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Fine structure of the topological defect cores
studied for disclinations in lyotropic chromonic
liquid crystals
Shuang Zhou1,w, Sergij V. Shiyanovskii1, Heung-Shik Park1,w & Oleg D. Lavrentovich1

The detailed structure of singularities of ordered field represents a fundamental problem in

diverse areas of physics. At the defect cores, the deformations are so strong that the system

explores states with symmetry different from that of an undistorted material. These regions

are difficult to explore experimentally as their spatial extension is very small, a few molecular

lengths in the condensed matter. Here we explore the cores of disclinations in the so-called

chromonic nematics that extend over macroscopic length scales accessible for optical

characterization. We demonstrate that the amplitude S and the phase n̂ (the director) of the

order parameter vary along both the radial and azimuthal directions, in contrast to the classic

models in which S varies only with the distance from the centre and n̂ depends only on the

azimuthal coordinate. This unexpected core structure is explained by a strong coupling of the

phase and amplitude of the order parameter in the free energy.
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T
opological defects represent an important concept in many
branches of modern physics ranging from cosmology and
optics to hard and soft matter. One of the most difficult

problem is the fine structure of the so-called core region of
defects, where the deformations of the order parameter are so
strong that the phenomenological description valid in the far-field
fails. The difficulty is not only that the theory should account for
the strong spatial gradients of the order but also in limited
accessibility of the core region to experimental exploration. For
example, in the case of topological defects in hard and soft matter,
such as dislocations and disclinations, the gradient energy
becomes comparable to the condensation energy at the atomic/
molecular length scales. Narrow extension of the core makes it
practically impossible to use standard optical and even electron
microscopy1–3 in establishing how the properties of the medium
are modified as one approaches the core. Because of the very
limited experimental data1–3, modern theories4–6 of the
topological defects treat the core problem with a number of
strong simplifying assumptions, such as angular and radial
independence of the order parameter inside and outside the core
region. In the case of linear defects, the core is often treated
simply as a cylinder of a more symmetric phase with zero-order
parameter (an isotropic melt), embedded into an outside region
with a constant amplitude of the order parameter.

In this work, we take advantage of the peculiar nature of the so-
called lyotropic chromonic liquid crystals (LCLC) of a nematic type
that carry disclinations with a core extending over macroscopic
distances (tens of micrometres), large enough to explore their
spatial variation by optical and electron microscopy. The disclina-
tions represent a singularity in the director field n̂ that indicates the
local direction of preferred orientation of the molecules. We
demonstrate that the director n̂ and the scalar order parameter S
(associated with the degree of orientational order) show a profound
change in the core region. In particular, the azimuthal
y-dependency of the director field n̂ r; yð Þ is different at different
distances r from the core centre, while S shows not only the radial,
but also an azimuthal dependence with pronounced ‘cusps’ that
depend on the topological charge of the defect.

Results
Experimental determination of microscale core structure.
LCLCs represent a broad class of materials where disk or plank shape
molecules in water self-assemble reversibly into cylindrical aggregates
and form uniaxial nematic or columnar phases7. The director n̂
depicts the average local orientation of the aggregates’ axes. LCLC
family embraces organic dyes and drugs7, nucleotides and oligomers
of DNA8. Recent exploration of the isotropic-to-nematic phase
transition in LCLCs brought into evidence that the core of
disclinations in LCLCs might be very large, on the scale of tens of
microns9. We take advantage of this fact and explore experimentally
the fine structure of the disclination cores at both the micron and
sub-micrometer scales through optical and electron microscopy.

