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Theory of optimal balance predicts and explains
the amplitude and decay time of synaptic inhibition
Jaekyung K. Kim1 & Christopher D. Fiorillo1

Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal

inhibition. We previously proposed that perfect balance is achieved when the peak of an

excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest

variation in excitation determines whether a spike is generated. Using simulations, we show

that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and

decay rate as synaptic excitation increases from 1 to 800Hz. As further proposed by theory,

we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally,

we compare our theoretical optima to published experimental data from 21 types of

neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about

100 (5–600Hz) and 50 (1–50ms), respectively. From an infinite range of possible decay

times, theory predicted experimental decay times within less than a factor of 2. Across a

distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic

inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first

principles.
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S
ynaptic inhibition approximately counterbalances excitation
on a millisecond timescale1–15. Although balanced
inhibition has advantages16–20, it is not known what

constitutes optimal balance. We recently proposed that perfect
homoeostatic balance is momentarily achieved when the peak of
an EPSP is exactly at spike threshold, so that whether a spike does
or does not occur will depend on the slightest variation in the
amplitude of the excitatory postsynaptic conductance (EPSG)21.
This would maximize the information that ‘spike’ or ‘no spike’
conveys about EPSG amplitude.

If correct, the theory should explain and predict biophysical
properties. There is a wealth of data showing that IPSG mediated
by GABAA and glycine receptors have decay time constants that
vary from 1 to at least 50ms across diverse types of neurons, and
a lot is known about the biophysical basis of this diversity22. But
why should a specific synapse have the specific IPSG decay time
that it does? Why should decay times vary across synapses?
A good theory should explain the specific decay times and their
variability from fundamental principles.

The proposed goal of homoeostatic balance is to maximize the
causal and informational link between EPSG amplitude and spike
generation. In other words, a spike should accurately ‘measure’
EPSG amplitude. Like any other measurement, this requires
comparison to a reference. A balance scale measures weight in
almost perfect analogy to the way that membrane voltage and
spikes measure EPSG (Fig. 1a,b). The angle of the arm
(membrane voltage) depends on the difference between the new
and unknown weight of interest on one side (EPSG) and a known
reference weight on the other (IPSG and all other factors that
counteract depolarization). If the balance scale has a binary
output (spike or no spike), that output indicates only whether the
new weight (EPSG) is more (spike) or less (no spike) than the
reference (IPSG). Measurement is most accurate when perfect
balance is attained (EPSP peak at spike threshold), and this is the
homoeostatic ideal.

Balance is difficult to achieve because EPSG vary dynamically
across a large range of amplitudes and on a timescale
of a millisecond or less. Balance requires that inhibition is
dynamically adjusted to predict EPSG amplitude, analogous to
continually adjusting the reference weight in anticipation
of a new weight being placed on the balance scale. We have
therefore referred to this process as ‘predictive homoeostasis’21,
and it is related to principles of ‘predictive coding’23–25. It is
‘homoeostatic’ insofar as the parameters of inhibition (synaptic
strength, decay time and so on) are adjusted through negative
feedback (for example, anti-Hebbian plasticity) to drive
membrane excitability towards an intermediate target (optimal
balance), and it is ‘predictive’ insofar as these parameters are
determined in advance to counterbalance the expected future
amplitude of excitation.

A useful example is a thalamocortical neuron of the lateral
geniculate nucleus (LGN) recorded during viewing of a movie
(Fig. 1c)26. As expected for effective homoeostatic balance,
many of the large retinogeniculate EPSPs cause spikes and
many do not (B50% on average across neurons)27–30, indicating
that spike generation is highly sensitive to the precise amplitude
of retinogeniculate EPSG. Retinogeniculate EPSG are the
proximate cause of all spikes, which signify evidence against
light in this OFF-type neuron (Fig. 1c). In addition, there are
two types of IPSG that convey evidence of opposite polarity
(Fig. 1d)26,31–33. ‘Homoeostatic IPSG’ convey evidence of the
same polarity as EPSG (evidence for EPSG amplitude, which is
evidence against light in this example), whereas ‘opponent IPSG’
convey evidence against EPSG amplitude. Opponent IPSG are
anti-correlated (out of phase) with EPSG (since simultaneous
evidence for and against light in the same small receptive field is
unusual) and thus they tend to cause hyperpolarization
(Fig. 1c,d)26,34. In contrast, homoeostatic IPSG occur at nearly
the same time as EPSG, and thus suppress EPSP amplitude.
Homoeostatic IPSG are consistently delayed from EPSG onset by
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Figure 1 | Illustration of theory by analogy to a balance scale for measuring weight. (a) Each of the nine configurations of the balance scale are

analogous to the corresponding combinations of EPSG, IPSG and membrane voltage in b. When EPSG amplitude exceeds the counterbalance provided by

the IPSG and all other factors that counteract depolarization, an AP is generated (depolarized phase of AP not shown). Perfect homoeostatic balance is

achieved when EPSP peak is exactly at AP threshold (diagonal from top left to bottom right; since an AP is equally likely to occur or not occur, we have

shown overlaid traces with and without AP). The illustrated EPSG and IPSG amplitudes were chosen only for convenience. (c) Membrane voltage in a

thalamocortical neuron in cat LGN during viewing of a naturalistic movie (reprinted from ref. 26, copyright 2007, with permission from Elsevier).

(d) Estimates of the amplitude and timing of retinogeniculate EPSG (blue), homoeostatic IPSG (red) and opponent IPSG (green) that contribute to

the membrane voltage in c during the period indicated (cyan lines). Estimates were based on experimental observations (Supplementary Tables 1 and

2)26,28,29,31, but our primary purpose here is only to illustrate that homoeostatic and opponent IPSG are ‘in’ and ‘out’ of phase with EPSG, respectively.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14566

2 NATURE COMMUNICATIONS | 8:14566 | DOI: 10.1038/ncomms14566 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


1ms in LGN (due to a dendrodendritic synapse)31. Despite their
opposing information content, homoeostatic and opponent IPSG
have similar amplitudes and decay times in LGN31.

