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Pancancer modelling predicts the context-specific
impact of somatic mutations on transcriptional
programs
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Pancancer studies have identified many genes that are frequently somatically altered across

multiple tumour types, suggesting that pathway-targeted therapies can be deployed across

diverse cancers. However, the same ‘actionable mutation’ impacts distinct context-specific

gene regulatory programs and signalling networks—and interacts with different genetic

backgrounds of co-occurring alterations—in different cancers. Here we apply a computational

strategy for integrating parallel (phospho)proteomic and mRNA sequencing data across

12 TCGA tumour data sets to interpret the context-specific impact of somatic alterations in

terms of functional signatures such as (phospho)protein and transcription factor (TF)

activities. Our analysis predicts distinct dysregulated transcriptional regulators downstream

of somatic alterations in different cancers, and we validate the context-specific differential

activity of TFs associated to mutant PIK3CA in isogenic cancer cell line models. These results

have implications for the pancancer use of targeted drugs and potentially for the design of

combination therapies.
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C
ancer cells evolve to acquire hallmark capabilities to
sustain chronic proliferation, evade growth suppressors
and avoid cell death1 largely through the accumulation

of somatic alterations that disrupt key signalling pathways.
Large-scale cancer genomics projects such as The Cancer
Genome Atlas (TCGA) have generated a comprehensive
catalogue of somatic mutations and copy number aberrations
across many tumour types. These alterations have been
mapped to known pathways with the hope of deploying
pathway-targeted therapeutics—drugs targeting mutant
oncoproteins or highly overexpressed wild-type (WT) receptors
or signal-transduction proteins—for personalized medicine2–11.
However, while the same ‘actionable mutation’ may occur in
multiple cancers, it interacts with context-specific regulatory
and signalling networks as well as the genetic background
of other somatic alterations, suggesting that its impact—and the
effectiveness of the targeted therapy—may strongly depend
both on the cancer type and additional molecular features of
the individual tumour. Moreover, the role of many frequent
somatic alterations remains obscure, and it is unclear whether
and how they interact with targetable pathways. In fact,
computational studies of drug sensitivity across cancer cell lines
have found that gene expression features are more informative
than mutations for predicting response to targeted therapies12.
Meanwhile, early ‘basket’ clinical trials that enroll patients for
targeted therapies based on mutation status alone—regardless of
cancer type—have demonstrated efficacy only in a subset of
cancers13,14. These findings point to the need for better
integrative computational methods that leverage additional
molecular readouts to model the context-specific impact of
somatic alterations on gene expression programs.

To this end, we applied a computational strategy for exploiting
parallel (phospho)proteomic and mRNA sequencing data for
large tumour sets by linking the dysregulation of upstream
signalling pathways with altered transcriptional response through
the transcriptional circuitry15,16. We then developed a statistical
framework to interpret the impact of mutations and copy
number events in terms of altered (phospho)protein and
transcription factor (TF) activity. We used this strategy to train
(phospho)protein–TF interaction models across 12 human
cancers in TCGA. First, we identified shared and cancer-specific
roles of TF/signalling regulators across cancer types. In bladder
urothelial carcinoma, renal cell clear carcinoma and uterus
endometrial carcinoma, many of the identified TF regulators were
significantly associated with survival outcome. By stratifying
tumours by inferred TF activities rather than gene expression
patterns, we identified known and previously unlinked TFs that
are differentially active in HPV(þ ) versus HPV(� ) head and
neck squamous cancer, and we uncovered a subtype
of endometrioid uterine cancer harbouring mutant b-catenin
with altered TF activities.

We next performed a systematic regularized regression analysis
to associate frequent somatic aberrations with changes in inferred
TF and (phospho)protein activities in each cancer type.
This analysis identified key regulators associated with the
major mutations in renal clear-cell carcinoma. More generally,
we observed that specific molecular aberrations have cancer-
specific functional consequences. In particular, we associated
PIK3CA activating mutations with altered activities of distinct
sets of TFs in different cancers. Notably, in isogenic cell
line models of breast cancer and head and neck cancer, we
validated the altered activity of several TFs in the presence
of mutant PIK3CA by measuring promoter occupancy and
expression of target genes, confirming the context-specific
predictions of our model. These proof-of-principle results suggest
a computational strategy for personalized deployment of targeted

therapeutics—and potentially for the development of context-
specific combination therapies—in a pancancer setting.

Results
Pancancer analysis models dysregulated TFs and signalling.
We used a computational strategy for exploiting parallel
(phospho)proteomic and transcriptomic data to learn a model
that links alterations in signalling (from RPPA data)
with downstream changes transcriptional response (measured by
mRNA data) via predicted TF binding sites15 (Fig. 1a–c).
We used a regularized bilinear regression algorithm called
affinity regression (AR)16 to learn an interaction matrix
between upstream signal-transduction proteins and downstream
TFs that predicts target gene expression (Fig. 1a, bottom). More
intuitively, the model learns weighted edges between signalling
proteins and TFs to describe the flow of information from
change in (phospho)protein level to altered activity of TF to
transcriptional changes in target genes (Fig. 1a, top). In
a pancancer context, an AR model is trained independently for
each cancer type and explains the variation in gene expression
across tumours in terms of (phospho)protein variation and
presence of TF binding sites (see Methods section).

We can further use the trained AR interaction matrix for each
cancer type to obtain different views of each tumour data set
via mappings (Fig. 1b): given a tumour sample’s (phospho)protein
expression levels, we can multiply through the model to infer
sample-specific TF activities; conversely, given the gene expres-
sion profile, we can multiply through the motif hit matrix and
the model to infer ‘(phospho)protein activities’ that are
more informative than the original noisy RPPA data (Fig. 1b,
bottom). Intuitively, information flows down from observed
RPPA levels through the learned interaction matrix to infer
TF activities, and observed mRNA expression levels propagate up
through the TF-target edges and interaction network to infer
(phospho)protein activities (Fig. 1b, top).

Importantly, by associating the presence of somatic alterations
with altered regulator activities, we can gain mechanistic insight
into the role of specific mutations or copy number events
(Fig. 1c). We perform the association analysis by using
regularized regression to predict each inferred TF activity
(resp. (phospho)protein activity) individually from the full set
of frequent mutation and copy number features (Fig. 1c, bottom;
see Methods section). We then evaluate the significance of the
effect size (coefficient) for each alteration in the regression model
by a permutation approach (see Methods section). After false
discovery rate (FDR) correction across TFs/(phospho)proteins,
we can identify a significant set of regulators whose altered
activities are associated with each mutation/copy number event
while controlling for the genetic background of other alterations.

We trained AR models on tumours from 12 different
TCGA cancer studies using samples for which mRNA, RPPA,
somatic mutation and copy number variation data were available:
bladder urothelial carcinoma (BLCA, n¼ 115), breast cancer
(BRCA, n¼ 368), colorectal adenocarcinoma (COADREAD,
n¼ 150), glioblastoma multiforme (GBM, n¼ 58), head and
neck squamous carcinoma (HNSC, n¼ 194), kidney renal cell-
clear carcinoma (KIRC, n¼ 376), lung adenocarcinoma (LUAD,
n¼ 216), lung squamous cell carcinoma (LUSC, n¼ 106), ovarian
carcinoma (OV, n¼ 164), prostate cancer (PRAD, n¼ 159),
uterine corpus endometrial carcinoma (UCEC, n¼ 183), and
uterine carcinosarcoma (UCS, n¼ 47).

For statistical evaluation, we computed the mean Spearman
correlation between predicted and measured gene expression
profiles on held-out samples using 10-fold cross-validation for
each cancer model. We obtained significantly better performance
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than a nearest-neighbour approach based on Euclidean distance
in the RPPA space (Po0.00025, one-sided Wilcoxon’s
signed-rank test; Supplementary Table 1). Similarly, AR models
with true motif and RPPA data outperformed models where
motif hits for each gene and RPPA profiles for each tumour were
randomized (Po0.00025, one-sided Wilcoxon’s signed-rank
test). When only the motif hits were randomized, the perfor-
mance improvement of the true model was modest but still
significant (Po0.00074, one-sided Wilcoxon’s signed-rank test),
suggesting that the motif data, while noisy, contributes to
predictive performance. AR obtained similar performance
advantages when assessed using a single held-out test set or
when evaluating Pearson correlation or root mean-squared error
(Supplementary Figs 1–5).