The LCLC is disodium cromoglycate (DSCG) dissolved in water
with weight concentration 15% that corresponds to the nematic
phase at room temperature. DSCG is confined between two parallel
glass plates that impose degenerate tangential orientation on the
director n̂: n̂?ẑ, where ẑ is the surface normal. The disclinations are
formed by thermal quenching from the isotropic state: the nuclei of
the nematic phase grow and coalesce thus creating a network of
disclinations9. The measurements are performed for isolated
disclinations observed at the late stages of coarsening, when the
defects are well separated, by distances on the order of 100mm.
These separation distances are much larger than the length scales of
about 20mm over which the defect cores exhibit a fine structure
(Fig. 1), which is thus not much influenced by the neighbouring

disclinations. We observe no domain walls in the samples, which
confirms strictly tangential character of alignment10. Since the cells
are thin (thickness dE4.5mm) and since the director is free to
rotate in the plane of the glass substrates, the disclinations are
parallel to the ẑ axis, and the projections of their axes onto the plane
of view are point-like (Fig. 1a–d). Experimental mapping of the
spatial distribution of the director field (Fig. 1a,b) and of the scalar
order parameter (Fig. 1c,d) around isolated disclinations and
Fourier analysis of these patterns allow us to demonstrate both the
radial and azimuthal variations in the structure of the cores.

The director field around each disclination reorients by p
(defects of strength m¼ 1/2) or by �p (m¼ � 1/2), when one
circumnavigates the core once. Note that these defects are
topologically equivalent to the disclinations participating in the
so-called topological turbulence of active matter11–13. The spatial
variations of the director field n̂ x; yð Þ ¼ ðcosj; sinj; 0Þ and
optical retardance G(x,y)¼ |Dn|d are determined directly by LC-
PolScope microscopy14 (see Methods, Fig. 1a–d). Here j is the
angle between the local director and the axis x̂ that is chosen in
the plane of the cell along the radial director (Fig. 1a,b);
Dn¼ ne� no¼ � 0.020±0.001 is the optical birefringence at
wavelength l¼ 546 nm of the probing beam. The quantity
G/d¼ |Dn| yields the in-plane birefringence, which is the
measure of the tensorial orientational order parameter, as a
function of coordinates (Fig. 1c,d).

To facilitate the discussion, we introduce polar coordinates
(r,y); the azimuthal angle y is measured from the symmetry axis
x̂. The experimentally measured azimuthal orientation of the
director is represented as a combination of a linear term my
and a periodic anisotropic function ~jðmÞ r; yð Þ, that is,
jðmÞ r; yð Þ ¼ myþ ~jðmÞ r; yð Þ. We further examine ~jðmÞ r; yð Þ by
its Fourier expansion: ~jðmÞ r; yð Þ ¼ ~jðmÞ

1 rð Þ sin yþ ~jðmÞ
3 rð Þ sin 3y.

We find that, different from the expectation of classical theories
(see next paragraph), the Fourier harmonics ~jðmÞ

1 rð Þ and ~jðmÞ
3 rð Þ

are functions of the distance to the core: in the far field, r420 mm,
both ~jðmÞ

1 rð Þ and ~jðmÞ
3 rð Þ approach their limiting r-independent

values ~jðmÞ
1 1ð Þ and ~jðmÞ

3 1ð Þ. At rorcE20 mm, however,
~jðmÞ
1 rð Þ and ~jðmÞ

3 rð Þ change with r. For m¼ 1/2 disclinations,
the experimental data on ~jðmÞ r; yð Þ ¼ jðmÞ r; yð Þ�my show that
the first harmonic ~j 1=2ð Þ

1 ðrÞ increases as r increases and saturates
at ~j 1=2ð Þ

1 ð1Þ � 14�. The third harmonic ~j 1=2ð Þ
3 ðrÞ, although

distinguishable, does not contribute much to the main effect
(Fig. 1e). For m¼ � 1/2 disclinations, the first harmonic is zero

within the experimental error, ~j � 1=2ð Þ
1 ¼ 0, while the third

harmonic ~j � 1=2ð Þ
3 ðrÞ increases its absolute value as r increases

and saturates at ~j � 1=2ð Þ
3 ð1Þ � � 3:5�.