Our present focus is homoeostatic IPSG, which are likely to be
more prevalent than opponent IPSG since not all neurons have an
‘opponent neuron’. Through computer simulations of a simple
and generic model neuron, we identified the IPSG decay time
constant (t) and mean peak amplitude (I) that are optimal given a
particular temporal pattern of EPSG. We found that these
optimal IPSG closely match experimental data.

Results
Single-compartment model. We began with a single-
compartment model having only a constant ‘leak’ conductance
(GL, reversal at � 70mV), and IPSG that always followed EPSG
by 1.0ms. In initial simulations, our model neuron did not have
action potentials (AP), and ‘spike threshold’ was � 50mV.
Although conductance amplitudes naturally vary from one
synaptic event to another, our interest was the contribution of
postsynaptic strength, which changes more slowly. Thus unitary
mean peak amplitudes (I and E) were constant over time in
each simulation. We usually refer to the ratio of amplitudes ‘I/E,’
where ‘I’ was the parameter of interest and ‘E’ a constant
(30 nS standard).

For each EPSG we measured ‘distance from optimality’
(Fig. 2a), which we called a ‘residual’ (Methods)21. For a given
ensemble of EPSG, optimal IPSG parameters were taken to be
those that minimized the mean squared residual (MSR).

Fixed intervals between pairs of EPSG. We start with the
simplistic but illustrative example of a pair of EPSG separated
by a fixed interval, with inhibition provided only by GL.
GL corresponds to the special case of an IPSG in which
t approaches infinity and amplitude approaches zero. Since
excitation can be approximately counterbalanced by GL alone,
we need to understand why neurons have ‘fast IPSG’.

MSR is naturally a U-shaped function of GL, with GL that
minimizes MSR being optimal (Fig. 2b). For long intervals
(no temporal summation), optimal GL causes the peak of each
EPSP to be exactly at threshold (MSR¼ 0). For short intervals,
temporal summation of EPSP requires greater GL to counter-
balance excitation, but optimal GL cannot eliminate residuals
(Fig. 2a,b). The first EPSP will be sub-threshold (too much
inhibition) and the second super-threshold (too little inhibition).
A dynamic inhibitory conductance that is stronger at the time of
the second EPSG could better balance excitation. Indeed, adding
an IPSG further reduced MSR (compare minima in Fig. 2b,c). For
long intervals with no temporal summation, synaptic and leak
conductances could fully substitute for one another, but for short
intervals a single combination was optimal (Fig. 2d).

Optimal IPSG are larger and faster at higher EPSG frequency.
We identified optimal IPSG parameters given inter-EPSG
intervals randomly drawn from geometric distributions (time unit
of 1.0ms) with mean rates of 1–800Hz. With EPSG of 30 nS,
GL of 10 nS was near optimal (based on systematically varying
GL, I, t and frequency), and this combination defined our
‘standard model’.

Although many combinations of I/E and t approximately
balanced excitation, there was one combination that was optimal
for each EPSG frequency (Fig. 3a–d). MSR was a smooth function
of t over 1–120ms, and optimal GL resulted in MSR just slightly
greater than t of 120ms (Fig. 3d). Therefore we are quite
confident that we identified the one optimal t from the infinite
range of possibilities.

We illustrate two t (2.2 and 26ms) that were optimal at
400 and 5Hz, respectively (with I/E optimized in all four cases)
(Fig. 4). Relative to optimal and slow t at 5Hz, excessively fast
decay resulted in sub-threshold EPSPs that tended to be smaller
(since I/E was too high), and super-threshold EPSPs that tended
to be larger (since faster IPSG decay resulted in slower EPSP
decay and thus greater temporal summation). At 400Hz, t that
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Figure 2 | Optimal inhibition in relation to EPSG interval. (a) Method of measuring ‘residuals’. Top, two EPSG and the resulting EPSP. Dashed line

indicates � 50mV, the ‘spike threshold’ in these simulations without AP. Middle, ‘test EPSG’ (blue) were injected at the time of ‘real EPSG’ (black)

to find the ‘threshold EPSG’ (red) that caused an EPSP with its peak to be nearest to threshold (in other words, EPSG amplitude was varied, but this ‘test

variation’ was only to find spike threshold, and had no influence on ‘real’ voltage at the time of subsequent EPSG). Bottom, the residual was the

difference in peak amplitudes between threshold and real EPSG. The residual depended on current and past but not future synaptic events; thus residual 1

in this example (left) was found in simulations in which EPSG 2 did not occur. (b) MSR as a function of the ratio of GL to E (30 nS) for two EPSG

separated by 5 (black), 10 (red) and 100ms (blue) in the absence of synaptic inhibition (I/E¼0). (c) As in b, but showing MSR as a function

of I/E (t¼ 10ms, GL¼0.1 nS). (d) Heat plots of MSR as a function of both GL/E and I/E for inter-EPSG intervals of 5 (left) and 10ms (right). ‘X’ indicates

minimum MSR.
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was too slow resulted in IPSG that were substantially out of phase
with EPSG, resulting in periods of excessive depolarization and
hyperpolarization (Fig. 4a, right). Interestingly, EPSP had earlier
peak latencies and faster decay with optimal versus suboptimal t

at both 5 and 400Hz, demonstrating that faster voltage
dynamics are favoured by either fast or slow IPSG depending
on EPSG frequency (Fig. 4b). This helps to explain how optimal t
was near optimal in minimizing spike latency and variability (see
below).

As EPSG rate increased from 1 to 800Hz, optimal I/E
increased and t decreased (Fig. 5a,b). Even with optimal IPSG
parameters, homoeostasis was not as well maintained at high
frequencies (MSR was greater), although it was maintained better
with optimal IPSG than with only optimal leak conductance
(Fig. 5c).
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Figure 3 | Finding optimal IPSG with random EPSG intervals.