Pancancer AR identifies signatures of survival. To assess
the statistical significance of AR-inferred regulator activities,
we developed an empirical null model based on training
AR models on randomly permuted gene expression profiles
for each tumour type (see Methods section). Then, we
asked whether the value of individual TF/(phospho)protein
activities for each sample were significantly low or high relative
to the corresponding distribution over permuted data. We
corrected for FDR across TFs/(phospho)proteins (see Methods

section) and identified significant shared and cancer-specific
TF/(phospho)protein regulators (Fig. 2a and Supplementary
Data 1).

Figure 2a shows the fraction of samples per cancer type where
each TF was identified as a significant regulator; for clarity, only
the union of top 10 most prevalent significant TFs per cancer are
shown. Certain TFs display a large variation in inferred activity in
specific cancer types, suggesting a key role in regulating target
gene expression in these cases, while having more modest
variation in other cancers. Figure 2b shows the inferred activity
distribution of three TFs identified from our analysis: FOXO1
(Forkhead box O), NFE2L2 and ELK1. FOXO1, a key regulator
of cell-cycle progression and apoptosis, was identified as
a significant regulator for more than 10% of tumours in BLCA,
BRCA and UCEC; its activity showed high variation among
tumours for these particular cancers (Fig. 2b, top panel).

A number of TFs were significantly altered in two or more
tumour types, including ZEB1, JUN, ELK1, FOXM1, while others
were limited to a single type, such as FOXD1 in HNSC and
FOXL1 in KIRC. We identified TFs that are known cancer drivers
such as STAT5 (endometrioid carcinoma17), AHR18, HMGA19

(KIRC), PBX1 (OV20, prostate cancer21, BRCA22,23) and NFE2L2
(squamous cell lung cancer). Other predicted TF–cancer
relationships are unknown and may provide new mechanistic
insights.
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Figure 1 | Integrative computational model links signalling to downstream transcriptional programs. (a) Formally, an interaction matrix W between

TFs and upstream signalling proteins is trained using a bilinear regression algorithm, called affinity regression, on RPPA and mRNA expression (RNA-seq)

data from a set of tumours, together with TF binding motif information from gene promoters. The model learns to predict target gene expression from

tumour-specific (phospho)protein expression levels and gene-specific TF binding sites. The model can be viewed as learning weighted edges (shown as

dashed lines) between upstream signalling proteins (shown as red circles) and transcription factors (TFs, shown as triangles) to capture the flow of

information from signalling pathways to TFs to target genes and to predict target gene expression changes (TF to target genes shown in green). Formally,

the learned weighted edges between (phospho)proteins and TFs are represented by an interaction matrix. (b) (Phospho)protein–TF interaction models for

each cancer are trained independently. The model can be used to infer sample-specific TF activities from measured RPPA profiles or to infer sample-specific

(phospho)protein activities from measured mRNA expression values by use of matrix mappings. (c) To model the impact of somatic aberrations on

transcriptional response and signalling events, we use regularized regression to predict inferred TF activities (resp. inferred (phospho)protein activities)

from somatic alterations. The significance of the effect size (regression coefficient) for each somatic alteration on TF/(phospho)protein activity is

estimated by a permutation approach. The eventual goal of the modelling is to understand the cancer-specific downstream effects of targeted therapies and

to potentially discover secondary targets for combination drug strategies.
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To investigate the clinical relevance of these findings,
we examined whether the inferred activity of significant
TFs was linked to patient survival. We fit Cox proportional
hazards regression models for each TF activity using clinical
stage (or histological subtype for UCEC) as an additional
covariate. Indeed, many identified TF regulators had
highly significant associations with survival outcome in BLCA,
KIRC and UCEC (Fig. 2c and Supplementary Tables 2–4).
For instance, FOXO1 was associated with survival in BLCA
and UCEC, and its inferred activity separated patients into
high- and low-risk groups. Previous immunohistochemical
analyses of FOXO1 in bladder cancer showed that
increased mRNA expression is associated with reduced disease
progression24, consistent with our result. Inferred NFE2L2 and
MAX activity were associated with patient survival in KIRC, as
was ELK1 activity in the UCEC study. Importantly, Cox models
built from inferred TF activities achieved more significant
patient stratification than models built from the gene
expression of significant TFs (BLCA: Po10� 4; UCEC:
Po10� 10, one-sided paired Wilcoxon’s signed-rank test)
(see Methods section and Supplementary Tables 2–4). We
further confirmed that most of our UCEC survival results
generalized to two other independent cohorts, MDACC
(MD Anderson Cancer Center) and Bergen25 (see Methods

section and Supplementary Table 5), supporting the use of
inferred TF activity for patient stratification.

TF activities distinguish HPV(þ ) and HPV(� ) HNSC patients.
Next, we asked whether our method could identify known
and novel TFs that are differentially active in cancer
subtypes. Figure 3a shows the clustering of tumours by inferred
TF activities, together with inferred (phospho)protein activities
for the same tumour ordering, as derived from the HNSC model
(showing TF/(phospho)protein activities with largest standard
deviation across samples). Notably, patterns of TF activities
across tumours generally correlated with (phospho)protein
activities.

Head and neck squamous cancer is frequently associated
with human papillomavirus (HPV) infection and mutations in
TP53. AR analysis suggests that the molecular pathogenesis of
HPV(þ ) head and neck cancer is distinct from HPV(� )
tumours. Inferred TF activities of 33 TFs were significantly
associated with HPV status (t-test, FDR-corrected Po0.01,
Fig. 3b,c); by contrast, the gene expression values of only two
TFs were associated with HPV status (Supplementary Table 6).
Altered TF activities were involved in cell-cycle, apoptosis,
oxidative stress, WNT signalling and transforming growth
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Figure 2 | Activities of significant regulatory TFs correlate with patient survival. (a) Significant TF regulators for each cancer type were identified using

an empirical null model based on training affinity regression models randomized gene expression data (see Methods section). A FDR of 10% was used for

studies with 4300 samples (BRCA, KIRC), 15% FDR for mid-size studies (BLCA, COADREAD, HNSC, LUAD, LUSC, UCEC, OV, PRAD), 25% FDR for

studies with o50 samples (GBM, UCS). The heat map shows the fraction of samples where each TF is identified as a significant regulator within each

cancer. For clarity, the union of top 10 most prevalent significant TFs in each cancer-specific model is shown. (b) Violin plots indicate the distribution of

inferred FOXO1, NFE2L2 and ELK1 TF activities across cancer types. For example, FOXO1 TF activity is highly variable across tumours in BLCA, BRCA and

UCEC. (c) Inferred TF activity predicts survival in patients with BLCA, UCEC and KIRC cancers. Kaplan–Meier survival curves for TCGA BLCA samples,

stratified by TF activity of FOXO1 (top left), CEBPG (top right); TCGA UCEC samples stratified by TF activity of FOXO1 (middle left), ELK1 (middle right);

TCGA KIRC samples stratified by TF activity of NFE2L2 (bottom left), MAX (bottom right).
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factor-b) signalling and may have roles in the initiation
and maintenance of HPV(þ ) head and neck cancer26.
For example, KLF12 and NFE2L2 were significantly associated
with HPV(þ ) tumours (Fig. 3b). Interestingly, the KLF12
locus is a frequent integration site for the HPV virus27

in cervical cancer, and the TCGA HNSC study also identified
KLF5, the locus of a related KLF factor, as an HPV integration

site5. To confirm our results, we used the HNSC TCGA-trained
AR model to infer TF activities in an independent set of 42 head
and neck cancer RPPA profiles with HPV status28. We again
identified TF–HPV status associations by t-test and found
a similar set of TFs (23 out of 33) whose activities significantly
differed between HPV(þ ) and HPV(� ) tumours; the
33 identified TFs were also enriched among the top-ranked
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Figure 3 | Pancancer affinity regression modelling identifies regulatory features of tumour subtypes. (a) We trained an affinity regression model on