Far-field director and anisotropy of Frank–Oseen elasticity.
The radial dependence of the anisotropy function ~jðmÞ r; yð Þ
represents a major departure from the assumed behaviour of
disclinations in classic models4. In the widely popular one-
constant approximation to the elasticity of liquid crystals, the
director field is assumed to be of the form j(m)(r,y)¼my, so that
the anisotropic function vanishes, ~jðmÞ r; yð Þ � 0. In real
materials, the elasticity is anisotropic, with different elastic
constants attached to deformations of splay K1, twist K2, and
bend K3. The Frank–Oseen elastic energy density fFO is then
written in terms of the bulk director gradients as:

fFO ¼ 1
2
K1 divn̂ð Þ2 þ 1

2
K2 n̂ � curln̂ð Þ2 þ 1

2
K3 n̂�curln̂ð Þ2 ð1Þ

Using this density, equation (1), Dzyaloshinsky4,15 demonstrated
that the behaviour of j(y) is governed by the nonlinear
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differential equation4,16:

@2j
@y2

1� e cos 2 j� yð Þ½ � � 2
@j
@y

� @j
@y

� �2
" #

e sin 2 j� yð Þ ¼ 0 ð2Þ

where e¼ (K3�K1)/(K1þK3) is the splay–bend anisotropy.
Therefore, the elastic anisotropy e modifies the linear
dependency, jðmÞ r; yð Þ ¼ myþ ~j mð Þ

D yð Þ, where the anisotropy-
induced function ~j mð Þ

D yð Þ ¼ ~jðmÞ
1 sin yþ ~jðmÞ

3 sin 3y depends on
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Figure 1 | Experimentally determined microstructure of disclination cores in a chromonic nematic. The experimentally determined director field n̂ (a,b)

and optical retardance G (c,d) of m¼ 1/2 disclination (a,c) and m¼ � 1/2 disclination (b,d) show both radial and azimuthal dependences (e–h). (a–d) The

short bars represent local director field, while the contour lines, colormap and 3D surface in c,d represent the optical retardance G. Fourier analysis of the

azimuthal orientation j of the director shows that (e) the first harmonic ~jð1=2Þ
1 for m¼ 1/2 and (f) the third harmonic ~jð� 1=2Þ

3 for m¼ � 1/2, are both

functions of the radial distance r and vanish as r-0. (g,h) Fourier analysis of the optical retardance G shows that the core of disclinations, described by the

leading zero-order harmonic Gð	 1=2Þ
0 , has a macroscopic size on the order of 10mm, for both (g) m¼ 1/2 and (h) m¼ � 1/2 lines. Within the core, the

structures are axially asymmetric, as evidenced by the non-vanishing values of (g) the first harmonic Gð1=2Þ
1 for m¼ 1/2 line, and (h) the third harmonic

Gð� 1=2Þ
3 for m¼ � 1/2 defect; these asymmetries are clearly seen as cusps in parts (c,d). Experimental data in parts (e–h) are shown by discrete markers

with error bars, while the results of numerical analysis (see Methods) are presented as solid, dashed, and dotted curves. The error bars equal the triple s.d.

of the average values obtained by analysing 21 disclinations of strength m¼ 1/2 and 25 disclinations of strength m¼ � 1/2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14974 ARTICLE

NATURE COMMUNICATIONS | 8:14974 |DOI: 10.1038/ncomms14974 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


the polar angle y but not on the radial distance r. The implicit
dependence of the director on e (equation (2)) can be used to
measure the latter, as was demonstrated by Hudson and
Thomas16. We further develop the analytical solution of
equation (2) in the Fourier space of y, and establish the

following relationship between e and the main harmonics ~j 1=2ð Þ
1

and ~j � 1=2ð Þ
3 of the anisotropy function ~jðmÞ:

e ¼ 4~j mð Þ
k

4k� 2 � 1
; ð3Þ

where k¼ 2(1�m). As shown in Fig. 1e,f, the far-field director
(r420 mm) exhibits a significant contribution from the

anisotropy functions, with ~j 1=2ð Þ
1 ð1Þ�14� for the m¼ 1/2

disclination (Fig. 1e) and ~j � 1=2ð Þ
3 ð1Þ� � 3:5�for the m¼ � 1/2

line (Fig. 1f). Using these asymptotic values and equation (3), we
determine the elastic anisotropy of DSCG at 15wt% to be e¼ 0.34,
when extracted from the analysis of m¼ 1/2 defects, and e¼ 0.44,
when m¼ � 1/2 lines are analysed. These values match well the
measurements of K1 and K3 by dynamic light scattering17 for DSCG
solutions of concentration 14 and 16wt%, which yield the range
e¼ (0.33� 0.52) for the elastic anisotropy values.

