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Emergent Weyl excitations in systems of polar
particles
Sergey V. Syzranov1,2,3,4, Michael L. Wall2,3,w, Bihui Zhu1,2,3, Victor Gurarie1,2,3 & Ana Maria Rey1,2,3

Weyl fermions are massless chiral particles first predicted in 1929 and once thought to

describe neutrinos. Although never observed as elementary particles, quasiparticles with

Weyl dispersion have recently been experimentally discovered in solid-state systems causing

a furore in the research community. Systems with Weyl excitations can display a plethora of

fascinating phenomena and offer great potential for improved quantum technologies. Here,

we show that Weyl excitations generically exist in three-dimensional systems of dipolar

particles with weakly broken time-reversal symmetry (by for example a magnetic field). They

emerge as a result of dipolar-interaction-induced transfer of angular momentum between the

J¼0 and J¼ 1 internal particle levels. We also discuss momentum-resolved Ramsey spec-

troscopy methods for observing Weyl quasiparticles in cold alkaline-earth-atom systems. Our

results provide a pathway for a feasible experimental realization of Weyl quasiparticles and

related phenomena in clean and controllable atomic systems.
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R
ecent predictions1,2 and experimental observations3–5 of
Weyl semimetals in solid-state systems have instigated
intensive studies of their properties, such as non-local

electrodynamics and chiral anomaly6, topologically protected
Fermi arcs on the surfaces2,4,5, non-Anderson disorder-driven
transitions7–13 and unusual dependencies of transport properties
on doping and temperature14–16. In parallel, enormous research
efforts are now directed at finding Weyl excitations in new
systems. A promising platform for exploring Weyl physics is
tunable and fully controllable ultracold atomic gases17–22.
However, henceforth proposed cold-atom realizations of
Weyl quasiparticles have focussed mostly on non-interacting
systems, and all have required implementations of externally
imposed spin–orbit coupling through laser-assisted tunnelling
schemes17–21, other optical means23–25 or external rotating
fields22.

In this paper we demonstrate that excitations with Weyl
dispersion generically emerge in three-dimensional (3D) arrays of
dipolar particles in the presence of a weak magnetic field, as a
result of the dipole-interactions-induced transitions between
their internal angular momentum J¼ 0 and J¼ 1 states.
These excitations exhibit the same single-particle physics as
Weyl fermions26 but, similarly to other non-fermionic Weyl
excitations3, their many-particle properties are expected
to be different, opening alternative research directions, new
functionalities and applications beyond those accessible with
solid-state systems4,5.

We also show that, experimentally such excitations can be
observed, for instance, in trapped alkaline-earth atoms (AEAs) in
a 3D optical lattice with lattice spacings smaller than the
wavelength of the electronic J¼ 0 to J¼ 1 transition. The simple
and unique internal structure of these atoms has already lead to
record levels of precision and accuracy in atomic clocks27. Taking
advantage of the well developed spectroscopic tools to interrogate
and manipulate AEAs, we propose to probe the Weyl
quasiparticle dispersion and non-trivial chirality by means of
momentum-resolved Ramsey spectroscopy. Our proposal opens a
path for a feasible experimental realization of Weyl quasiparticles
in clean and controllable atomic systems. Moreover, it lays the
groundwork for the yet unexplored regime of topologically
protected sensing, owing to the topological robustness of Weyl
quasiparticles that could be used to push the stability and
accuracy of optical lattice AEA-based clocks.

Results
Phenomenological argument. We assume that the system has
long-lived excitations (quasiparticles) with (integer) angular
momentum J. Due to the translational invariance, the (quasi)-
momentum k is a good quantum number. In the long-wave limit
the effective quasiparticle Hamiltonian is insensitive to the details
of the potential of the periodic lattice that the particles may be
placed in. To preserve rotation and inversion symmetries in
the absence of magnetic field the Hamiltonian has to be an even
function of (k � Ĵ) and a function of |k| and Ĵ

2
. In the presence of a

sufficiently weak uniform magnetic field, x, that creates a per-
turbation �x � Ĵ independent of k in the limit k-0, the most
generic form of the quasiparticle Hamiltonian is given by

ĥ k; Jð Þ¼F kj j; k � Ĵ
� �2

; Ĵ
2

h i
�x � Ĵ; ð1Þ

where F is an arbitrary function of three arguments.
The small quasimomentum k can be measured from any high-

symmetry point in the Brillouin zone characterized by an
isotropic dispersion xk¼ x(|k|) of non-interacting particles in
the limit k-0.

