h, respectively, for
any nbZ2.

The key to understanding these anomalous plateaux relies on
a specific charge transfer—equilibration—between some of the
back-reflected electron edge channels and some of the localized
hole edge channels beneath the split gates, thus adding a new
conduction path short circuiting the QPC. Following pioneering

works on p–n junctions in graphene21–23 and assuming
full equilibration, we solved the current conservation law
for the QPC geometry that now involves three filling factors
nb,ng and nQPC, thus complexifying equilibration compared with
n–p–n junctions (see Supplementary Note 5). Taking into
account that equilibration only occurs between QH edge
channels of same spin polarization24, the diagonal conductance
reads:

GD ¼
X
s¼";#

G
nsb ;n

s
g ;n

s
QPC

D ð2Þ

G
nsb ;n

s
g ;n

s
QPC

D ¼ e2

h
nsb
�� �� 2 nsb

�� ��jnsg j þ nsQPC nsb
�� ��� jnsg j

� �

3 nsb
�� ��jnsg j þ nsb

�� ��2 � 2 nsQPCjnsg j
ð3Þ

where nsb , n
s
g and nsQPC count the number of sub-LLs of identical

spin polarization s. Here nsb and nsg are of opposite signs, whereas
nsQPC can be of both signs.

The fact that the conductance strips at nQPC¼ 1, 0 and � 1
become anomalous from nb¼ 2 and stay constant for any higher
nb and any ngo0 indicates that populating other LLs, namely
NZ1 in the bulk and Nr� 1 under the split -gates, does not
change the conductance. This finding thus points to equilibration
uniquely between edge channels of the N¼ 0 LL. We therefore

10
1 2 3 4 1 2 3 4= �QPC = �QPC

�QPC

d e f g h i

–5 5

� b

�g

10 150

8

6

4V
bg

 (
V

)

Vsg (V)

2

0

10

0
GD (e2/h)

G
D
 (
e2 /h

)

1 2 3 4

8

6

4V
bg

 (
V

)

2

0

–4

–2 –1 0 1 2 3 4 5 6

4

d
e

f

g

h
i

3/2

1
5/6

3

2

1

0

–2 0 2 4

Vsg (V)

–4

I II III

–8 –6 –6 –3 –3

5

–8

–1 –1

–2 0 2 4

4

3

2

1

� b

�b = 4

�b = 3

4

3

2

1

0 0

–1
–1

a b

d d e f

g h i

Figure 2 | QPC in the quantum Hall regime. (a) Diagonal conductance GD as a function of back-gate and split-gate voltages, Vbg and Vsg, respectively. The

bulk filling factor nb is labelled on the right axis. The grey dotted lines indicate constant filling factor below the split gates and are indexed by ng on the top

axis. The diagonal arrows indicate constant QPC filling factor nQPC. Note that the sample is current biased precluding measurement of vanishing

conductance at full pinch-off. (b) Computed diagonal conductance map divided into three regions that delimit different operating regimes. In region I the

QPC is short circuited by equilibration through the localized states beneath the split gates. Region II defines the QPC operating regime. Region III is

analogue to n–n’–n top-gated structures. (c) GD versus nQPC for nb¼ 3 and 4. The black dots labelled d–i correspond to the ones in (a). The labels 3/2, 1 and

5/6 highlight the anomalous conductance values due to equilibration in region I for nQPC¼ 1, 0 and � 1, respectively. (d–i) Edge channel configurations at

the locations of the respective black dots in (a). Below the split-gates (grey areas), the numbers indicate ng, with only the first two edge channels drawn.

Equilibration between electron and hole channels is indicated by black wavy lines. (d) (nb, ng, nQPC)¼ (3, �8, � 1), (e) (3, � 6, 0), (f) (3, � 3, 1),

(g) (3, � 1, 2), (h) (3, 2, 3) and (i) (3, 5, 4).
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infer that charge transfer is restricted to occur between the spin
upward n¼ 2 and n¼ � 1 sub-LLs, and between the spin
downward n¼ 1 and n¼ � 2 sub-LLs, as indicated by the dotted
arrows in the LL energy diagram in Fig. 1e.

