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Centrality in the host–pathogen interactome is
associated with pathogen fitness during infection
Núria Crua Asensio1, Elisabet Muñoz Giner1, Natalia Sánchez de Groot2,3 & Marc Torrent Burgas1,4

To perform their functions proteins must interact with each other, but how these interactions

influence bacterial infection remains elusive. Here we demonstrate that connectivity in the

host–pathogen interactome is directly related to pathogen fitness during infection. Using

Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen

fitness during infection but only when the host–pathogen interactome is considered. Our

results suggest that the importance of pathogen proteins during infection is directly related to

their number of interactions with the host. We also show that pathogen proteins causing an

extensive rewiring of the host interactome have a higher impact in pathogen fitness during

infection. Hence, we conclude that hubs in the host–pathogen interactome should be explored

as promising targets for antimicrobial drug design.

DOI: 10.1038/ncomms14092 OPEN

1 Systems Biology of Infection Lab, Department of Microbiology, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona,
Spain. 2 Gene Function and Evolution Lab, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain. 3 Universitat Pompeu Fabra (UPF),
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P
athogens tend to interact with hubs and bottlenecks, that
is, those with high degree and centrality in the human
protein-protein interaction (PPI) network1,2. In this

scenario, bacteria may have adapted to attack proteins involved
in specific pathways, most importantly in immunity and defence
mechanisms3,4. However, whether protein–protein interactions
with the host are correlated to pathogen fitness during infection is
currently unknown.

Highly connected nodes in the protein network of an organism
(hubs) tend to be essential, which is a property known
as the centrality-lethality rule5,6. This rule holds for many
organisms, both prokaryotes and eukaryotes5,7,8. However, the
extension of this rule to infectious organisms such as bacteria
is not straightforward. Infectious bacteria, in contrast to well-
studied unicellular eukaryotes (for example, Saccharomyces
cerevisiae) or higher multicellular organisms (for example,
Drosophila melanogaster), require a host to grow and reproduce
in their natural environment. Thus, the host imposes the
definition of essentiality in pathogenic bacteria, and the fitness
of a bacterium is directly related to a successful interaction
with the host. In this paper, we aim to answer whether protein
connectivity in the host–pathogen interactome is related
to pathogen fitness during infection.

Results
Hubs in the interactome are central for pathogen fitness. We
examined both the bacteria and host–bacteria interactomes
of Yersinia pestis (see Methods and Supplementary Methods
sections for a complete description). For each protein, we
correlated the network topological information with pathogen
fitness data (that is, the cost of deleting a protein for the pathogen
to grow) measured either in rich media (in vitro) or after host
infection (in vivo)9. First, we analysed how the degree
of connection in the pathogen interactome (without the
presence of the host) correlates with its fitness both in vitro
and in vivo. We determined that Y. pestis follows the centrality-
lethality rule in vitro (r2¼ 0.85, P¼ 0.0030, Fig. 1a), as observed
in other prokaryotes7, but not in vivo (r2¼ 0.38, P¼ 0.19, Fig. 1a).
These data lead to the intriguing conclusion that the network
structure of the bacterial proteome is unrelated to its infection
capacity. On the contrary, we observed a significant positive trend
between the node degree in the Homo sapiens–Y. pestis
interactome and pathogen fitness in vivo (r2¼ 0.81, P¼ 0.0060,
Fig. 1b) but not in vitro (r2¼ 0.38, P¼ 0.19, Fig. 1b). In summary,
our results suggest that highly connected nodes in the host–
pathogen interactome are more important for infection than less-
connected nodes. Most interestingly, we also found similar
correlations in other bacterial pathogens (Salmonella enterica and
Acinetobacter baumanii; Supplementary Fig. 1) suggesting
that our observations are robust and can be generalized to
other bacterial pathogens. Hence, we conclude that the centrality-
lethality rule holds for pathogen fitness during infection only
when the host–pathogen interactome is considered.

Connectivity explains in vivo and in vitro fitness changes.
When we plotted the fitness effect of deleting a certain protein
in vitro against its effect in vivo, we observed a negative
correlation (Fig. 2a) meaning that deletions resulting in severe
growth reduction in vivo have only mild effects in vitro and vice
versa (for example, the pesticin receptor fyuA or the phospho-
carrier protein ptsO are required for survival in the host
but dispensable in culture).