(a) Conductances (top), voltages (middle) and residuals (bottom) for the

case that I/E was too strong (black), too weak (cyan) and near optimal

(red) for EPSG (blue) at 100Hz. Dashed lines indicate � 50mV (spike

threshold) and residual of zero. The sign of residuals was chosen so that

positive residuals corresponded to EPSP peaks more positive than

� 50mV. (b) For each value of t, MSR as a function of I/E for EPSG at 5,

100 and 800Hz (top to bottom). Thicker lines indicate t that minimized

MSR. Arrows indicate values of I/E shown in a. (c) Heat plots of MSR

(same data as b). For each EPSG frequency, MSR was divisively normalized

by the MSR obtained with no IPSG and only optimal GL (see below). Black

ellipses indicate IPSG parameter values that resulted in MSR equivalent to

optimal GL in the absence of IPSG. ‘X’ indicates minimal MSR. (d) MSR as a

function of t for EPSG at 5 (black), 100 (red) and 800Hz (blue). I/E was

optimized for each t, and thus each data point corresponds to the minimum

of one function in b. At far right is MSR with no IPSG and only optimal GL

(25.6, 389.4 and 638.0 nS at 5, 100 and 800Hz, respectively), which

corresponds to an IPSG with infinitely slow t.
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(a–d) t of 2.2 (black) and 26ms (red) at EPSG frequencies of 5 (left) and

400Hz (right). I/E was optimized in all four cases, whereas t of 26

and 2.2ms were optimal at 5 and 400Hz, respectively. (a) Examples of EPSG
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positive residuals. (d) Histograms of residuals.
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Tonic and phasic components of IPSG. Whether EPSGn causes
a spike will depend on both the ‘phasic’ IPSGn, as well as
the ‘tonic’ component contributed by summation of IPSGn� 1,
IPSGn� 2 and so on. We estimated these components by
integrating conductances from EPSG onset to mean spike time
(5.0–1.7ms at 5–800Hz). The tonic IPSG increased with
frequency and was larger than the phasic IPSG at 100Hz and
above (Fig. 5d), despite optimal IPSG being larger and decaying
faster at higher frequencies. Thus one effect of optimization is
to counteract the natural tendency of the tonic component to
overwhelm the phasic component as frequency increases.

In our standard model (above), both tonic and phasic
components made significant contributions to suppressing spikes,
and thus optimization of IPSG depended on both components.
However, phasic inhibition was reduced in a model with much
greater membrane conductance, especially at high frequencies
(due to decreased spike latency). This flattened the relations of
optimal I/E and t to frequency (see below). The relations became
flatter still when we eliminated all phasic inhibition in this
high-conductance model by increasing the delay from EPSG to
IPSG onset (E–I delay) from 1.0 to 2.0ms (optimal t was 7.0, 3.0
and 6.0ms at 5, 100 and 800Hz; optimal I/E was 0.9 at 800Hz,
less than any other frequency).

Influence of additional parameters. We modified our standard
model to examine a variety of additional factors (Figs 5–7;
Supplementary Figs 1–2). Although each was influential, none
fundamentally altered the dependence of optimal I/E and t on
EPSG frequency that was observed with our standard model
(Fig. 5b,c; Supplementary Results).

Our standard model was simplified in using unitary EPSG and
IPSG that were of constant amplitude over time. However,
variability in vivo is much less than one would expect given
typical conditions in brain slices35. Under naturalistic conditions
at the calyx of Held, EPSC at 40Hz had a coefficient of variation
(CV) of 8% (ref. 36). We performed additional simulations with
unitary synaptic conductance amplitudes having the same mean
(30 nS) but CVs of 15 and 79%, with normal and log-normal
distributions, respectively (Fig. 6a,b) (in the latter case, the
standard deviation corresponded to 15–60 nS, a factor of 2 from
the mean). EPSG and IPSG varied independently (although we
would expect moderate covariance under natural conditions).
Relative to our standard model, the lesser variance had virtually
no effect on optimal IPSG parameters, whereas larger variance
with a skewed distribution decreased the amplitude and more
than doubled the decay time at all but the highest frequencies
(Fig. 6c). MSR increased with variance, as expected (Fig. 6d).
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It is interesting to note that log-normal or similarly skewed
distributions of biophysical properties are common37, and our
log-normal condition may be relevant to cortical neurons
and others in which synchronous activation of smaller numbers
of synapses is presumably more common than larger numbers,
resulting in a skewed distribution of EPSG and EPSP
amplitudes38,39.

As another step towards more realistic and complex patterns of
EPSG, we considered alternating periods of EPSG at 10 and 100Hz
(Supplementary Fig. 2 and Supplementary Results). Even when
100Hz occurred only 9% of the time (0.1 s of each 1.1 s period;
18Hz average, with equal average numbers of EPSG at each
frequency), optimal parameters were still more similar to those
optimal for 100 than 10Hz. Thus, brief periods of high frequency
have a disproportionately large influence with respect to optimal
IPSG, suggesting that our randomized rates may be most
comparable to rates achieved in real neurons during periods of
mild or moderate stimulus-evoked excitation rather than long-
term average excitation (Supplementary Results).

We optimized I/E and t with alternative parameters for
membrane conductance, E–I delay, and chloride equilibrium
potential (ECl� ), both with (Fig. 7) and without AP
(Supplementary Fig. 1). Although each of these factors had a
significant influence, their effects were generally small relative to
the effect of EPSG frequency, which still favoured larger and faster
IPSG at higher frequencies. Homoeostasis was promoted (MSR was
minimized) by addition of AP, low conductance and a brief E–I
delay, although these factors mattered less at low EPSG frequencies
(Fig. 7, bottom). ECl� had a smaller influence on MSR, but
� 70mV was near optimal (Fig. 7, bottom). The influence of each
factor is described in detail in Supplementary Results.

Learning optimal IPSG amplitude and decay time. From theory
one can logically derive anti-Hebbian rules through which a
neuron could learn which inhibitory inputs best maintain

homoeostasis given a particular pattern of EPSG21,40. Here we
show that optimal IPSG can be learned through anti-Hebbian
rules (Fig. 8a).

Learning was based only on the local IPSG and the presence or
absence of a spike. A spike following IPSG onset was evidence
that the inhibitory synapse was too weak, and therefore it was
strengthened, whereas absence of a spike had the opposite effect.
We tested three learning rules (Methods). Rule 1 was simple and
was applied to a neuron with a single inhibitory synapse with
t pre-specified to be optimal. Rules 2 and 3 were implemented in
a neuron with nine inhibitory synapses, each with a distinct decay
time (1.5–50ms) (Fig. 8b). These rules associated spikes with
local synaptic ‘eligibility’, which depended on ‘activity’ that varied
from one synapse to another due to the influence of local t on
temporal summation (Fig. 8c).