194 tumours from the TCGA HNSC study. The top heat map shows tumours clustered by the inferred TF activities with highest variance. The middle panel

shows top most variable (B50) inferred (phospho)protein activities for each tumour based on clustering by sample-specific TF activities. The bottom panel

shows genomic aberration profiles of each tumour as well as HPV status, tumour site and mRNA expression subtypes derived from the corresponding

TCGA HNSC study. (b) Examples of three of the significantly differential inferred TF/protein activities in HPV(þ ) versus HPV(� ) tumours were NFE2L2,

KLF12 and MSH6. HPV(þ ) tumours have significantly higher NFE2L2 TF activity (Po10� 5, Wilcoxon’s rank-sum test), higher KLF12 TF activity

(Po10� 5, Wilcoxon’s-rank sum test) and higher MSH6 protein activity (Po10� 2, Wilcoxon’s rank-sum test) than HPV(� ) tumours. (c) The mean

inferred TF activity difference in HPV(þ ) and HPV(� ) patients is plotted on the x axis, and FDR-adjusted significance from t-test is plotted on the y axis

(–log10 scale) for TCGA and Sewell et al.28 head and neck cancer cohorts. TFs significantly associated with HPV status (FDRo0.01) in both cohorts are

coloured in orange. (d) We trained an affinity regression model on 183 tumours from the TCGA endometrial carcinoma (UCEC) study. The top heat map

shows a clustering of tumours by inferred TF activities. The middle panel shows inferred (phospho)protein activities of each tumour based on clustering of

tumour TF activities. The bottom panel shows genomic aberration profiles of each tumour as well as histological subtypes derived from the corresponding

TCGA UCEC study. Patterns of TF activities across tumours often correlated with patterns of (phospho)protein activities. (e) Examples of three

of the significantly differential inferred TF/(phospho)protein activities in serous versus endometrioid tumours were ESR1, TGIF1 and p53. Tumours with

endometrioid histology have significantly higher ESR1 TF activity (Po10�8, Wilcoxon rank sum test), lower TGIF1 TF activity (Po10� 14, Wilcoxon

rank-sum test), and lower p53 protein activity (Po10� 14, Wilcoxon rank sum test) than serous tumours. (f) The mean inferred TF activity difference in

CTNNB1 mutant and CTNNB1 wild-type patients is plotted on the x axis, and false discovery rate (FDR)-adjusted significance from t-test is plotted on the

y axis (� log 10 scale) for TCGA and MDACC endometrial cancer cohorts. TFs significantly associated with CTNNB1 status (FDRo0.01) in both cohorts are

coloured in orange. Box edges represent the upper and lower quantile with median value shown as bold line in the middle of the box. Whiskers represent 1.5

times the quantile of the data.
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TFs in the new cohort (Po10� 5, Mann–Whitney test)
(Fig. 3c and Supplementary Table 6).

As described previously29, mutant TP53 tends to be mutually
exclusive with HPV(þ ) status, but inferred TP53 TF activity and
inferred p53 protein activity were not significantly different between
HPV(þ ) and HPV(� ) patients (t-test P¼ 0.477 and P¼ 0.741,
respectively). However, it is known that the viral
E6 oncoproteins in HPV(þ ) head and neck cancer form
a complex with WT p53 and lead to its degradation30, pointing to
an alternative mechanism for p53 inactivation in HPV(þ ) patients.

We performed similar analyses for other TCGA cancer studies
and in each cancer type could stratify patients by regulator
activity profiles (Supplementary Figs 6–15). For example, the
inferred TF activity of CEBPA31 was significantly higher in
the mesenchymal subtype compared to other subtypes of
GBM (Po10� 5, Wilcoxon’s rank-sum test used for all tests);
ESR1 (estrogen receptor 1) activity was higher in luminal BRCA
compared to other BRCA subtypes (Po10� 42), consistent with
oestrogen receptor serving as a luminal marker32; and activity of
TTF-1 (thyroid transcription factor-1) thyroid transcription
factor-1, a known biomarker of LUAD33, was higher in the
squamoid (Po10� 10) and bronchioid subtypes (Po10� 5)
compared to the magnoid subtype in LUAD.

TF signature defines mutant CTNNB1 endometrioid subtype.
We then asked if we could associate inferred TF activities with
mutational signatures as a first step towards developing a more
general statistical strategy. Figure 3d shows a clustering of
tumours by inferred TF activities from the UCEC model, together
with inferred (phospho)protein activities and recurrent somatic
mutations and copy number events. Serous-like endometrial
tumours are hormone receptor negative, mostly copy number
high, and harbour mutations in TP53, whereas endometrioid
tumours are hormone receptor positive, copy number low, and
have a high frequency of PI3K-AKT (phosphatidylinositol
3-kinase-AKT) pathway alterations5,6. Consistent with
their distinct molecular and genomic features, we found
significant differences in inferred regulator activities in serous-
like and endometrioid tumours (Supplementary Tables 7 and 8),
including increased ESR1 activity in endometrioid tumours
(Po10� 8, Wilcoxon’s rank-sum test used for all tests) and
increased TGIF1 TF activity and inferred p53 protein activity
serous-like tumours (Po10� 14 for both tests; Fig. 3e).

Importantly, clustering by TF activities revealed subclasses of
tumours within each histological subtype that sometimes
correlated with mutation status. In particular, endometrioid
tumours with a CTNNB1 mutation form a distinct cluster based
on inferred TF activity profiles that was not observed by
clustering TF mRNA expression levels directly (Supplementary
Fig. 16). Moreover, clustering based on inferred TF activity was
better able to stratify patients by CTNNB1 mutation status
(Po10� 17, two-sided w2 test for all tests) compared to reported
TCGA mRNA clusters (Po0.01) and TCGA integrated clusters
(Po10� 6) (Supplementary Tables 9 and 10). Significant inferred
TF activity differences between CTNNB1 mutant and
WT patients (satisfying FDR-corrected Po0.01, t-test) associated
CTNNB1 mutant status with altered activity of TFs involved in
WNT signalling, epithelial–mesenchymal transition and cancer
stem cell transition including TCF4 (transcriptional factor 4),
NFATC4, JUN, TP53, MAX, MYC, STAT3 and KLF12 (Fig. 3f).
We confirmed these results in an independent data set of
203 endometrial RPPA profiles along with mutation and clinical
data compiled by MDACC25, using the UCEC TCGA-trained
AR model to infer TF activities, and replicated many of the
TFs associated with mutant CTNBB1 (Po10� 5, Mann–Whitney

test; Fig. 3f and Supplementary Table 11). Interestingly, another
study performed customized consensus clustering on TCGA
UCEC expression data and did identify a cluster enriched with
b-catenin mutations, and GSEA (gene set enrichment analysis)
suggested an association with WNT signalling, consistent with
our analysis34.

Modelling reveals impact of mutations in kidney cancer.
Encouraged by our findings for mutant CTNBB1 endometrioid
tumours, we developed a systematic statistical approach
for modelling the impact of somatic alterations on regulator
activity in each tumour type, with the eventual goal of
deciphering cancer-specific downstream effects of targeted
therapies and potentially discovering secondary targets for
combination drug strategies. First, we implemented a regularized
regression approach that uses somatic alterations to
explain inferred TF/(phospho)protein activity across tumour
samples on a regulator-by-regulator basis. For a complex geno-
type, the model explains TF/(phospho)protein regulator activity
across tumours as the sum of effects of individual somatic
alterations (that is, coefficients in the regression model), and the
effect size of each alteration is assigned a nominal P value
by a permutation approach (see Methods section). We then
corrected for multiple hypotheses across regulator models,
treating inferred TF activities and inferred (phospho)protein
activities as separate groups of tests (see Methods section).
Combining these results identified a set of regulators predicted to
be significantly dysregulated by each somatic alteration in each
TCGA cancer study.