Although a large fraction of proteins do not influence pathogen
fitness (B60%; grey data points displayed in Fig. 2a) we
could define two groups that have a high impact either in vitro

or in vivo when deleted (orange and red data points in Fig. 2a,
respectively). Based on our previous observations, we reasoned
that this behaviour could be related to their centrality in
the interactome. To test this hypothesis, we measured the degree
of proteins belonging to these three groups both in the pathogen
and host–pathogen interactomes. We found that proteins with a
higher effect in vitro have a larger number of contacts in
the pathogen interactome than the other two groups (left panel,
Fig. 2b). Conversely, genes with higher effect in vivo showed
a larger number of contacts in the host-pathogen interactome
(right panel, Fig. 2b).

Intriguingly, we could not find any particular biological
function associated to any of these groups, suggesting that
these proteins are not specifically related to macromolecular
complexes or defined signalling pathways. Hence, we reasoned
that the critical impact of these proteins in pathogen survival
might be related to the functions of their interacting partners.
First, we examined the host proteins that interact with pathogen
proteins relevant for infection (red data points). We found
a significant enrichment in functions related to the immune
response, transcription regulation and vesicle transport (Fig. 2c).
These functions are highly relevant for the pathogenesis of
Y. pestis because allow the pathogen to survive inside macro-
phages during the early stages of infection10 and contribute
to pathogen survival11. In the case of interactions relevant
for pathogen growth in culture (orange data points), we found
a wider collection of functions, most of them related to
cell metabolism and DNA homeostasis (Fig. 2d), which are
indeed fundamental in conditions of maximal microbial
proliferation.

Based on the results presented here, it is tempting
to hypothesize that the nature of pathogen–pathogen and host–
pathogen interactions is fundamentally different, even orthogo-
nal. In this context, pathogens might have evolved a subset of
the proteome to make specific interactions with the host,
restricting their number of interactions within the pathogen.
These proteins, though fundamental for host infection, would
become more isolated from the pathogen network, explaining
why they are mostly dispensable in a non-host environment.

Pathogens target but not disrupt host networks. As mentioned
before, pathogen proteins bind to specific targets in the host
that are involved in defined biological functions (A summary of
all significant biological functions found for Y. pestis can be found
in Supplementary Fig. 2). To analyse how the networks associated
to these functions are affected during infection we simulated
a network attack based on pathogen-directed interactions
and compared the results with random and centrality-based
attacks. To illustrate the strategy used we present the endocytosis
function as an exemplar in Fig. 3a. We found that a pathogen-
directed attack decreases the global topological efficiency of
the network significantly more than a random attack but much
less than a centrality-directed approach (Fig. 3b). These results
indicate that, though pathogens tend to interact with hubs in
the host network to hijack it for their own profit1, they do
not completely disrupt its integrity, probably because it would
cause a catastrophic failure of the host cell metabolism that
would hinder bacteria survival and proliferation.

We also observed that certain host networks are more
disturbed than others after a pathogen-based attack (Supple-
mentary Fig. 2). We reasoned that this might have a relation
with the importance of a particular network for pathogen survival
and reproduction inside the host. To test this hypothesis,
we plotted the decrease in global topological efficiency after
a pathogen-based attack against the average fitness cost of
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deleting the pathogen proteins involved in the attack. The
significant correlation found (r2¼ 0.31, P¼ 0.032, Fig. 3c)
suggests not only that pathogens have evolved proteins to
target host networks that critically affect its fitness but also that
proteins that disrupt host networks are more essential for
infection.

Discussion
The availability of high-throughput technological advances
together with powerful analytical tools developed in the field
of Systems Biology allow to study the host and pathogen as a
whole system instead of isolated entities. In the present study,
we combined random yeast-two-hybrid screening and transpo-
son-sequencing data to interrogate full interactomes with the
aim to understand the relevance of protein–protein interactions
in infectious diseases.

Our results show that pathogen proteins that make a higher
number of interactions with the host also have a major impact in

the fitness of the organism during infection. In other words,
we provide evidence that pathogen proteins have an impact in
the outcome of infection that is proportional to its ability
to reorganize the host interactome.