Total inhibition was initially too weak, and all weights
increased until approximate E–I balance was attained and nearly
half of EPSG caused AP (Fig. 8d). Thereafter, some synapses
weakened and others strengthened until IPSG parameters were
nearly the same as those that were optimal in minimizing MSR
(Fig. 8a). Interestingly, rules 2 and 3 performed better than the
simpler rule 1 in minimizing MSR, despite the fact that optimal
t was assigned with rule 1. When EPSG rate switched from 800 to
5 and back to 800Hz, near optimal parameters were learned in
each case, demonstrating that learning of optimal parameters did
not depend on the choice of initial weights (Fig. 8e).

Spike probability and timing. As expected, both spikes and spike
failures were common with optimal IPSG. With our simple
learning rule 1, spike probability (ratio of spikes to EPSG) was
almost exactly 1/2 for all EPSG frequencies, whereas for learning
rule 2 and minimization of MSR it was less, especially at low
frequencies (Fig. 9a). This is explained by asymmetries that
are more pronounced at low EPSG frequencies (Fig. 4c,d;
Supplementary Fig. 3 and Supplementary Results).
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Although IPSG preserve spike timing2,41, our criteria for
optimality is based only on ‘if’ and not ‘when’ a spike occurs. ‘If’ is
more important here, given that our theory and model insures
that a spike can only occur within a few milliseconds after onset
of an EPSG. Nonetheless, even within this brief window, it is
desirable for spike latencies to be short and precise. For t of
1–32ms, all with optimal I/E, each EPSG was always followed by

0 or 1 AP (prior to onset of the next EPSG), and t that was
optimal in minimizing MSR was nearly optimal in minimizing
both the mean and standard deviation of AP latency (Fig. 9b,c).
Thus optimization of IPSG with respect to spike occurrence may
also optimize spike timing.

Comparison of theory to experiment. Figure 10a compares
predictions of optimal IPSG from theory with experimental data.
Each of the 21 red circles represents the published average t from
a single type of neuron (Supplementary Table 1), and our
estimate of the typical EPSG input rate of that type of neuron
under conditions of mild activation (Supplementary Methods).
If theory explained all variability in t, all experimental data would
lie on the identity line (Fig. 10b), and the root mean squared error
(r.m.s.e.) would correspond to a factor of 1. The actual data
deviated from the predictions of theory by a factor of 1.9 for
simulations with AP in our standard model (with learning rule 2
or minimization of MSR) (Fig. 8a). Across 20 model neurons
(Fig. 7, Supplementary Fig. 1), r.m.s.e. ranged from a factor of 1.8,
in the standard model without AP, to 3.1 for the model with the
highest conductance and AP.

How accurate is a factor of 2 or 3? A prediction based on the
mean of the 21 experimental t (9.4ms) was off by a factor of 3.2,
and linear regression by a factor of 1.7. Compared to these,
the evidence favoured our model by factors of 104 and 10� 2,
respectively (Methods). However, although predictions based on
statistics provide a familiar and useful reference, they are not
appropriate comparisons. Beyond the fact that statistics do not
explain data, our theory and model did not use any knowledge of
t in deriving predictions (except in the case of learning, where t
was specified to be between 1 and 50ms). Since we are unaware of
any alternative theory that predicts t, we compare our results to
the ‘null hypothesis’. What is the chance that our predictions
would be within a factor of 2 given no knowledge of t? Any t is
possible, with a leak conductance being the limiting case of
‘infinite t.’ As an approximation, we can assume bounds of 1ms
and 1 year, and precision of 1ms. With no additional knowledge,
logic requires that all possible t are equally probable. The
probability of ‘randomly drawing’ t between 5 and 20ms (within
a factor a 2 from the mean of 10ms) is 4.8� 10� 10. This number
is rather arbitrary, but its derivation shows that the match of
theory and data is not a coincidence.

Estimation of natural EPSG rates is difficult for a variety of
reasons. Although we provide detailed justification for our
estimate in each of the 21 types of neuron (Supplementary
Methods), uncertainty in these estimates limits confidence in the
conclusions drawn from Fig. 10a,b. However, we would expect
that the error in our estimates is approximately a factor of 2
(for example, if we estimate 20Hz, the true rate is probably
between 10 and 40Hz), much less than the factor of 100 that
distinguishes neurons with the fastest and slowest EPSG and
spike rates (average EPSG rates were 3.7Hz in locus coeruleus42,
and 4500Hz in medial superior olive in the absence of acoustic
stimulation43). Therefore uncertainty in our estimates of EPSG
rates does not substantially detract from our conclusion that
theory can explain variability in IPSG decay times across neurons.

However, we can entirely avoid the difficulty of estimating
natural EPSG rates if we instead focus on the important but lesser
challenge of explaining only the typical or average IPSG decay
time. In other words, why are IPSG decay times on the order of
10ms across many types of neurons? If we assume that 50Hz is
the median EPSG rate across real neurons, theory predicts
optimal t to have a median value of 5.1ms (rule 2 in Fig. 8a),
whereas the median across the 21 neurons was 7.0ms. With this
prediction of 5.1ms, the error (r.m.s.e.) is a factor of 2.8,
approximately twice that observed using EPSG rates as an
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explanatory factor across neurons (1.9; see above). Therefore
the probability of observing this match between theory and
experiment doubles, but is only 10� 9. Theory provides a
remarkably accurate prediction of typical IPSG decay times, even
if we disregard estimates of EPSG rates.

Theory also correctly predicted the mean and range of I/E
observed in adult animals in vivo (Fig. 10c, Supplementary Table 2).
Whereas cortical pyramidal neurons were excluded from measures
of t, they constituted 12 of 15 measures of I/E (Supplementary
Tables 1 and 2, Supplementary Methods). We did not attempt to
estimate EPSG rates for each of these types of neurons, but we
would expect them to be 10–100Hz, with 40Hz being our single
best guess. For 40Hz, theory (rule 2; Fig. 8a) predicts optimal I/E to
be 1.4, with a range from 10 to 100Hz of 0.53–2.66 (Fig. 10c, left).
The experimental mean was 1.7 with range of 0.5–3.2 (Fig. 10c,
right). The 15 measures of I/E deviated from the estimate of 1.4
with a r.m.s.e. corresponding to a factor of 1.7.