Landau-de Gennes model of the order parameter at the core.
The consideration above based on the Frank–Oseen functional is
naturally limited by the condition of a constant scalar order
parameter. Near the defect core, such an assumption is not valid,
as demonstrated in theoretical models by Lyuksyutov5 and
Schopohl and Sluckin6. The enormous size of the disclination
cores in LCLCs offers an opportunity to explore the spatial
variations of both the phase and the amplitude of the order
parameter experimentally, by mapping the optical axis and
optical retardance of the material (Fig. 1a–d).

The spatial distribution of optical retardance G(x,y) clearly
exhibits two regions. Far from the disclination core, r420mm,
G¼ const. As one approaches the centre of the disclination,
ro20 mm, G decreases to 0 as r-0. Also in this region, G shows a
strong azimuthal asymmetry, with the core shape deviating from
the circular one. In the case of m¼ 1/2 disclination, there is a
cusp-like region, located in the sector where the director is radial;
along the cusp, the retardance changes over an extended distance
(Fig. 1g). In the m¼ � 1/2 case, there are three such cusp regions,
all expended along the regions with a radial director (Fig. 1h).
The experimentally measured dependence of retardance on the
polar coordinate can be presented in a Fourier form:

G mð Þ r; yð Þ ¼ G mð Þ
0 rð ÞþG mð Þ

1 rð Þ cos yþG mð Þ
3 rð Þ cos 3y. By aver-

aging images of about 25 different individual disclinations to
eliminate spurious factors in the textures, we determine the radial

dependences of the harmonic terms G 1=2ð Þ
0 rð Þ and G 1=2ð Þ

1 rð Þ for

m¼ 1/2, and G � 1=2ð Þ
0 rð Þ and G � 1=2ð Þ

3 rð Þ for m¼ � 1/2 lines

(Fig. 1g,h). The G 1=2ð Þ
1 rð Þ term for m¼ 1/2 disclination can be up

to 20% of the zero harmonic G 1=2ð Þ
0 rð Þ. The m¼ � 1/2

disclination shows a similar influence of the G � 1=2ð Þ
3 rð Þ term, at

the level of about 7%. Other harmonics are of the amplitudes
comparable to experimental errors, and can be neglected.

To understand qualitatively the observed experimental fea-
tures, we describe the core structure using the standard traceless
symmetric tensor order parameter of the nematic18

Qij ¼ S n̂in̂j � dij=3
� �

þ P l̂îlj � m̂im̂j

� �
; ð4Þ

which is diagonal Q¼ diag(P� S/3,�P� S/3,2S/3) in the frame
of three mutually orthogonal directors l̂ � � l̂, m̂ � � m̂, and
n̂ � � n̂; the quantities S and P are the uniaxial and biaxial

order parameters, respectively, that depend on temperature T and
composition.

As one approaches the core of disclinations, the assumption of
constant K1 and K3 values in Dzyaloshinsky’s model, which
implies S¼ SN, P¼ 0, no longer holds, as discussed earlier
(Fig. 1c,d). Since GpS�P changes markedly in space as the
function of (r,y), we use the Landau-de Gennes free energy
density fLdG¼ fuþ fg, where fu and fg are associated with the
uniform and gradient terms of the Q tensor, respectively. The first
contribution writes18,19

fu ¼
1
2
AQijQji �

1
3
BQijQjkQki þ

1
4
C QijQji
� �2

; ð5Þ

where A¼ a(T�T*), and a,T*,B and C are the material
parameters. The equilibrium scalar order parameters
correspond to the minimum of fu and represent the uniaxial

state, S ¼ SN ¼ B
4C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

16C2 � 3A
2C

q
and P ¼ 0.