As in all large-scale studies, we should be aware of some
limitations that are intrinsic to the methodologies used.
High-throughput analysis of interactomes by yeast-two-
hybrid screening can generate: (i) false negatives (that is,
protein–protein interactions not detected due to limitations of
the screening method) and (ii) false positives (that is, interactions
detected in the screening that cannot be reproduced using
an independent method). Despite these limitations, we found that
a moderate degree of noise in the interactome does not invalidate
our observations (Supplementary Methods). Another important
caveat is whether these interactions actually occur during
infection. For two proteins to interact they must be present
in the same location at the same time. Unfortunately, the cellular
and subcellular location of all these protein pairs during infection

Degree (group median)

P
er

ce
nt

ag
e 

of
 e

ss
en

tia
l p

ro
te

in
s

Centrality-lethality plot using in vitro data
(n=688) 

Degree (group median)

Centrality-lethality plot using in vivo data
(n=171) 

P
er

ce
nt

ag
e 

of
 e

ss
en

tia
l p

ro
te

in
s

Degree (group median)P
er

ce
nt

ag
e 

of
 e

ss
en

tia
l p

ro
te

in
s

Centrality-lethality plot using in vivo data
(n=1,048)

r2=0.81±0.12
P=0.0060

F
re

qu
en

cy

0

100

200

300

1 2 3 4 5 6 7

Degree (group median)

P
er

ce
nt

ag
e 

of
 e

ss
en

tia
l p

ro
te

in
s

Centrality-lethality plot using in vitro data
(n=171)

Fr
eq

ue
nc

y

0

15

30

45

Degree (group median)

H
os

t-
pa

th
og

en
 in

te
ra

ct
om

e

Degree (group median)

P
at

ho
ge

n 
in

te
ra

ct
om

e

ki = aij

j

i

j1 j2

i

aij1
aij2

j1 j2

aij1
aij2

m

aij1
= aij2 

= 1

ki = aij

j

aij1
= aij2 

= 1

0 2 4 6 8
0.40

0.45

0.50

0.55

0.60

2 4 6 8 14 22 42

0

75

125

200

0 10 20 30 40 50
0.20

0.40

0.60

0.80

1.00

r2=0.85±0.15
P=0.0030

0 2 4 6 8
0.00

0.20

0.40

0.60

1 2 3 4 6 7

r2=0.38±0.25
P=0.19

0 5 10 15 20 25
0.35

0.40

0.45

0.50

0.55

0.60

a

b

Fr
eq

ue
nc

y
0

20

40

60

Degree (group median)

2 4 6 8 12 20

r2=0.38±0.24
P=0.19

Fr
eq

ue
nc

y

Figure 1 | Analysis of the centrality-lethality rule in Yersinia pestis. The percentage of essential proteins both in vivo (during infection) and in vitro

(growth in culture medium) was plotted against its degree in (a) the pathogen (green) and (b) the host–pathogen interactome (purple). The total number

of observations (n) is included in each graph (n¼ 1,048 for the Y. pestis interactome, n¼ 688 for the H. sapiens–Y. pestis interactome and n¼ 171 for proteins

with data available in both interactomes). The degree (k) of a node i is defined as the number of edges linked to i as displayed in the figure. To control

the effect size we grouped the data in bins according to degree to ensure a comparable number of observations in each bin. Histograms below each

graph indicate the number of observations included in each bin. P-values were calculated using the t-test and the confidence interval for r2 was estimated

by bootstrapping before binning the data as detailed in the Methods section.
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has not been systematically investigated. Hence, it will be
important in the future to identify when and where are these
pathogen proteins delivered to host cells. New advances in
the fields of genomics and proteomics, including dual-transcrip-
tome sequencing12 and crosslinking mass spectrometry13 will
provide more data in the near future that may help us to cope
with these limitations.

Finally, our observations have important implications in
drug design14–16. Antimicrobial development has focused on
essential proteins (mainly enzymes) required for the pathogen to
survive in culture (that is, in vitro). Although this approach has
been successful in the past, recent antimicrobial resistance
threatens our capacity to develop new drugs. Our results
suggest that strategic protein–protein interactions in the host–
pathogen interactome should be explored as putative drug targets
that may lay the foundation of a new class of antimicrobials.

Methods
Databases. Yersinia pestis was selected as a model organism because the
host–pathogen interactome was thoroughly described and fitness datasets were
available both in vivo and in vitro. When possible, studies were complemented with

data on Salmonella enterica17 and Acinetobacter baumanii18, two relevant human
pathogens.