Figure 4a,b shows the regulator activities associated with
somatic aberrations in KIRC. Our model identified mutations in
VHL (von Hippel-Lindau), PBMR1, BAP1, MTOR, ATM,
SETD2, KDM5C and PTEN (phosphatase and tensin homolog),
as well as copy number changes in MLH1, DUSP1 and
RANDBP17 as significantly associated with various TF activity
changes across tumours. KIRC is characterized by a high-
frequency inactivating mutation in the VHL gene found in
B54% of tumours in TCGA and likely more prevalent35.
Mutually exclusive mutations in PBRM1, a subunit of the PBAF
SWI/SNF chromatin remodelling complex, and in histone
deubiquitinase BAP1 define two genetic subtypes of KIRC,
while recurrent mutations in the histone methyltransferase
SETD2 also occur.

KIRC samples with PBMR1 and BAP1 mutations showed
distinct patterns of TF and protein activities (Fig. 4a), and
regression analysis associated different regulators with these
mutations (Fig. 4b). PBMR1 mutant tumours are associated with
increased activity of TFs/(phospho)proteins that have roles in
interleukin signalling and MYC, while regulators with increased
activity in BAP1 mutant tumours are involved in DNA damage
response, apoptosis, insulin signalling and mTOR signalling.

Notably, NFE2L2 TF activity was significantly higher in BAP1
mutant tumours than PBMR1 mutant tumours. Dysregulation of
the KEAP1-NFE2L2 pathway occurs through both genetic and
epigenetic mechanisms and induces prosurvival genes promoting
proliferation and chemoresistance36. Mutations in KEAP1,
NFE2L2 (Nrf2), CUL3 or RBX1 are the most common
mechanisms that impair KEAP1-mediated degradation of
NFE2L2 and thereby activate the transcriptional effects of
NFE2L2. Somatic aberrations in these genes have been
described in LUSC, LUAD and HNSC, and indeed we
confirmed this activating effect (Fig. 4c). Inferred TF activity of
NFE2L2 was increased in mutant versus WT KEAP1 or NFE2L2
lung cancers; these differences are not observed at the gene
expression level (Supplementary Fig. 17).
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We also assessed synergistic effects by building linear models
with interaction terms for each pair of somatic alterations
(see Methods section). In samples where VHL was comutated
with PBMR1, SMAD1 (interaction Po0.0003) and KLF12
(interaction Po0.05) activity were significantly decreased.
Meanwhile, when VHL was comutated with BAP1, HSF1 activity
was significantly decreased (interaction Po0.05), while TIGAR
protein activity was significantly increased (interaction Po0.05)
(Fig. 4d).

PI3K pathway mutations dysregulate cancer-specific TFs. The
PI3K pathway controls proliferation, metabolism, survival and
motility and is frequently activated in many cancers, often
via mutations in PIK3CA, which encodes the a-isoform of the
p110 catalytic subunit of PI3K (PI3Ka); loss of PTEN, which
antagonizes PI3K function; and overexpression of membrane-
bound receptor tyrosine kinase37,38. As PI3K inhibitors are

currently in early-phase or phase III trials for use across multiple
cancers14,39, we asked whether PI3K pathway alterations
dysregulate the same or differing TFs and (phospho)proteins
across tumour types. Figure 5a and Supplementary Fig. 18 show
the regulators associated with somatic aberrations in PTEN and
PIK3CA by our analysis in BRCA, HNSC, UCEC, KIRC, LUAD
and PRAD tumours (see Methods section).

Activating mutations in PIK3CA were present in B31% of
BRCA tumours and 20% of HNSC tumours5. Mutations
often occur in one of three hotspot locations (E545K, E542K
and H1047) and promote constitutive signalling though the
pathway. In UCEC, B66% of tumours have PTEN inactivating
mutations, B50% have PIK3CA activating mutations and
B35% have a comutation of PTEN and PIK3CA. Figure 5a
shows 134 TFs associated with somatic aberrations in PTEN or
PIK3CA in BRCA, HNSC or UCEC. Notably, the number of
TFs dysregulated by PI3K pathway alterations varied widely
across different cancers (9 in HNSC, 65 in BRCA and 63 in
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Figure 4 | Genomic aberrations are associated with dysregulated TF and (phospho)protein activity in the TCGA KIRC study. (a) We trained an affinity

regression model on 376 tumours from the TCGA KIRC study. The top panel shows inferred TF activity for each tumour associated with BAP1, PBMR1,

SETD2 and KDM5C mutations, ordered according to the mutation profile. The middle panel shows the corresponding (phospho)protein activity for each

tumour associated with BAP1, PBMR1, SETD2 and KDM5C mutations. The bottom panel shows genomic aberration profiles of each tumour as well as the

pathological stage as derived from the corresponding TCGA KIRC study. (b) Impact of genomic aberrations on individual TF/(phospho)protein activities

in TCGA KIRC, based on a regularized regression analysis. A permutation test approach was used to assign significance to ridge regression coefficients

(see Methods section). The heat map shows –log 10 FDR-adjusted P values derived by permutation test, multiplied by the sign of the coefficient. The top

panel shows inferred TF activity associations. The bottom panel shows inferred (phospho)protein activity coefficients. (c) Inferred NFE2L2 activity in TCGA

KIRC, LUAD, LUSC and HNSC studies and impact of mutations using integrative modelling. In the KIRC study, tumours with mutant BAP1 have significantly

higher NFE2L2 activity than mutant PBRM1 tumours (Po1.68� 10�8, Wilcoxon’s rank-sum test). Tumours with mutant KEAP1/NFE2L2 have also

significantly higher inferred TF activity of NFE2L2 (a substrate targeted by KEAP1) than WT tumours in the LUAD study (Po4.88� 10� 6, Wilcoxon’s rank-

sum test), LUSC study (Po3.42� 10� 6, Wilcoxon’s rank-sum test) and HNSC study (Po0.02, Wilcoxon’s rank-sum test). This association is not

significant using the original measured gene expression values of NFE2L2 (Supplementary Fig. 17). (d) Inferred SMAD1 and KLF12 activity is significantly

and synergistically decreased in tumours with both VHL and PBMR1 mutations (SMAD1: interaction, Po0.0003; KLF12: interaction, Po0.05). In tumours

with both VHL and BAP1 mutations, HSF1 activity is significantly decreased (interaction Po0.05) and TIGAR protein activity is significantly increased

(interaction Po0.05). Box edges represent the upper and lower quantile with median value shown as bold line in the middle of the box. Whiskers represent

1.5 times the quantile of the data.
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UCEC), with striking changes in ErbB/MAPK, mTOR, HIF-1,
VEGF and PI3K-Akt pathways. Only ELK1, a TF downstream of
the MAPK/ERK pathway, is dysregulated by PIK3CA or PTEN
mutations in all three cancers. Four TF associations were
shared in BRCA and HNSC: ZEB1 (EMT activator), TCF4
(Wnt signalling), RREB1 (Ras signalling) and FOXM1
(cell proliferation, cell cycle progression, cell differentiation,
DNA damage repair, tissue homeostasis, angiogenesis and
apoptosis); 35 TFs were common to BRCA and UCEC; and just
IRF9 was shared between UCEC and HNSC. There were also
associations unique to each cancer type, including USF1 and
SMAD1 for BRCA, FOXF2 for HNSC, and NFE2L2 and NR3C1
for UCEC.

Interestingly, many TF activities were associated with mutant
PTEN irrespective of PIK3CA status in endometrial cancer
(Supplementary Fig. 19), consistent with a recent preclinical study40,
while PIK3CA mutations were only significantly associated with a
single TF, CREB1. Therefore, PTEN and PIK3CA appear to have
distinct consequences for PI3K activation in UCEC.