Ideally we would like to have estimates of EPSG rates, t, and
I/E in a single type of neuron. We were only able to get such
estimates in thalamocortical neurons of LGN and cerebellar
granule cells (40 and 50Hz, 7.0 and 7.4ms, 1.1 and 1.1,
respectively)31,44,45 (Supplementary Tables and Supplementary
Methods). Measurements in both cell types agree with our
estimate of optimality (at 50Hz, 5.1ms and 1.5).

Explaining slow IPSG decay in cochlear bushy cells. In bushy
cells of the ventral cochlear nucleus (VCN), t is substantially
slower than predicted by our standard model (12.4 versus 2.2ms)
(Fig. 10a, Supplementary Table 1). Unlike our standard model,
there is little or no phasic IPSG in bushy cells (spike latency is
prior to onset of IPSG, 1–2ms after EPSG onset) as a result of
large and fast EPSG and high membrane conductance41,46–48.
In contrast, phasic IPSG may be present in neighbouring
T-stellate cells of VCN, since they have slower EPSG and lower
conductance49. Likewise they have much faster IPSG decay
(1.0ms) that is close to that predicted by our standard model
(Fig. 10a, Supplementary Table 1)41.

We further examined the same high-conductance model as
above (E¼ 120 nS, GL¼ 200 nS; Fig. 7b) at 100Hz but with AP.
Optimal t remained fast (1.8ms, I/E¼ 2.2), but phasic inhibition
remained despite the high conductance (35% of AP occurred after
IPSG onset at 1.0ms). Increasing E–I delay to 2.0ms eliminated
all phasic inhibition and resulted in optimal IPSG that were

slower (t¼ 9ms, I/E¼ 1.1). Next, we made EPSG kinetics
B10-fold faster to match those in bushy cells (which required
increasing E to 270 nS to maintain EPSP peak; see Fig. 7b inset),
while keeping our standard E–I delay of 1.0ms. Phasic inhibition
was absent and optimal t was 34ms (I/E¼ 0.1). Thus refining our
model to better mimic bushy cells resulted in a more accurate
prediction of their slow IPSG decay.

Discussion
Although the field of neurobiology has measured many biophysical
properties, it generally lacks an explanation of why those properties
are what they are. Why should the IPSG decay time constant be
1.0ms in T-stellate cells of VCN41? Why is it at least eight fold
slower in neighbouring bushy cells41,48? Although advantages have
been found for one set of IPSG parameters over another19,20,41, we
are not aware of any previous predictions of exact optimal values.
We used theory and computer simulations to find the IPSG
amplitude and decay time that provides the optimal homoeostatic
counterbalance to excitation. We further demonstrated that
optimal IPSG parameters could be learned through anti-Hebbian
rules. Most remarkably, our predictions closely match experimental
observations of decay times across 21 types of neuron.

Together with recent experiments50,51, we have tested a theory
of the information contributed to membrane voltage by synapses
and ion channels21,40,52,53. The theory extends a long line of
research relating neuronal function to quantitative principles of
information23,24. The central idea is illustrated by a balance scale,
in which the challenge of measurement is to accurately predict
and counterbalance the unknown weight of interest. It was
proposed long ago that synaptic inhibition provides the
appropriate counterbalance to excitation23, and there is strong
supporting evidence25. However, it has not been known exactly
what constitutes optimal balance (or ‘gain control’). To find this
requires a theory that specifies the ideal homoeostatic balance,
including the period of time over which that balance should be
achieved. Since most theories focus on firing rates or spike
patterns (rather than single spikes), optimal E–I balance has
usually been defined over periods that are long compared to IPSG
decay times16,17,19,20. Any particular level of balance over a long
time period (for example, a target firing rate over 20ms) can be
achieved with multiple combinations of IPSG decay time and
peak amplitude. Thus theories focused on longer time periods are
poorly suited for distinguishing IPSG amplitude from decay time,

a b

1 10 100
1

2

4

8

16

32

64
1,000 100 10

EPSG rate (Hz)

Mean interval (ms)

� 
(m

s)

Theory
MSR
Learning

Experiment

c

1 2 4 8 16 32 64
1

2

4

8

16

32

64

Theoretical � (ms)

E
xp

er
im

en
ta

l �
 (

m
s)

–1

0

1

T

I/E
 (

lo
g 2

)

E

Figure 10 | Comparison of theoretical optima with experimental data. (a) Experimentally measured average t and estimate of typical EPSG rate for 21

types of neurons (red) (Supplementary Table 1 and Supplementary Methods) compared to predictions based on theory (black and blue, same as Fig. 8a).

(b) Experimental data (circles) and theoretically optimal t (identity line). Prediction of theory was based on linear interpolation between data points in a.

Dashed lines indicate r.m.s.e., which corresponds to a factor of 1.9. (c) I/E predicted to be optimal by theory (left; at 10, 40 and 100Hz, from bottom to top,

based on rule 2 in Fig. 8a) and observed experimentally (right; longer line is the mean). Experimental data (n¼ 15) were mostly from cortical pyramidal

neurons (n¼ 12), especially primary auditory cortex (n¼8), but was distinct with respect to neuronal type, cortical layer, species or laboratory

(Supplementary Table 2 and Supplementary Methods).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14566 ARTICLE

NATURE COMMUNICATIONS | 8:14566 | DOI: 10.1038/ncomms14566 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


and we are not aware of any studies of E–I balance that have
systematically varied them. In contrast, our theory specifies the
optimal E–I balance at the time of a single EPSG and the spike it
may cause. Because of this fine timescale, the exact IPSG time
course matters, and we can identify a single combination of
amplitude and decay time that is optimal (Fig. 3).