In fg, we include the bulk second-order gradients terms, and to
remove the degeneracy K1¼K3, we add cubic terms with the

coefficients Lð3Þ2 and Lð3Þ3
20–23:

fLdG ¼ fu þ L1Qij;kQij;k þ LaQij;jQik;k þ L 3ð Þ
2 QijQik;kQjl;l þ L 3ð Þ

3 QijQik;jQkl;l; ð6Þ
where Ln are the elastic constants and ;k ¼ @=@xk are the spatial

derivatives. Comparison of fFO and fLdG withQ Nð Þ
ij ¼ SN n̂in̂j � dij=3

� �
results in the following relations between the elastic constants:

K1 ¼ 2S2N 2L1 þ Lað Þþ 2S3N 2Lð3Þ3 � Lð3Þ2

� �.
3, K2 ¼ 4S2NL1 and

K3 ¼ 2S2N 2L1 þ Lað Þþ 2S3N 2Lð3Þ2 � Lð3Þ3

� �.
3. As seen from the

latter expressions, the difference between the splay K1 and bend K3

constants is reflected in the cubic terms, K3 �K1 ¼ 2S3N Lð3Þ2 � Lð3Þ3

� �
.

The Q-tensor field of a disclination is determined by the
minimization of the functional F ¼

R
fLdGdV . We consider planar

disclinations with a two-dimensional (2D) director field n̂
confined to the (x,y) plane. As prompted by the experimental
data, we describe the Q-tensor (equation (4)) in the polar
coordinates (r,y) with the disclination centre at r¼ 0 by the order
parameters S(r,y), P(r,y) and the angle j r; yð Þ ¼ myþ ~j r; yð Þ
between n̂ and x-axis. The experiment demonstrates strong axial
asymmetry of the cores, with the main harmonic k¼ 2(1�m),
that is, k¼ 1 for m¼ 1/2 (Fig. 1e) and k¼ 3 for m¼ � 1/2
(Fig. 1f). Note that k counts the number of cusps, or how many
times the director field around the core assumes the orientation
parallel to the radius-vector r. Using the relevant main
harmonics, we find the radial distributions of the order
parameters around the disclinations, by minimizing the func-
tional F, as detailed in Methods:

S r; yð Þ ¼ S0 rð Þþ Sk rð Þ cos ky; ð7Þ

P r; yð Þ ¼ P0 rð Þþ Pk rð Þ cos ky; ð8Þ

~j r; yð Þ ¼ jk rð Þ sin ky: ð9Þ
The 3D and contour line representation of spatially varying
GpS�P in Fig. 1c,d indicate that the scalar order parameters S
and P are function of (r,y). The theoretically deduced anisotropy
functions and the harmonics of the optical retardance, GpS�P,
are shown in Fig. 1g,h.

Experimental determination of nanoscale core structure. We
performed an independent experiment by exploring the structure
of the m¼ 1/2 core at the scale of tens of nanometres, using cryo-
transmission electron microscopy (cryo-TEM) (Fig. 2a). The data
on j(1/2) versus y (Fig. 2b) clearly show that within the circular
band 60 nmoro250 nm, the anisotropy function ~j 1=2ð Þ

1 becomes
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zero, as the dependence is of the type j(1/2)(r,y)¼my, as
expected approximation with K1¼K3. At the smaller scales,
ro60 nm, the director orientation is hard to determine. One of
the reasons might be the ‘biaxial escape into the third dimension’,
in which the uniaxial in-plane order in the far field is replaced by
a biaxial core near the centre and a uniaxial ‘vertical’ order at the
very axis of the defect, r-0, see Lyuksyutov5 and Schopohl and
Sluckin6. The region within ro60 nm might thus represent the
region with a pronounced ‘vertical’ quasi-uniaxial nematic order.

Landau-de Gennes model versus experimental core structure.
The qualitative features of the experimental and model data are in
a reasonable agreement. First of all, the experimental and
numerical radial dependences of the main Fourier harmonics
~jð1=2Þ
1 for m¼ 1/2 (Fig. 1e) and ~jð� 1=2Þ

3 for m¼ � 1/2 (Fig. 1f) are
qualitatively similar and vanish as r-0. The radial dependence of
the leading harmonics of the optical retardance is rather well
reproduced by the numerical simulations (Fig. 1g,h). The simu-
lations also reproduce the qualitative character of the non-
monotonous radial dependence of the functions describing
asymmetry of the cores (Fig. 1g,h), but fail to describe these
variations quantitatively. It is hard to expect a better agreement
between the experimental behaviour and the Landau-de Gennes
model, since the chromonic nematics depart rather strongly from
an idealized Landau-de Gennes system. Namely, the building
units of the nematic phase, the aggregates, are not fixed by the
covalent bonds and their length and length distribution change
markedly as a function of temperature, concentration17,24–26 and,
presumably, order parameter gradients. One can thus expect a
spatially varying concentration and length distribution of the
aggregates within the core; the Landau-de Gennes model does not
capture these degrees of freedom, thus limiting our description.