PI3K pathway inhibition is known to alter STAT5 (ref. 41),
FOXO, RUNX2 (ref. 42), ERG1 (ref. 43) and ETS1 (ref. 44)
activities, consistent with our results. We also examined protein
microarray-based AKT1 kinase assay and SILAC-based

phosphoproteomic data from isogenic knock-in breast cell lines
harbouring mutations of PIK3CA45 (see Methods section). Of 11
TFs represented in the phosphoproteomic data and associated
with mutant PIK3CA in BRCA, eight of them—ADD1, FOXO3,
HMGA1, HSF1, JUND, NF1, POU2F1, STAT3—showed protein
abundance change in isogenic cell line systems (see Methods
section and Supplementary Table 12). Moreover, of the six TFs
represented in the AKT1 kinase assay45 and associated with
mutant PIK3CA in BRCA, four of them—ETS1, ATF6, SOX9 and
TEAD1—were identified as AKT substrates (Supplementary
Table 13).

Predicted TFs for mutant PIK3CA validate experimentally.
Our analysis associated mutant PIK3CA with ELK1 and TCF4
activity in both breast and head and neck cancer, and with
FOXO1 activity in BRCA but not in head and neck cancer. We
validated these predictions in isogenic BRCA and head and neck
cancer cell lines by measuring promoter occupancy via chromatin
immunoprecipitation-quantitative PCR (ChIP-qPCR) and
expression change via quantitative reverse transcription-qPCR
(RT-qPCR) of canonical target genes of these TFs (Fig. 6 and
Methods section).
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Figure 5 | Somatic aberrations in the PI3K pathway dysregulate cancer-specific TFs. (a) Bar plots show 134 TFs associated with somatic aberrations in
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First, we used the parental MCF7 cell line carrying the PIK3CA
E545K mutation and an MCF7 PIK3CAWT cell line in which the
mutation was corrected using gene targeting46. Western blotting
confirmed that WT PIK3CA cells have very low PI3K pathway
activation compared to mutant parental cells, with strongly
reduced levels of phospho (p)-AKT and p-S6K (Fig. 6a and
Supplementary Fig. 20).

Quantitative RT-qPCR analysis of the well-described ELK1
target genes ACTR3, PSMB4 (ref. 47), WNK1, PAPLN, FOXP4
and DDX27 confirmed significant increases in mRNA levels in
the parental PIK3CA mutant cells compared to PIK3CAWT cells,
with the exception of PAPLN, where we observed a significant
decrease (Fig. 6b, top panel; Supplementary Fig. 21a). Moreover,
ChIP-qPCR experiments confirmed that ELK1 binding to all five
target gene promoters was significantly increased in the PIK3CA
mutant MCF7 compared to WT cells, showing that mutant

PIK3CA enhances ELK1 transcriptional activity in BRCA cells
(Fig. 6b, bottom panel).

Well-known TCF4 target genes such as WNT10B, APC,
FBXW11 and PPP2R5E were differentially regulated by the PIK3CA
E545K mutation in MCF7 cells (Fig. 6c, top panel and
Supplementary Fig. 21b), and ChIP-qPCR analysis confirmed
enhanced binding of TCF4 to their promoters in mutant PIK3CA
cells (Fig. 6c, bottom panel and Supplementary Fig. 20b). Similarly,
PCR with reverse transcription (RT–qPCR) analysis of FOXO1
target genes RUNX1, CDK1, CAMKK1 and TNFSF10 (ref. 48)
mRNA confirmed that their mRNA levels were differentially
regulated by the PIK3CA E545K mutation (Fig. 6d, top panel and
Supplementary Fig. 21c), and ChIP-qPCR analysis confirmed
increased binding of FOXO1 to their promoters in the wild-type
PIK3CA MCF7 cells relative to parental PIK3CA E545K cells
(Fig. 6d, bottom panel and Supplementary Fig. 21c).
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Figure 6 | Predicted transcriptional regulatory impacts of activating PIK3CA mutations validated experimentally. (a) Western blot analysis of pAKT

(S473), pS6K (T389) and actin in parental MCF7 cells that carry the PIK3CA E545K mutation and in ‘corrected’ WT PIK3CA cells. ELK1 activity in PI3Ka
mutant cells. (b) ACTR3 and PSMB4mRNA expression in parental PIK3CAmutant and PIK3CAWTcells. ChIP assays with control IgG or ELK1 antibodies for

ACTR3 and PSMB4 in parental PIK3CA mutant and PIK3CA WT MCF7 cells. The data are presented as fold-enrichment relative to the actin control gene

region. TCF4 activity in PI3Ka mutant cells (mean±s.d., n¼ 3 independent experiments). (c) WNT10B and APC mRNA expression in parental PIK3CA

mutant and PIK3CAWTcells. ChIP assays with control IgG or TCF4 antibodies for WNT10B and APC in parental PIK3CA mutant or PIK3CAWT MCF7 cells.

The data are presented as fold-enrichment relative to the actin control gene region (mean±s.d., n¼ 3 independent experiments). FOXO1 activity in PI3Ka
mutant cells. (d) RUNX1 and CDK1 mRNA expression in parental PIK3CA mutant and PIK3CAWT MCF7 cells. Parental and WT MCF7 cells were subjected

to ChIP assays with control IgG or FOXO1 antibodies. The data are presented as fold-enrichment relative to the actin control gene region (mean±s.d., n¼ 3

independent experiments). (e) Transfected vector control, WT PIK3CA or PIK3CA E545K Cal27 cells were subjected to western blots with haemagglutinin

(HA) and actin antibodies after 48 h of transfection. (f) ACTR3 and PSMB4 mRNA expression in control, PIK3CAWTand PIK3CA E545K cells. ChIP assays

with control IgG or ELK1 antibodies in control, WT and PIK3CA E545K cells (mean±s.d., n¼ 3 independent experiments). (g) WNT10B and APC mRNA

expression in control, PIK3CAWT- and PIK3CA E545K-transfected Cal27 cells. ChIP assays with control IgG or TCF4 antibodies in control-, PIK3CAWT- and

PIK3CA E545K-transfected Cal27 cells (bottom panel). (h) RUNX1 and TNSF10A mRNA expression in control, PIK3CAWT- and PIK3CA E545K-transfected

Cal27 cells. ChIP assays with control IgG or FOXO1 antibodies in control-, WT- and PIK3CA E545K-transfected Cal27 cells. For other TF targets see

Supplementary Fig. 21 and Supplementary Fig. 23.
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We also performed validation experiments in the head and
neck cancer cell line Cal27, which is WT for the PIK3CA gene.
Control, PIK3CA WT or PIK3CA E545K vectors were over-
expressed in Cal27, and ChIP-qPCR and RT-qPCR expression
experiments were performed to investigate the activity of
ELK1, TCF4 and FOXO1. Western blotting confirmed successful
expression of these vectors in the Cal27 cell line (Fig. 6e and
Supplementary Fig. 22).

Like in the MCF7 BRCA model, RT-qPCR analysis demon-
strated an increase in the mRNA levels of four known
ELK1 target genes, ACTR3, PSMB4, WNK1 and DDX27, in
Cal27 cells transfected with PIK3CA E545K compared to Cal27
cells transfected with WT PIK3CA and control cells (Fig. 6f, top
panel and Supplementary Fig. 23a). Increased occupancy of ELK1
at target promoters was confirmed by ChIP-qPCR assays only
when cells were transfected with the PIK3CA E545K vector
(Fig. 6f, bottom panel and Supplementary Fig. 23a). Thus, ELK1
transcriptional activity is enhanced by mutant PIK3CA in both
head and neck and BRCA models. RT-qPCR analysis
demonstrated an increase in the mRNA levels of four
TCF4 target genes in Cal27 cells with PIK3CA E545K compared
to WT Cal27 and control cells (Fig. 6g, top panel and
Supplementary Fig. 23b). Increased occupancy of TCF4 at the
promoters of these genes was confirmed by ChIP assays only
when cells were transfected with the PIK3CA E545K vector
(Fig. 6g, bottom panel and Supplementary Fig. 23b). Thus,
mutant PIK3CA enhances TCF4 transcriptional activity in head
and neck as well as BRCA models.