As a result, for nQPC¼ 1 and nbZ2, charge transfer between the
back-reflected nb¼ 2 edge channel and the localized hole ng¼ � 1
edge channel (see Fig. 2f) leads to G1";� 1";0"

D ¼ð1=2Þe2=h. As the
nb¼ 1 edge channel is transmitted through the QPC and
contributes to e2/h to the conductance, the sum of both
contributions gives ð3=2Þ e2=h, in agreement with the measured
conductance value. For nQPC¼ 0 and nbZ2 as sketched in
Fig. 2e, charge transfer between nb¼ 1 and ng¼ � 2 edge
channels (downward spin polarization), and between nb¼ 2
and ng¼ � 1 edge channels (upward spin polarization),
gives G1#;� 1#;0#

D ¼G1";� 1";0"

D ¼ð1=2Þ e2=h, thus a sum equal to
e2/h, as measured on the nQPC¼ 0 strip. For nQPC¼ � 1, a hole
state connects the split gates as sketched in Fig. 2d. In this case
G1#;� 1#;0#

D ¼ð1=2Þ e2=h and G1";� 1";� 1"

D ¼ð1=3Þ e2=h, leading to a
total conductance of ð5=6Þ e2=h ’ 0:83e2=h, remarkably close to
our measurement. Consequently, spin-selective equilibration
restricted to the N¼ 0 LL provides a full explanation of the
anomalous conductance values of the strips when the filling
factor in the QPC is reduced to 1, 0 or � 1.

If we now consider positive Vsg, the filling factor configuration
changes to nbonQPCong. Extra electron-type QH edge channels
can thus connect left and right edges of the graphene device
(see Fig. 2i) leading to chemical potential equilibration as in
n–n0–n top-gated structures23. We observe spin-selective partial
equilibration in this configuration that is not restricted to the
N¼ 0 Landau level, resulting in fractional conductance values
similar to those reported in high-mobility graphene devices24

(see Supplementary Note 5 for further analysis).
The above analysis of the QPC diagonal conductance is

computed in Fig. 2b, taking into account spin-selective equilibra-
tion for both Vsg polarities. Three distinct regions can be
identified. In region I, equilibration restricted to the N¼ 0
LL between reflected electron edge channels and localized hole
states short circuits the QPC leading to anomalous conductance
plateaux. Region II defines the equilibration-free QPC device
operating regime, where the conductance is precisely defined by
the number of transmitted channels. Region III, at positive Vsg,
describes the regime of n–n0–n unipolar equilibration. The
remarkable one-to-one correspondence with our data of Fig. 2a
supports the consistency of our analysis.

Full pinch-off. We complete this study of the QPC operation in
the integer QH regime by addressing the pinch-off that occurs for
nb¼ 1 according to the dark blue triangle in region II in Fig. 2b.
Figure 3a displays GD versus nQPC at nb¼ 1 extracted from a set of
data taken at 14 T (Fig. 3b). The conductance drops from e2/h to a
value o0.1e2/h, indicating full pinch-off of the nb¼ 1 QH edge
channel, when nQPCo1. Interestingly, we observed in the con-
ductance map shown in the inset of Fig. 3 that GD remains
vanishingly small (dark blue area) over a large range of gate
values, indicating that equilibration is less efficient at 14 T than at
7 T, most likely due to the larger energy gaps.

QPC operation in the fractional QH regime. In the following,
we turn to the QPC operation in the fractional QH regime. Owing
to the high quality of our samples, fractional QH plateaux of the
1/3 family at nb±1/3 develop at a relatively low magnetic field of
14 T (refs 32,33,36,37). We observe plateaux in the bulk Hall
conductance accompanied with minima in longitudinal resistance
at bulk filling factors 1/3, 2/3, 4/3, 10/3 and 11/3. Other plateaux
such as nb¼ 7/3, 8/3 have, however, lower fidelity with the
expected quantized values (see Supplementary Figs 3,4).

Akin to the integer QH effect, a key ingredient implicit in the
analysis of transport properties in the fractional QH regime is the
existence of fractional QH edge channels38,39. While their nature
differs from the integer QH edge channels as they emerge from
many-body interacting ground states within each LL40, spatially
separated edge channels are expected to propagate along the
sample edges as evidenced by different means in GaAs1. In our
graphene samples the QPC provides a perfect tool to unveil
fractional edge channels by individually controlling their
transmission.