Asymmetric melted core and Landau-de Gennes elasticity. An
independent verification of the strong anisotropy of elastic prop-
erties of the chromonic nematics that is at the basis of the complex
core structure is supplied by the behaviour of the defect cores at
elevated temperatures, when the centre of the core is melted and
expands towards the nematic periphery (Fig. 3a). The disclinations
show asymmetric non-circular interfaces between the nematic and
the isotropic phases with strongly developed cusps, one in the case
of m¼ 1/2 and three in the case of m¼ � 1/2. The physical origin
of the axial asymmetry is that the energy associated with the gra-
dients of order parameters depends on the director orientation.
Consider an interface between the nematic and isotropic phases for
two local orientations of the director; first, with n̂ in the plane of

the interface and second, with n̂ being perpendicular to the
interface. The theory above allows us to estimate the width over
which the order parameter changes (see Methods). This width is
proportional to wt /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6L1 þ La

p
for the tangential alignment and

to wp /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6L1 þ 4La

p
for the perpendicular alignment, respectively.

The two are different because of the ‘anisotropy’ constant La. As
discussed above, LaE40L1, thus the width of the interfacial regions
with a perpendicular director should be about two times wider
than in the tangential case, wp/wt � 2, which is exactly the feature
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maximum value.
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observed experimentally (Fig. 3b). Note that the large value of La as
compared to L1 is essentially the main factor that makes the dis-
clination core in the chromonic liquid crystals so much larger than
in the thermotropic materials where it is on the order of 10–
100 nm, see, for example, ref. 3.

Discussion
To summarize, we demonstrate a complex structure of the cores of
topological defects in the uniaxial nematic liquid crystals, the so-
called disclinations. As an experimental system, we used the nematic
phase of LCLCs based on water dispersions of organic molecules. The
reason is that in these materials, the defect cores, that is, the regions
over which the order parameter changes, are large, extending over
tens of micrometres which allows one to use optical microscopy to
characterize the fine structure of the cores9. The studied disclinations
are of strength 1/2 and � 1/2, defined as a number of rotations by 2p
when one circumnavigates the centre of the defect once. Strong
spatial variations of the order parameter near the defect cores are
characterized in terms of the local preferred orientation (the director)
and the degree of orientational order (the scalar order parameter).
The director and the scalar order parameter feature pronounced
dependences on both the radial and azimuthal coordinates. An
unexpected feature of the defect cores is the appearance of ‘cusps’
along which the radial gradients of the scalar order parameters are
‘healing’ more slowly than along other directions. The observed radial
and azimuthal dependences demonstrate a strong coupling between
the gradients of the director and the scalar order parameter in the
free energy. At the very core of the defects, o250nm from its
geometrical centre, the core structure becomes azimuthally
symmetric. The findings are in sharp contrast to the available
theoretical models of the defect cores in which the phase of the order
parameter is considered to be independent of the radial coordinate
and the amplitude of the order parameter is considered to be
independent of azimuthal coordinate. Since the azimuthal and radial
dependencies of the phase and amplitude of the order parameter are
caused by the elastic anisotropy, similar features are expected for
other materials, including the thermotropic liquid crystals, for which
the experimental observations are currently impossible because of the
small spatial scale of distortions.