FOXO1 activity was not associated with mutant PIK3CA in our
HNSC model. Indeed, RT-qPCR analysis demonstrated no
significant change in the mRNA levels of the FOXO1 target
genes in PIK3CA E545K Cal27 cells compared to WT Cal27 cells
and control cells (Fig. 6h, top panel and Supplementary Fig. 23c).
Further, no change in occupancy of FOXO1 at the promoters of
TNFSF10 and RUNX1 was shown by ChIP assays when cells were
transfected with the PIK3CA E545K vector (Fig. 6h, bottom panel
and Supplementary Fig. 23c).

ELK1 is phosphorylated through activation of the MAPK/ERK
pathways and translocates to the nucleus, resulting in activation/
repression of downstream targets47,49–52 that are important in
cell proliferation, apoptosis, cell migration and invasion,
and inflammatory response53,54. Immunohistochemistry
in breast tumour specimens has shown that the levels of
p-ELK1 expression are significantly elevated in luminal and
Her-2-negative BRCA subtypes55, but how Elk1 is activated in
BRCA is not known. Our computational and experimental results
suggest that a potential mechanism for ELK1 activation is
through an activating PIK3CA mutation.

TCF4 interacts with b-catenin to mediate Wnt signalling and
has been implicated in colorectal tumorigenesis56,57. Our analyses
confirm that TCF4 activation may result from an activating
PIK3CA mutation. Recently, a small-molecule inhibitor of the
b-catenin/TCF4 interaction called LF3 has been shown to
diminish Wnt-dependent biologic characteristics of colon
cancer cells, inhibit their self-renewal capacity and induce their
differentiation58. Since we demonstrated altered transcriptional
activity of TCF4 downstream of mutant PIK3CA in breast and
head and neck cancer cells, targeting TCF4 might be new
therapeutic strategy in PIK3CA mutant patients.

FOXO TFs, including FOXO1, are implicated in the regulation
of stress resistance, metabolism, cell cycle, apoptosis and
DNA repair. It is well known that constitutive PI3K-AKT
pathway activation causes downregulation of FOXO tumour
suppressor functions in BRCA59. However, regulation of FOXO
target genes is multifactorial, and based on our findings, context-
dependent. Specifically, we showed that an activating PIK3CA

mutation altered FOXO1 activity in the BRCA model but not in
the head and neck cancer model, consistent with the context-
specific predictions of our algorithm. This shows one example of
how a clinically relevant ‘actionable mutation’ impacts regulatory
programs in a cancer-specific manner, giving clues about
druggability across tumour types.

Discussion
Many targetable alterations are present across multiple tumour
types. For example, activating mutations and amplifications of
PIK3CA are targetable by PI3K inhibitors, which are in active
clinical assessment in combination therapies with RTK inhibitors
and antioestrogen therapies in BRCA, antiandrogen therapy in
PRAD and MEK inhibitors in many solid tumours60–65.
However, the cancer-specific context can impact how patients
respond to targeted therapies, since the targeted protein resides in
a network of interacting proteins and is subject to extensive
feedback and crosstalk between signalling pathways. In recent
clinical trials of targeted therapies (for example, Gleevec in
chronic myelogenous leukaemia, herceptin in BRCA, BRAF
inhibitors in melanoma), patients who share the targeted
mutation and tumour type displayed highly variable responses
to the drugs66. Therefore, a systematic stratification of tumours
that goes beyond therapeutically actionable alterations and
incorporates other functional readouts—for example,
dysregulated TF and (phospho)protein signatures derived from
our model—may better predict which patients will benefit from
targeted and combination therapies.

Using inferred TF/protein activities in tumours may also reveal
clinically relevant patient subgroups. Patients with endometrioid
carcinomas display heterogeneous clinical courses and response
to therapy, despite similar tumour histopathology. Clustering
UCEC tumours by TF activities revealed a subclass of
endometrioid tumours that correlated with b-catenin mutation
status and had poorer survival (Supplementary Fig. 24, Po0.001).
Linking mutant b-catenin to putative downstream TF effectors
could inform future mechanistic studies—for example, short
hairpin RNA or CRISPR/Cas screening to identify TFs whose
deletion/knockdown leads to changes in proliferation—to develop
new therapeutic strategies.

Previous algorithms to interpret the role of somatic alterations
have examined enrichment of mutations in known pathways3,4,6

or searched for alterations that represent mutual exclusive
patterns2, subnetworks10,67–69 or modules70. These approaches
examine co-occurrences of somatic alterations in a known
protein interaction network without explicitly modelling their
impact on transcriptional programs or signalling. Several recent
studies have integrated TF binding site or occupancy data to
identify cancer-associated TFs, for example, combining tumour-
specific DNA methylation changes in distal enhancers, mRNA
sequencing and cis-regulatory sequences mediating effects on
target genes71 or integrating ENCODE TF ChIP-seq profiles with
the pancancer TCGA expression data72. However, these
approaches do not model the relationship between perturbed
pathways (for example, from proteomic data) and TF activity, nor
do they consider the impact of somatic alterations on gene
regulatory models.

Overall, current methods cannot translate the mutational
landscape of a tumour into a usable model of affected pathways
nor use mutational status to predict accurately response to
targeted therapies. Our model is designed to capture the causal
flow of information from signalling to TFs to target genes; the
association analysis is likely to identify causal impacts of
mutations and copy number events, since somatic alterations
usually alter TF activity/signalling rather than vice versa
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(with exception of TFs/signalling pathways involved in
DNA repair). Our analysis revealed both known and putative
interactions of frequently altered genes with signalling
and transcriptional programs in a pancancer context and
provides a general strategy for future studies. In cases where
a mutation is associated with the altered activity of a targetable
TF or (phospho)protein, our analysis may suggest combination
therapies.

The method we have presented has several limitations. First,
our analysis uses predicted TF binding sites based on existing
TF motif databases and restricted to promoter sequences;
therefore, the TF motif hit matrix is noisy, incomplete and not
context-specific. Indeed, due to the strong correlation structure
between RPPA and mRNA expression data, AR models trained
with the true motif hit matrix achieve only a modest—albeit
significant—improvement in prediction performance over models
trained on randomized motif data (Supplementary Table 1).
Additionally, since many inferred TF and (phospho)protein
activities are correlated, individual genomic aberrations may be
associated with many regulators. This multiplicity of inferred
effects may be biologically reasonable but complicates interpreta-
tion. Another methodological challenge is the need to control for
the complex background of genomic aberrations. To do this,
we used regularized regression with permutation testing to
identify a smaller set of somatic alterations with confident
associations. Still, the problem of selecting a few significant
covariates from a long candidate list given limited sample size is
inherently difficult with no fail-safe solution.

Despite these limitations, we have presented a principled
integrative strategy for predicting the context-specific impact of
somatic alterations on transcriptional programs and signalling
pathways. Moreover, our predictions generalize to independent
patient cohorts and validate experimentally in isogenic cancer cell
line models. We anticipate that such integrative statistical
modelling strategies will be crucial for personalizing cancer
therapies.

Methods
Data and preprocessing. We downloaded RPPA protein expression data
from TCPA (http://bioinformatics.mdanderson.org/main/TCPA:Overview). RPPA
protein expression data for the UCS study, RNA-seq gene expression data, somatic
mutation data and clinical data were downloaded from TCGA’s Firehose data run
(https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata).
GISTIC copy number data was downloaded from TCGA’s Firehose analyses run
(https://confluence.broadinstitute.org/display/GDAC/Dashboard-Analyses). Only
the samples ‘whitelisted’ by TCGA for the Pan-Cancer Analysis Working Group
were used in the study. For our analysis, we restricted to samples with parallel
RNA-seq, RPPA, somatic mutation and GISTIC copy number data (Supplementary
Table 14).