The Y. pestis, S. enterica and A. baumanii interactomes were obtained from
the String database19; only experimentally validated interactions were included.
The H. sapiens-Y. pestis interactome was downloaded from IntAct20 as reported
in ref. 4 and contains 4,059 human–Y. pestis protein–protein interactions from a
random yeast-two-hybrid assay4 with a tenfold coverage of the coding capacity
of Y. pestis. All other host–pathogen interactomes (that is, for S. enterica and
A. baumanii) were obtained by homology search using the HPIDB database21.
Interactomes predicted by homology search may represent an incomplete version
of the host–pathogen interactome, particularly in the case of rapidly evolving
virulence factors22. Despite this fact, the number of observations was large enough
for validation purposes (Supplementary Fig. 1). Y. pestis fitness data measured in
rich media (in vitro) and after infection (in vivo) were obtained from ref. 9. Fitness
data was calculated from transposon-sequencing (Tn-seq) data defined as the ratio
of the rates of population expansion for the two genotypes9. In all, 1.5 million of
independent insertion mutants were screened with a coverage of B70% of the
Y. pestis genome. S. enterica (10,368 mutants screened by whole-genome tiling
microarrays) and A. baumanii (150,000 mutants screened by Tn-seq) fitness
data were obtained from ref. 17 and ref. 18, respectively. We considered that
proteins were essential for infection if their deletion promotes a pathogen fitness
decrease below the median.

Statistical analyses. Unless otherwise specified all P-values were calculated
using the t-test or Mann–Whitney U-test and considered significant when Po0.05
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Figure 2 | Analysis of fitness shifting during Y. pestis infection. (a) Representation of in vivo against in vitro fitness z-scores (calculated according to

z¼ x� mð Þ=s). Proteins that rank 2.5 times higher in vivo than in vitro are coloured red while those ranking 2.5 times lower are coloured orange. The

remaining proteins (that is, those whose rank does not change) are coloured grey. Spearman rank order correlation is shown. (b) Boxplots showing

the average node degree in the pathogen (left) and host–pathogen (right) interactome for the three aforementioned categories. P-values were

calculated using the Mann–Whitney U-test. Changing the threshold in the definition of orange, grey and red groups did not have a significant effect

(for 2othresholdo3 calculated P-values were always significant). GO molecular function enrichment is plotted for interactors in the red (c) and orange (d)

groups. For the red group, enrichment was calculated over the complete list of host interactors to avoid potential biases while for the orange group it was
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(see Figure Legends for further details). Bootstrapping analyses were conducted
in R using the boot package. In all cases, 10,000 resampling cycles with replacement
were obtained and 95% confidence intervals were calculated using the adjusted
bootstrap percentile interval method23.

Calculation of network parameters. All protein networks were analysed
with Cytoscape and statistical calculations were done in R. The strengths of
association between two variables was measured using Pearson’s correlation
unless otherwise indicated. The degree (k) of a node i is defined as the number
of edges linked to i (Fig. 1). Betweenness centrality (Cb) was computed as follows:

Cb ið Þ¼
X

s 6¼ i 6¼ t

sst ið Þ
sst

where s and t are nodes in the network different from i, sst denotes the number of

shortest paths from s to t, and sst (i) is the number of shortest paths from s to t that
i lies on. The network global topological efficiency was computed as the
average inverse shortest paths between all vertices in the network as
described in ref. 24.

Network attacks were simulated using the package igraph in R. We evaluated
three different attack strategies on host specific networks: (i) a random attack
where nodes are removed randomly; (ii) a centrality-based attack where nodes are
removed deterministically based on the betweenness centrality scores and
(iii) a pathogen-based attack where nodes are removed deterministically according
to their centrality in the host–pathogen interactome.

Function enrichment. The functional enrichment (GO biological function)
was calculated using David25. A functional enrichment was considered
significant when the adjusted P-valueo0.05 (Benjamini-Hochberg correction).
GO categories were grouped using REVIGO26 and plotted using Cytoscape.
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attack (black). P-values were calculated using the Mann–Whitney U-test. (c) GE decrease was plotted against the average fitness cost of deleting the

pathogen proteins involved in the attack.
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Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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