We note that the disclinations of strength 1/2 and � 1/2
considered in our work are the main ingredients of the topological
turbulence regime in active matter11–13. Furthermore, disclinations
in LCLCs have been demonstrated to control the dynamic behaviour
of swimming bacteria, by influencing the spatial distribution of their
concentration and even the geometry and polarity of bacterial
flows27. In particular, the 1/2 disclinations tend to attract the
bacteria while the � 1/2 lines repel them, as observed for both low27

and high28 concentrations of swimmers. Similar effects are seen in
theoretical models28,29. Since the spatial extent of disclination cores
in LCLCs is either larger or comparable to the length of swimming
bacteria, their fine structure might influence the dynamics of the

latter. We expect that the main findings of the present work, namely,
radial and azimuthal dependencies of the orientational order would
also be present in out-of-equilibrium systems with a potential
impact on the dynamic behaviour of these systems.

Methods
Lyotropic chromonic liquid crystals. DSCG was purchased from Spectrum Che-
micals, 98% purity, and dissolved in ultrapure water (resistivity 18.2MO cm) at 15wt%.

Glass cell preparation. Glass substrates were soaked in Piranha solution (98%
sulfuric acid: 30% H2O2¼ 3:1) at 80 �C for 41 h. The substrates were then rinsed
with ultrapure water and dried with dry nitrogen. Two substrates were bound at
four corners with a NOA65 glue mixed with 5 mm glass spacers to keep a uniform
separation between the two substrates. The cell gap d is measured by spectrometry
when the cell is empty. After filling the cell with DSCG, open edges were well sealed
with epoxy glue. The transition temperature from nematic to nematic/isotropic
coexistence phase is checked before and after the experiments and found to be
different by o0.2 �C, indicating no change of the DSCG concentration during the
experiments. During the LC-PolScope measurements, the sample temperature is
controlled (±0.1 �C) by Linkman hot stage LTS120 and controller PE94.

LC-PolScope microscopy. The DSCG textures were examined by a polarizing
microscope (Nikon E600) equipped with LC-PolScope (Cambridge Research).
Unlike a conventional microscopy which maps the intensity of a transmitted light,
LC-PolScope maps the optical phase retardance and the projection of the optical
axis (director in our case) onto the plane of the sample. The sample is probed by a
monochromatic light of wavelength 546 nm at different settings of a liquid crystal
retarder. At each pixel of the image, LC-PolScope maps orientation of the director
(Fig. 1a,b) and the optical retardance G(x,y) in the range (0–273) nm (Fig. 1c,d, ref.
14). To clarify the structure of the disclination cores, in Fig. 1c,d, we present the
spatial dependence of optical retardance as a 3D surface, with the assistance of its
contour lines projected onto the xy-plane and the director field. For a tangentially
anchored nematic, G¼ |ne� no|d, where ne and n0 are the extraordinary and
ordinary refractive indices, ne� no¼ � 0.02±0.001.

Cryo-TEM. Thin film of 15wt% DSCG supported on a carbon-coated copper grid
(Ted Pella) was prepared by plunge-freezing technique in a controlled environment
vitrification chamber (Vitrobot, FEI) and observed using low-dose cryo-TEM (Technai
TF20, FEI) operated at 200 kV (ref. 30). The pixel intensity of the image reveals the
local electron density of the sample, and dark short lines represent the linear aggregates
of DSCG molecules. To determine the orientation of director at each point, first we
calculate the spatial auto-correlation function of an 18 by 18nm sub-image around
that point. Then a discrete Radon transform is performed on the autocorrelation
function to generate its sinogram. The local orientation of the aggregates j is then
determined to be the angle that corresponds to the Radon cross-section with the
highest intensity variation. This procedure is repeated at each pixel of the image that is
larger than 9nm away from the boundaries. From the 2D mapping of azimuthal angle
of the director, we extract values of jð1=2Þ r; yð Þ around the 1/2 disclination.

Radial distribution of the order parameters. To reproduce the radial depen-
dence of the main harmonics j¼ 0,k in equations (7)–(9) around the disclinations,
we represent them as sums of a constant and decaying exponents:

Sj rð Þ ¼�sj þ
X2
n¼1

s nð Þ
j exp � q nð Þ

j r
� �

Pj rð Þ ¼�pj þ
X2
n¼1

p nð Þ
j exp � q nð Þ

j r
� �

jk rð Þ ¼�bk þ bk exp � ~qrð Þ

ð10Þ
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Figure 4 | The radial dependence of the main harmonics of order parameters of disclinations. (a) m¼ 1/2 disclination and (b) m¼ � 1/2 disclinations.