The predictions of theory closely matched experimental
measures of IPSG amplitude and decay time. One’s attention is
naturally drawn to the fact that theory correctly predicted the
slope of t in Fig. 10a, but much more remarkable is that it
predicted the actual value of t (y offset) within a factor of 2.
Indeed, one might mistakenly guess that we ‘fit the data’ in some
way. It is easy to accurately predict data given statistics from the
same data, and neuroscientists have had knowledge of IPSG decay
times for many years. However, theory should explain and predict
data based on principles that are independent of the data. The
accuracy of our predictions is remarkable because we did not use
any knowledge of t in predicting t. Without knowledge of t, and
in the absence of any formal theory, or intuition, there is no
reason to believe that fast decay should be better than slow decay
(the extreme limit of slow IPSG decay corresponds to a constant
‘leak’ conductance). Our prediction was within a factor of 2
despite an infinite range of possible decay times. Although one
could question our estimates of natural EPSG rates in the 21
neurons, the error in prediction increased only to a factor of 2.8
when we did not utilize these estimates as a predictive factor,
which is still slightly more accurate than the factor of 3.2 for a
prediction based on the mean decay time across the 21 neurons.
Thus, if we disregard our estimates of natural EPSG rates
(Fig. 10a,b), then we cannot claim to have explained variability in
IPSG decay across neurons, but we can still claim to have
explained the typical or average IPSG decay time.

Theory was also able to predict the mean and range of
experimentally measured ratios of peak synaptic inhibition to
excitation (Fig. 10c). We had data on both I/E and t for only 2 of
the 21 neurons (cerebellar granule cells and thalamocortical
neurons), and theory accurately predicted the combination of
parameter values in those neurons (see Results).

As a test of theory, the present results apply more to neurons
that receive few rather than many strong excitatory synapses. For
a variety of reasons we did not include cortical pyramidal neurons
among the 21 types of neurons from which we obtained IPSG
decay times (Supplementary Methods). The greatest difficulty is
that the presence of a large number of excitatory synapses make it
possible to generate many patterns of synaptic excitation, and yet
we have little knowledge of the actual patterns. The knowledge we
do have indicates that synchronous but temporally sparse
excitation causes large and discrete EPSPs, at least in some
cortical pyramidal neurons38,39. Although our standard model
had large and discrete EPSPs, it lacked the variability that would
be expected in a neuron with many excitatory synapses. However,
limited results from an alternative model, having the high
variance and skewed distribution of EPSG amplitudes that might
be expected in a cortical pyramidal neuron, led to qualitatively
similar conclusions (Fig. 6).

Despite our confidence in the theory, we were surprised by how
well it predicted the experimental data given our neuronal model.
The theory specifies that optimality should depend on numerous
factors that contribute to membrane excitability, yet our
model neuron was simple and generic, with a single electrical
compartment and no active intrinsic properties (or only AP). Our
intention was to mimic a typical neuron, and in principle such a
generic ‘average model’ may be the best single model for
explaining variance in IPSG across diverse neurons. However,
a more detailed model should produce a more accurate prediction
with respect to a particular neuron. The largest error of our

standard model occurred with bushy cells of VCN, in which
t is more than five fold slower than predicted (Fig. 10a,b)41,48.
When we eliminated phasic inhibition to better mimic bushy
cells, optimal t was slower and more similar to that found in
bushy cells. Thus the relatively small errors in prediction based on
our simple model may be reduced further through detailed
models of specific types of neuron.

Evidence for the theory would be further strengthened if
it can correctly predict additional parameters of inhibition, and
especially combinations of multiple parameters. For example,
multiple specializations speed conduction through inhibitory
pathways so that E–I delay is brief or even negative3,11,14,31,49,54,
consistent with our results (Fig. 7c, bottom). In layer 6 of auditory
cortex, one neuronal population has negative E–I delay and large
I/E (� 1.6ms and 3.0), whereas another population has the
opposite combination (þ 1.6ms and 0.6)11. Neurons in the
medial superior olive are of particular interest because they are
exceptionally fast. They receive EPSG at over 500Hz (ref. 43),
have fast IPSG decay (1.7ms), negative E–I delay (� 0.4ms), and
unusually negative ECl� (� 90mV)14,55–57. At the opposite end
of the spectrum are neurons of the inferior olive, which fire at
about 2Hz (ref. 58) and have exceptionally slow IPSG decay59.

A combination of physiology and simulations could be used to
test the theory’s ability to predict multiple IPSG parameters over
the course of development, or in response to direct manipulation
of EPSG patterns (for example, at the retinotectal synapse13).
Membrane properties become faster over development, including
the rate of IPSG decay56. The present results suggest that faster
IPSG decay could result from anti-Hebbian learning in response
to an increasing prevalence of brief EPSG intervals over the
course of development (whether or not average rates increase).

Real neurons have numerous conductances that were lacking in
our models, and we have proposed that many of these work to
maintain homoeostatic balance as described here for IPSG21,40.
Like phasic IPSG, some low-threshold Kþ channels activate
during the rising phase of EPSP (for example, Kv1) and
complement IPSG in keeping EPSP peak close to spike
threshold14. The theory should predict the properties of
voltage-gated ion channels as it did IPSG. For example, the
theory correctly predicted the experimental observation that
T-type calcium channels are homoeostatic in counterbalancing
opponent IPSG in thalamocortical neurons of LGN50. The more
general theory proposes differences between sensory and motor
neurons, and it correctly predicted evidence that T-type calcium
channels are not homoeostatic but cause bursts of spikes in motor
thalamus51. In addition to predicting the properties of a type
of neuron, theory may also be useful in explaining variability in
ion channel parameters across neurons of the same type,
particularly by indicating which combinations of ion channel
parameters work in a concerted manner to maintain near optimal
homoeostatic excitability60,61.

Anti-Hebbian rules have previously been shown to optimize
the amplitude of synaptic inhibition to maintain sensitivity of
spikes to synaptic excitation and sensory stimuli25,62,63. Here we
have shown for the first time that anti-Hebbian rules could enable
simultaneous learning of optimal IPSG decay times as well as
amplitudes, as predicted by theory21,40 (Fig. 8). Thus adjustment
of IPSG parameters could restore homoeostatic excitability within
minutes following a change in the temporal pattern of EPSG25.
By providing a plausible mechanism for dynamic optimization,
our results with learning strengthen our conclusion that IPSG are
optimized for homoeostatic balance in accord with theory.