Silent mutations were filtered from somatic mutation data. We removed
genes that were not identified as significant (qo0.05) by the MutSigCV73 as
well as not present at least ten samples in each cancer type. To determine
copy number alteration events, we used the set of discrete copy number calls
provided by GISTIC2 (ref. 74). We considered genes to be altered only in
samples where they resided either in regions of homozygous loss (� 2) or
high-level amplification (2) among the set of recurrent copy number alterations.
We removed genes that were not identified as significant (qo0.001) by the
GISTIC2 (ref. 74) as well as not present at least ten samples in each cancer
type. Then, we encoded somatic aberrations as being present/absent. The
final selected set of binary calls for genomic alterations provided a simplified
but informative description of the somatic alterations observed in individual
tumours.

Log 10-transformed RNA-seq RSEM gene expression values for each of the
12 cancer types were processed independently to identify the set of 5,000 genes that
varied most across samples. Gene expression and protein expression vectors were
both mean-centred.

To construct the motif hit matrix, we downloaded the TF binding site
predictions (TRANSFAC v.7.4) for all target genes from MSigDB34. We removed
motifs with similar sets of targets to reduce redundancy. This matrix defined
a candidate set of regulatory relationships between TFs and target genes. Further,
for each of the 12 cancer types, we filtered TFs that were not expressed in at least
40% of samples (Supplementary Data 1).

We obtained SILAC-based quantitative phosphoproteomic data set of
a spontaneously immortalized non-tumorigenic breast epithelial cell line MCF10A
along with two isogenic derivatives generated by knock-in of mutant alleles—one
bearing the E545K mutation and the other bearing the H1047R mutation of
the PIK3CA gene—from the originally published Supplementary Data45. We
used a 1.5-fold cutoff value to designate peptides as having increased
phosphorylation and a 0.67-fold for decreased phosphorylation (same thresholds as
original publication)45. We also obtained human protein microarray-based
AKT1 kinase assays from the originally published Supplementary Data45.

We obtained RPPA data for uterine corpus endometrioid carcinoma25,75 and
head and neck cancer patients28 from the original publications.

Training the AR models. AR is an algorithm for efficiently solving a regularized
bilinear regression problem15,16, defined here as follows. For a data set of
M tumour samples profiled using RNA-seq with N genes, we let Y2RNxM be the
mean-centred log 10 gene expression profiles of tumour samples. Each column
of Y corresponds to an RNA-seq experiment. We define each gene’s TF attributes
in a matrix D 2 RNxQ, where each row represents a gene and each column
represent the hit vector for a TF, that is, the bit vector indicating whether there is
binding site for the TF in the promoter region of each gene. We define the RPPA
attributes of tumour samples as a matrix P 2 RMxS where each row represents a
tumour sample and each column represents the (mean-centred) log RPPA protein
expression profile for the tumour sample. We set up a bilinear regression problem
to learn the weight matrix W 2 RQxS on paired of TF signalling protein features:

DWPT þ e ¼ Y ð1Þ

We can transform the system to an equivalent system of equations by
reformulating the matrix products as Kronecker products

DWPT , ðP � DÞ vec Wð Þ ð2Þ

where
N

is a Kronecker product and vec(.) is a vectorizing operator that stacks
a matrix and produces a vector, yielding a standard (if large-scale) regression
problem. Full details and a derivation of the reduced optimization problem are
provided elsewhere16. We fit the ridge regression model using the SLEP MATLAB
package and evaluate performance with 10-fold cross-validation.

Given the (phospho)protein profile of a test tumour sample (centred relative to
the mean of the training set), we can right multiply the (phospho)protein expression
vector through the trained model to predict the similarity of its expression profile to
those of the training tumour samples. To recover a reconstruction of the test gene
expression profile from the predicted similarities, we assume that the test expression
profile is in the linear span of the training profiles. Then, a simple transformation
converts the vector of computed similarities into a predicted gene expression
variation profiles16. Finally, to infer the (phospho)protein activity in a new sample
from the (centred) gene expression profile, we can left multiply through the model
via YTDW and to infer the TF activities in each sample, we can right-multiply
the protein expression profiles through the model by WPT.

Significance analysis for TF and (phospho)protein activities. To assess the
statistical significance of the inferred (phospho)protein and TF activities obtained
from the model via the YTDW and WPT mappings, respectively, we developed an
empirical null model as follows. First, we generated random permutations of the
gene expression profiles Y for each tumour type. For each permuted Y response
matrix, we trained an AR model using true D and P input matrices and computed
the corresponding inferred TF and (phospho)protein activities via the YTDW and
WPT mappings. Using this permutation and model fitting procedure 5000 times,
we generated an empirical null model for TF and (phospho)protein activity
distribution for each sample. To identify significant regulator activities (R), we
assessed the nominal P value for each sample relative to the empirical null model
for the particular regulator (TF/(phospho)protein), and we corrected for multiple
hypothesis testing of non-independent hypotheses using the Benjamini–Hochberg–
Yekutieli procedure. Then, we reported the significant regulators using an FDR of
0.1 for the largest TCGA studies (BRCA, KIRC; 4300 samples), an FDR of 0.15 for
mid-size studies (BLCA, COADREAD, HNSC, LUAD, LUSC, UCEC, OV, PRAD;
sample size o300 and 4100), and an FDR of 0.25 for small studies (GBM, UCS;
o100 samples) as our thresholds for significance. Then, we calculated, for each
TF/signalling regulator, the frequency over samples where the regulator passed
its significant threshold for a given cancer. We used this approach to identify
significant regulators in each cancer type to identify the shared and cancer-specific
roles TF/(phospho)protein regulators.

Model impact of genomic aberrations in terms of TF/(phospho)protein activity.
We used ridge regression to predict each TF/(phospho)protein regulator’s activity
(R) from genomic aberration profiles and used a permutation test approach to
assign significance to ridge regression coefficients. Somatic alterations were simply
encoded as present/absent. In the permutation test, the elements of the outcome
vector of regulator activities R were randomly permuted across samples, and the
ridge regression model was fitted using the permuted observations to obtain ridge
regression coefficients. By performing 10,000 such permutations, a null distribution
of the regression coefficients was generated. The permutation test P value was
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calculated as the proportion of regression coefficients from the null distribution
greater than or equal in absolute value to the absolute value of the coefficient fitted
to the true (non-permuted) data. Further we corrected for multiple hypothesis
testing of non-independent hypotheses using the Benjamini–Hochberg–Yekutieli
procedure across all TF/signalling regulators for each cancer, and we multiplied
these FDR-adjusted P values with the sign of the coefficient from the model to
calculate a final regulatory–genomic aberration association score. For downstream
analysis, we restricted our analysis to regulators identified as significant in at least
1% of samples in each cancer and genomic aberrations with FDR-corrected
Po0.15 across regulators from the ridge regression analysis with permutation test.

We also assessed synergistic/antagonistic effects of pairs of genomic aberrations
on TF/protein activity by building linear models with interaction terms for each
pair of genomic aberrations. We restricted our analysis to pairs of genes that were
altered in at least in 20 tumour samples as well as comutated in at least 10 tumour
samples. Here the activity of each TF/(phospho)protein regulator (R) was a
modelled function of somatic aberration pairs A and B:

Rijk ¼ mþAi þBj þ ABð Þij þ ek ð3Þ

where Ai and Bj represent the main effects of the ith and jth values of A and B,
respectively, (AB)ij is the effect of the interaction in that combination, and ek is the
error term of the kth observation in that combination. Here the genomic
aberrations are binarized (present/absent), so the values are 1 and 0.

We first looked for regulator models for which the coefficient of the interaction
term was significant (Po0.05). If the interaction term was significant, and if its
coefficient was greater than zero and greater than the coefficients of the genomic
aberration pair, we assumed this pair of somatic aberrations had a synergistic effect
on regulator activity. If the interaction term was significant and its coefficient was
less than zero and less than the coefficients of the genomic aberration pair, we
assumed this pair of somatic aberrations had an antagonistic effect on regulator
activity.