The parameters are indicated in the text.
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Then, minimization of the integral F leads to the general conditions far away from
the disclination, r-N, and at the core centre, r¼ 0, as well as determines the
amplitudes in equation (10) that depend on the values of the parameters in
equations (5) and (6). As expected, minimization results in an equilibrium core
structure that is uniaxial far away from the disclination centre, with the constant
order parameter SN and the director azimuthal angle obeying the Dzyaloshinsky
model (equations (2),(3),(10)):

�s0 ¼ SN ; �sk ¼ �p0 ¼ �pk ¼ 0; �bk ¼ ~jðmÞ
k ð11Þ

where ~jðmÞ
k ¼ 1� 4k� 2ð Þe=4 ¼ 1=4� k� 2ð ÞSN Lð3Þ2 � Lð3Þ3ð Þ

2 2L1 þ Lað Þþ SN Lð3Þ2 þ Lð3Þ3ð Þ=3. At the core centre, r¼ 0,

the equilibrium structure is also uniaxial, but the symmetry axis is along the
disclination line with S0(0)¼P0(0), Sk(0)¼Pk(0)¼ 0 and jk(0)¼ 0. These condi-
tions yield the following relations between the coefficients:

SN þ sð1Þ0 þ sð2Þ0 ¼ pð1Þ0 þ pð2Þ0

sð1Þk þ sð2Þk ¼ pð1Þk þ pð2Þk ¼ 0

~jðmÞ
k þ bk ¼ 0

ð12Þ

Minimization of the integral F ¼
R
fLdGdV using equations (4)–(12) results in

radial dependences of the scalar order parameters S and P, shown in Fig. 4. To plot
the dependencies in Fig. 4, we have adopted the following approach to select the

values of the thermodynamic parameters A, B, C, and elastic constants L1, La, L
3ð Þ
2

and L 3ð Þ
3 . First, we define a dimensionless radius of the core as ~r ¼ r

ffiffiffiffiffiffiffiffiffiffiffi
C=L1

p
, where

r is the real radius of dimension (m). The free energy is made dimensionless by
presenting it in the units of C. The energy is minimized for a set of chosen

parameters A/C, B/C and the dimensionless elastic constants La/L1, L
3ð Þ
2 =L1 and

L 3ð Þ
3 =L1, to find the amplitudes and exponents in equation (10). The results are then

presented in the form that can be compared to the experimentally measured
parameters such as optical retardance, G¼ g(S� P) and the anisotropy function for
the azimuthal angle. The value of coefficient g is determined from the saturated
birefringence far away from the defect cores and the corresponding theoretical
value, S¼ SN, P¼ 0. The characteristic length x ¼

ffiffiffiffiffiffiffiffiffiffiffi
L1=C

p
of the core, defined

through the relationship ~r ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
C=L1

p
, is determined by scaling the theoretical

dependencies (S0� P0) versus ~r to the experimental dependencies of G0(r). The

procedure is repeated until one finds the combination of A/C, B/C, La/L1, L
3ð Þ
2 =L1

and L 3ð Þ
3 =L1 that most closely matches the experimental results for both negative

and positive disclination cores. Figure 4 shows such a result with the following

parameters: A/C¼ � 0.12, B/C¼ 0.6, La/L1¼ 40, L 3ð Þ
2 =L1 ¼ 170 and L 3ð Þ

3 =L1 ¼ 85.
These values and x¼ 143 nm were used to calculate the theoretical curves in
Fig. 1e–h.

The characteristic length x ¼
ffiffiffiffiffiffiffiffiffiffiffi
L1=C

p
for chromonic nematics that emerges in

numerical simulations is on the order of 100 nm, which is one order of magnitude
larger that the core size B10 nm expected for thermotropic disclinations.
Moreover, in the chromonic materials, the defect core is much larger than
x ¼

ffiffiffiffiffiffiffiffiffiffiffi
L1=C

p
B102 nm, as a result of a large value of the elastic constant La and a

large width of the nematic-isotropic interface as discussed in the main text.

Data availability. All relevant data are available from the authors upon request.
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