Methods
Model neuron. We simulated a single-compartment neuron using NEURON
software (version 7.3)64. The model neuron had a membrane of 24,058 mm2 and
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capacitance (Cm) of 0.24 nF (1 mF cm� 2), as previously described65. It included a
leak conductance (GL), EPSG (gExc) and IPSG (gInh). Simulations with AP also
included a Hodgkin–Huxley-type, voltage-dependent sodium conductance (gNa)
and potassium conductance (gK). In simulations with AP, the dynamics of the
membrane potential (V) were governed by equation (1).

Cm
dV
dt

¼ gNam
3h ENa �Vð Þþ gKn

4 EK �Vð Þþ gLeak ELeak �Vð Þ

þ gExc tð Þ EExc �Vð Þþ gInh tð Þ EInh �Vð Þ
ð1Þ

Reversal potentials (E) for each conductance were 50, � 90, � 70, 0 and � 70mV,
respectively. In some simulations, the IPSG reversal potential (EInh) had other
values (Fig. 7d). The time unit for simulations was 0.1ms in simulations with AP,
and 0.25ms without AP.

Synaptic conductances. Post-synaptic conductances (PSG) were intended to
mimic those mediated by AMPA-type glutamate receptors and GABAA/glycine
receptors. They followed the form of equation (2).

PSG ¼ e� t=tdecay � e� t=trise ð2Þ

where t¼ 0 at the onset of the conductance, trise is the rise time constant, and tdecay
is the decay time constant. For EPSG, these were 0.45 and 3.0ms, respectively. For
IPSG, trise was 0.9ms, whereas IPSG decay time (t) was varied between 1 and
160ms. In our standard model, IPSG onset always followed EPSG onset by 1.0ms.

Action potentials. We designed AP to be simple and brief. By making AP brief we
were able to measure residuals for every EPSG. Another reason for using simple
and brief AP is that AP in real neurons activate a diversity of conductances, which
typically cause an after-hyperpolarization lasting at least a few milliseconds.
We expect that these conductances are homoeostatic and work synergistically with
IPSG21,37. Although it is of interest to investigate how these conductances interact
with IPSG, we avoided this issue by having a single Kþ conductance with rapid
decay.

We modified the parameters of a previous model (available from ‘NEURON
ModelDB’)65. The absolute refractory period was o1.0ms, which was the
minimum interval between EPSG and enabled us to measure a residual at the time
of each EPSG (every EPSG in our simulations at 800Hz was able to evoke an AP if
it was sufficiently large). AP duration at half of peak amplitude was 0.2ms, and
GKþ at 0.5ms after AP peak was 6 nS, 0.1% of its maximum and 60% of our
standard GL.

AP thresholds were adjusted to be near � 50mV, which was designated as
‘spike threshold’ in simulations without AP. The mean maximal sub-threshold
EPSP (measured in response to ‘threshold ESPG’ as part of our method of finding
residuals) was � 52.3, � 50.5 and � 50.0mV with EPSG at 5, 100 and 800Hz,
respectively, in simulations with optimal IPSG.

Ensemble of EPSG. In our standard model, each EPSG was of identical unitary
amplitude (E¼ 30 nS). EPSG amplitude was larger in some simulations (Fig. 7b)
and variable in others (Fig. 6). The most critical variable was the mean interval
between EPSG. Except in simulations in which an ‘ensemble’ consisted of only
2 EPSG (Fig. 2), EPSG ensembles were generated by randomly sampling
from geometric interval distributions (the discrete analogue of an exponential
distribution) with a discrete unit of 1.0ms. Thus an EPSG interval could be 1.0, 2.0,
3.0ms and so on. Mean EPSG frequencies varied from 1 to 800Hz (mean intervals
of 1,000 to 1.25ms). Although EPSG intervals were randomly sampled at each
frequency, sampling was only performed once for each frequency. Thus the
same sequence of intervals was used for every simulation of a given frequency
(Figs 3a and 6b).

MSR was found with ensembles of 1,000 EPSG for each combination of
parameters and at each frequency, and for each neuronal model. However, 5,000
EPSG were used in the case of our standard model at 5Hz. Testing with 4,000
additional EPSG did not result in any change to optimal parameter values relative
to 1,000 EPSG, but slightly reduced MSR (18.6–16.6 nS2). With log-normal
variance in unitary PSG, we used 10,000 to sufficiently sample the larger space of
both amplitudes and intervals. The number of EPSG tested with learning was
chosen to reach stable synaptic weights (Fig. 8d) (see below).

Residuals and MSR. At the time of each EPSG, we measured ‘distance from
optimality’ as previously described21. We refer to this distance as a ‘residual.’
After finding the ‘real’ voltage in response to an EPSG ensemble, we performed
additional test simulations to find how much larger or smaller each EPSG would
need to have been in order for the EPSP peak to reach exactly to spike threshold
(Fig. 2a). Critically, the nth residual depended on membrane properties at the time
of EPSGn, including IPSGn, but it did not depend on EPSGnþ 1 and other future
events (Fig. 2a). Therefore, to find the nth residual, the voltage and conductance up
to the nth synaptic event was kept for the test simulation, but later EPSG and
IPSG were discarded. Test EPSG were injected with onset at the time of the real
EPSGn, making it larger or small as needed so that the peak of the test EPSP was as
near as possible to spike threshold (AP threshold, or � 50mV in simulations

without AP). The increment of test EPSG was 0.3 nS. This increment determined
the precision with which we estimated the threshold EPSG and residual. In
simulations without AP, the peak of the ‘threshold EPSP’ was 50±0.01mV
(mean±s.d.).

The residual was defined as the negative of the difference between the ‘threshold
EPSG’ and the ‘real EPSG’. For display purposes only, we used the negative of this
difference so that positive residuals corresponded to EPSP peaks that were positive
of � 50mV (Figs 3a and 4a,d, Supplementary Fig. 3c). For a given ensemble of
EPSG, the optimal IPSG parameters were taken to be those that minimized the
MSR.

In simulations without AP, occasionally there were cases in which membrane
voltage was above ‘spike threshold’ of � 50mV at the time of EPSG onset. This
almost never occurred at low EPSG frequencies, but it occurred with 18.7% of
EPSG at 800Hz in our standard model with optimal IPSG parameters. In such
cases, the threshold EPSG should bring the EPSP to � 50mV, but the EPSP had no
peak in this case and the voltage trajectory continued downwards. This creates a
problem for measuring the residual. To measure the residual, we defined the
‘threshold EPSG’ to be the EPSG that caused the mean voltage at 1–3ms after
EPSG onset to be nearest to � 50mV.