Survival analyses. We built Cox proportional hazard regression models for
regulators that attained significance by our empirical P value procedure in at least
5% of samples using (1) their inferred TF activity profiles and (2) their gene
expression profiles corresponding to TFs. We used clinical stage as a background
factor for BLCA and KIRC and histological subtype as a background factor for
UCEC. Overall survival was calculated from the date of initial diagnosis of cancer-
to disease-specific death (patients whose vital status is termed dead) and months to
last follow-up (for patients who are alive). Further, we evaluated prognostic
accuracy of survival models using a log-rank test. We corrected for multiple
hypothesis testing of non-independent hypotheses using the FDR procedure across
all models in each cancer type. FDR-corrected P values of models built from
inferred TF activities and actual TF mRNA expression profiles were compared
using one-sided paired Wilcoxon’s signed-rank test.

For the validation set, we used the TCGA-trained UCEC model to infer
TF activity profiles of MDACC (n¼ 178) and Bergen (n¼ 209) data sets75 from
their RPPA profiles. Since these data sets do not include serous endometrial
carcinoma samples, we build univariate Cox models with just TCGA endometrioid
endometrial carcinoma patients. We first identified TFs with univariate Cox
Po0.05 on the TCGA patients. Then, we predicted the risk for each patient in the
validation set and calculating concordance index. We reported the P value for the
statistical test if the concordance index estimate was different from 0.5.

For visualization, Kaplan–Meier survival analysis was used to show the
association of the inferred TF activity with patient survival. For each selected
TF and cancer-type combination, each patient’s risk was calculated, and patients
were ranked in descending order. We designated the top 40% of the patients as the
high-risk group and the bottom 40% as the low-risk group.

Statistical analysis. Statistical tests were performed with the R statistical
environment. For population comparisons of inferred TF and (phospho)protein
activities, we performed two-tailed Wilcoxon’s signed-rank tests and determined
the direction of shifts by comparing the mean of two populations.

Cell lines and transfection. The BRCA cell line, MCF7, which has a PIK3CA
E545K mutation, and the targeted correction of the E545K mutation to
WT PIK3CA were obtained from the Lauring Lab46. The head and neck cancer cell
line, Cal27, was obtained from the American Type Culture Collection. The cell
lines have been tested negative for mycoplasma contamination. Parental and
WT PIK3CA MCF7 and Cal27 were maintained in Dulbecco’s modified Eagle’s
medium (DMEM/DF12) supplemented with 5% foetal bovine serum and
100Uml� 1 penicillin and 100mgml� 1 streptomycin. Cal27 cell lines were
transfected with pbabe control vector, pbabe WT PIK3CA and pbabe E545K
PIK3CA vectors (Addgene) using Lipofectamine 3000 according to the
manufacturer’s instructions.

RNA extraction and quantitative real-time PCR. Total RNA was extracted
from MCF7 and Cal27 cell lines using an RNA Extraction Kit from Qiagen.
cDNA synthesis was performed using iScript from Bio-Rad, according to the

manufacturer’s instructions. The Applied Biosystems SYBR green mix
(Life Technologies) was used to amplify specific genes listed in Supplementary
Table 15.

Primers used for mRNA expression were: ACTR3, 50-CATTCCTG
TGGCTGAAGGGT-30 and 50-ATCGCTGCATGTGGTGTGTA-30 ; FOXP4,
50-GACCCTGTGTGAAGACCTGG-30 and 50-GTCAGGGGTTTCCAGGATG
G-30 ; DDX27, 50-TTGGGGAAGGACATCTGTGC-30 and 50-CGGATCCGGA
TGAACTCCTG-30 PAPLN, 50-AGGTCATCTGTGCCATTGGG-30 and
50-TGTAGAAGCCACTGCCCTTG-30 ; PSMB4, 50-GACATGCTGGGATCCTA
CGG-30 and 50-CTTTTTCGGTGACAGTGGCG-30 ; WNK1, 50-CTTTTT
CGGTGACAGTGGCG-30 and 50-CTTGGCTGTTCACTGTTGCC-30 ; CDK1,
50-ACAGGTCAAGTGGTAGCCATG-30 and 50-GGAGTGCCCAAAGCTC
TGAA-30 ; CAMKK1, 50-CAGGAAGCTATCTGGAGGCG-30 and 50-AAGTA
CTCGAGGCCCAGGAT-30 ; TNFSF10, 5-CCTCAGAGAGTAGCAGCTCACA-30

and 50-CAGAGCCTTTTCATTCTTGGA-30 ; ACTB, 50-CGTCTTCCCCTCCAT
CGT-30 and 50-GAAGGTGTGGTGCCAGATTT-30; APC, 50-CATTTCCAAGA
AGAGGGTTTGT-30 and 50-GATCAGCAAGAAGCAATGACC-30 ; FBXW11,
50-GGCTGCCGTCAATGTAGTAGA-30 and 50-GTGCTCGTGCTCCAG
ACTT-30 ; PPP2R5E, 50-GTGTGTATCTAGCCCCCATTTT-30 and 50-AAACTCA
TGATGTATTCATTATTCCAA-30 ; WNT10B, 50-ATGCGAATCCACAAC
AACAG-30 and 50-TCCAGCATGTCTTGAACTGG-30 .

Chromatin immunoprecipitation. MCF7 and Cal27 cell lines were crosslinked
with 1% formaldehyde for 10min at room temperature and quenched with
125mM glycine for 5min at room temperature. Cell were lysed and sheared
to obtain chromatin fragments of 200–500 bp. Sheared chromatin was
incubated overnight with 2 mg of rabbit monoclonal ChIP grade antibody to
ELK1 (E277, ab32106; Abcam) as has been previously used by Zhang et al.76

2 mg of a goat polyclonal antibody to TCF4 (N-20, sc-8631; Santa Cruz) as has
been previously used by Ding et al.77 and 2 mg of rabbit polyclonal FOXO1
(H-108, sc-11350; Santa Cruz) as has been previously used by Xiong et al.78

Protein G magnetic beads were used to capture antibody–chromatin association
overnight, followed by sequential washes. The antibody bound beads were then
reverse crosslinked for 6 h at 65 �C, followed by proteinase K treatment at 55 �C for
1 h. The ChIP DNA was purified using a DNA Purification Kit from Qiagen. The
Applied Biosystems SYBR green mix was used to amplify specific regions
(Supplementary Table 16).

Western blot analysis. Cells were lysed and proteins were extracted in RIPA
buffer that was supplemented with phosphatase and protease inhibitors. Proteins
were separated by SDS–polyacrylamide gel electrophoresis gels and transferred
to a PVDF (polyvinylidene difluoride) membrane. Membranes with blocked with
5% bovine serum albumin and probed using specific antibodies. Actin (1:2,000),
pAKT (S473) (1:1,000), pS6K (T389) (1:1,000), HA (1:1,000) were all from Cell
Signaling Technology (CST).

Data availability. RPPA protein expression data is available in a public repository
from TCPA (http://bioinformatics.mdanderson.org/main/TCPA:Overview). RPPA
protein expression data for the UCS study, RNA-seq gene expression data, somatic
mutation data and clinical data are available in a public repository from TCGA’s
Firehose data run (https://confluence.broadinstitute.org/display/GDAC/Dash-
board-Stddata). GISTIC copy number data is available in a public repository from
TCGA’s Firehose analyses run (https://confluence.broadinstitute.org/display/
GDAC/Dashboard-Analyses). Only the samples ‘whitelisted’ by TCGA for the
Pan-Cancer Analysis Working Group were used in the study. For our analysis, we
restricted to samples with parallel RNA-seq, RPPA, somatic mutation and GISTIC
copy number data (Supplementary Table 14 and Supplementary Data 1).

The authors declare that all data supporting the findings of this study are
available within the article and its Supplementary Information files or from the
corresponding author on reasonable request.
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