Figure 4 displays GD versus Vsg for nb¼ 4,3,2 and a fractional
bulk value of 2/3, all taken at 14 T. Solid lines indicate the region
II of equilibration-free QPC operation. For nb¼ 4 at Vsg¼ 0
conductance is that of the bulk: 4 e2=h. Upon reducing Vsg the
conductance decreases due to the back-reflection at the QPC of
the inner nb¼ 4 edge channel, and new intermediate fractional
conductance plateaux emerge at ð11=3Þ e2=h and ð10=3Þ e2=h,
before reaching the integer plateau of 3 e2=h. Further pinching-off
reveals plateaux at ð8=3Þ e2=h and ð7=3Þ e2=h, though with less
accurate conductance quantization. The 8/3 plateau is more
pronounced for nb¼ 3, whereas the 7/3 is absent. Similarly, on
pinching-off nb¼ 2, a clear intermediate plateau at 4/3 emerges.
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Note that the small kink at GD¼ð5=3Þ e2=h signals the weak
fractional state at nb¼ 5/3, consistent with previous reports36,37.
Generalizing equation (1) to the case of fractional filling factor
nQPC (ref. 38), all these intermediate plateaux therefore unveil the
successive back-reflection at the QPC of the respective fractional
QH edge channels and thus their very existence. Eventually, upon
increasing pinch-off while starting at nb¼ 2/3, a clear ð1=3Þ e2=h
plateau emerges, followed ultimately, after its back-reflection, by a
suppression of conductance indicating full QPC pinch-off.

Discussion
In two-dimensional electron gases buried in semiconductor
heterostructures, the nature of the charge transfer between edge
channels has been investigated at length4,5,41,42. The overall
picture is that any small amount of short-range disorder in real
systems significantly enhances the tunnelling rate between
adjacent channels43–45. In case of two co-propagating channels
at different chemical potentials, this inter-channel tunnelling
produces an out-of-equilibrium energy distribution that
progressively relaxes to a new equilibrium by intra-channel
inelastic processes. After complete equilibration, the current is
equally distributed among channels that show identical chemical
potential. In graphene, theoretical works showed that disorder
and dephasing also drive equilibration at p–n junctions46,47.
However, consideration of selection rules on spin or valley
indexes for equilibration between broken symmetry states is
still lacking.

Interestingly, in our high-mobility graphene devices, the
regime of partial equilibration at Vsg40 shows inter-LL

equilibration, whereas in the QPC regime at Vsgo0, equilibration
is restricted to the N¼ 0 Landau level. This difference can be
accounted for by the distinct paths taken by the bulk QH edge
channels in the two regimes. At Vsg40, bulk edge channels
indeed keep propagating along the graphene edges below the split
gates, whereas for Vsgo0 they are guided along the p–n junctions.
These two paths markedly differ by the shape of the local
electrostatic potential that is expected to be much smoother at the
p–n junction than at the graphene edges. As the width of the
incompressible strips that spatially separate edge channels is
proportional to the ratio cyclotron gap over potential gradient44,
we expect the edge channels separation to be significantly
increased at the p–n junction, especially between the N¼ 0 and
N¼ 1 Landau levels that exhibit the largest cyclotron gap.
As a result, at the p–n interface, the tunnelling rate between
edge channels of different Landau levels should be exponentially
suppressed due to the large incompressible strips, precluding
inter-LL mixing as observed in the QPC regime (region I). Such
conjectures that are based on electrostatics of QH edge channels
call for further theoretical works including edge channel
reconstruction and full degeneracy lifting of graphene QH states.

To conclude, our overall understanding of the precise edge
channel configurations allows us to demonstrate gate-tunable
and equilibration-free transmission of both integer and fractional
QH edge channels through QPCs in graphene. Such a control of
edge channel transmission enables future investigations of the
equilibration processes at play that limit adiabatic transport4,5,48,
measurements of fractional charges8,9 in the multicomponent
fractional QH regime, design of single electron sources for
electron quantum optics12, QH interferometry10,11 or even more
prospective devices based on coupling QH states with
superconducting electrodes49–51 . Our work thus opens the way
to a wealth of invaluable experiments in graphene exploring the
variety of new QH ground states of both the integer34,35 and
fractional QH regimes32,33,36,37.

Data availability. The data that support the findings of this study
are available from the corresponding author on request.
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