To find optimal parameter values, t was tested across a range of 1–50ms, but up
to 120ms in Fig. 3d, and 160ms with ECl� of � 60mV (Fig. 7d). For values of
t that were near optimal in minimizing MSR, we tested increments of 0.1ms at
1–2ms, 0.2ms at 2–3ms, 0.5ms at 3–5ms, 1.0ms at 5–16ms, 2.0ms at 16–50ms
and 10.0ms at 50–160ms, although less in some instances. Values of I/E that were
near optimal for a given t were tested in increments of 0.1 (DI¼ 3 nS) for t of
1–22ms, and 0.05 for larger t. However, for 5, 100 and 800Hz with our standard
model (Fig. 3d), increments were 0.01 for t above 14ms.

Learning. Since our goal was only to demonstrate the feasibility of anti-Hebbian
learning, we made little effort to optimize the learning rules, or to make them
realistic in all respects. For simplicity, learning occurred following each synaptic
event, rather than in real time.

We tested three rules. Rule 1 was simple and was applied to a neuron with a
single inhibitory synapse. It lacked a dynamic ‘presynaptic’ term and thus was not
‘associative’ in a meaningful sense. IPSG decay time was pre-specified to be optimal
for the EPSG frequency, and thus the only objective was to learn the optimal
homoeostatic value of I/E. Learning with rule 1 occurred following each synaptic
event (n) according to equation (3).

wnþ 1 ¼ wn þ avn ð3Þ

The learning rate a was 0.6 nS per synaptic event. The weight of the inhibitory
synapse (w) increased or decreased depending on whether an AP did (v¼ 1) or did
not occur (v¼ � 1) during the ‘spike period,’ which was � 0.5 to 4.5ms from IPSG
onset, or prior to onset of the next IPSG if the next IPSG occurred within o4.5ms.
The synaptic weight was updated at the end of the spike period, and thus wn was
effective from 4.5ms after IPSGn to 4.5ms after IPSGnþ 1 (Fig. 8c).

Rules 2 and 3 addressed the greater challenge of learning IPSG decay time as
well as amplitude. The model neuron had nine inhibitory synapses, each having
synchronous activation 1.0ms after each EPSG, but with a distinct decay time
(t¼ 1.5–50ms; Fig. 8b). The IPSG at synapse ‘i’ and time ‘t’ depended on synaptic
weight (wi,t) and activity (ui,t) (equation (4)).

IPSGi;t ¼ wi;tui;t ð4Þ

‘Activity’ was analogous to ‘presynaptic activity’ in conventional associative rules,
and corresponds to the time course of GABAA or glycine receptor activation
(unitary activity at each synapse had a peak of 1), whereas the ‘weight’ can be
understood as the number of receptors at the synapse. The IPSG is decomposed
into ‘weight’ and ‘activity’ so that the regulation of weight (learning, or induction of
plasticity) can be independent of weight (memory, or expression of plasticity).
(This could occur if there are GABAA receptors that regulate learning but do not
allow current to pass.)

Learning at the time of a synaptic event should depend on the information
available about the causal relation between inhibitory activity and spike generation.
The ‘eligibility’ for learning (ūi,n) was the average synaptic activity during the
period � 1 to 4.0ms from IPSG onset (0–5ms from EPSG onset), or until the onset
of the subsequent IPSG if it occurred in o4.0ms (indicated by rectangles in
Fig. 8c). The spike period during each synaptic event was also 5.0ms in duration,
but was delayed by 0.5ms from the eligibility period. Although this was a minor
detail, the principle was to account for the causal delay expected between inhibitory
activity and spike generation. Defining eligibility and spikes in these rather long
periods was simplistic, and as a consequence, learning sometimes depended in
part on inhibitory activity that occurred just after a spike. This would not occur
in a more realistic model, which could have used an exponentially decaying
eligibility trace.

Weights were updated at the end of the spike period according to rule 2
(equation (5)) or 3 (equation (6)).

wi;nþ 1 ¼ 2vn � 2vn � 1ð Þe� a�ui;nð Þwi;n ð5Þ

wi;nþ 1 ¼ wi;n þ a�ui;nvn=ti ð6Þ
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The learning rate a was 60 and 0.9 nS per synaptic event in learning rules 2 and 3,
respectively. Learning with rule 2 was faster at stronger synapses (as measured in
nS), but had no direct dependence on decay time. In contrast, learning with rule 3
had no dependence on synaptic weight, but was inversely proportional to t and was
thus slower at synapses with slower decay.

Simulations of learning were run until synaptic weights stabilized. We used
2,000 synaptic events for rule 1, 15,000 with rules 2 and 3 (Fig. 8d), and 35,000
synaptic events for ‘reversal learning’ (Fig. 8e). The ‘learned parameter values’
(Fig. 8a) were found by averaging across the last 100 synaptic events. For
comparison to our standard parameters ‘I/E’ and t (Fig. 8a), the total phasic peak
IPSG amplitude ‘I’ across all synapses was the sum of the weights (wi) across the
nine synapses, and ‘weighted t’ was the weighted sum of the decay time constants
across the nine synapses, where the weights were the synaptic weights (wi).

Statistical analysis. Although it is not a fair comparison (see Results and
Discussion), we compared the evidence for our model of t to two other models, one
based on the mean t across the 21 types of neurons, and the other based on linear
regression of the 21 t on EPSG frequency. The ‘odds’ are defined as the ratio of the
probability of the data given one model to the probability of the data given the
other model, which corresponds to the evidence favoring one model over
another66. We assumed that errors were normally distributed, and that the
parameter s was equivalent to the r.m.s.e. calculated from the model and sample
data. Since it follows that the errors were conditionally independent, the probability
of the 21 data points was the product of the 21 probabilities. The probability of the
data was 104 times greater given the predictions of our model relative the
prediction based on the mean t, and thus the evidence for our model was 104

times greater. The evidence favoured linear regression over our model by a factor
of B100.

Data availability. Code and additional parameter values used in the NEURON
model are available from the authors upon request.
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