For the particular case of J¼ 1, the Hamiltonian (1) has nodes
at momenta K||x, such that F(|K|, |K|2, 2)±o¼ F(|K|, 0, 2),
corresponding to two intersecting branches with angular-
momentum projections Jz¼ 0 and Jz¼ 1 or Jz¼ � 1 on the
direction of magnetic field. We note that such nodes always exist
for weak magnetic fields and Hamiltonians that are regular as a
function of k.

The excitation Hamiltonian near a node is obtained by
expanding the function F in small momentum p¼ k�K. For a
3D system, it has Weyl dispersion of the form (see ‘Methods’
section):

ĥeff pð Þ¼z pð Þþ v?ŝxpx þ v?ŝypy þ v j j ŝzpz ð2Þ
with Pauli matrices ŝi acting in the space of the respective two
angular-momentum projections.

Model. In what follows we confirm the above phenomenological
argument by microscopic calculations for a 3D system of dipolar
particles described by the Hamiltonian

Ĥ¼
X

i

Ĥ0 rið Þþ
1
2

X
i;j

Ĥdip d̂i; d̂j; ri� rj

� �
; ð3Þ

where d̂i is the dipole moment operator of the i-th particle, and

Ĥ0 rið Þ¼�
r̂2

i

2m
þU rið ÞþBJ Ĵ

2
i � Ĵi � B ð4Þ

is the single-particle Hamiltonian that includes the particle

kinetic energy � r̂
2
i

2m (hereinafter ‘ ¼ 1), the periodic potential
U(ri) of the lattice that the system may be placed in, the energy

BĴJ
2
i of internal levels with Ĵi being the angular momentum of the

i-th particle, and the interaction � Ĵi �B with magnetic field
(measured in units of the gyromagnetic ratio) that splits the J¼ 1
levels.

The most generic form of the dipole–dipole interaction, which
accounts for retardation effects, is given by ref. 28 (see also
‘Methods’ section)

Ĥdip d̂i; d̂j; r
� �

¼a rð Þ r̂ � d̂i

� �
r̂ � d̂j

� �
þ b rð Þd̂i � d̂j ð5Þ

where r̂¼r=r; a rð Þ¼ 3g0
4d2 ½y2 k0rð Þ� ij2 k0rð Þ� and b rð Þ¼ 3g0

4d2

P1
n¼0

� 1ð Þn yn k0rð Þ� ijn k0rð Þ½ �= k0rð Þ for ra0, with yn and jn being the
n-th-order spherical Bessel functions of the second and first kind
respectively and k0—the wavevector of the J¼ 0 to J¼ 1 transition.
The terms proportional to yn describe elastic interactions between
dipoles a distance r apart, while the terms with jn account for the

inelastic collective photon emission (radiation). g0¼
k3

0d2

3pE0
is the

natural linewidth of the transition and d is its dipole moment. If the
dipoles are much closer to one another than the wavelength of the
dipole transition, k0roo1, retardation effects can be ignored, and
one recovers the more familiar form of the dipolar interactions,
a(r)p� 3/r3, b(r)p1/r3, common for NMR solid-state systems29,
polar molecules30 and Rydberg atoms31,32.

We note that the above phenomenological derivation of the
dispersion of Weyl-type quasiparticles carries over straightfor-
wardly to other dimensions. For example, a 2D system of dipolar
particles with an in-plane magnetic field hosts 2D Dirac
excitations with the dispersion of monolayer graphene33. We
emphasize that such 2D excitations are distinct from the 2D
‘chiron’ excitations34 that exist in a perpendicular magnetic field
and resemble electrons in bilayer graphene.

Atoms in a deep lattice. While the above phenomenological
argument demonstrates the existence of Weyl quasiparticles in a
generic 3D system of dipolar particles in magnetic field, below we
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focus on the experimentally important case of particles pinned in
a deep unit-filled cubic lattice (Fig. 1a) with small lattice spacing
a; ak0oo1.

We assume that all particles are initially prepared in the
Ji¼ 0 state and that the energy BJ of internal levels significantly
exceeds the interaction strength (usually in dipolar gases30,35

Ĥdip

�� ��=BJt10� 6), leading to the conservation of the number of
sites excited to the J¼ 1 state to a good accuracy (cf. ‘Methods’
section).

If an excitation with the angular momentum J¼ 1 is created on
site i, the dipole–dipole interaction can transfer it to another site j,
possibly changing the projection of the angular momentum on
the direction of the magnetic field; |1sii-|1s0ij. The quasipar-
ticles in the system are thus hard-core bosons corresponding to
the angular-momentum degrees of freedom that hop from site to
site as described by the effective Hamiltonian (see ‘Methods’
section for a detailed derivation)

Ĥlat¼
X

i;j;s;s0
Mss0

ij b̂yisb̂js0 ¼
X
ss0k

Mss0
k b̂ys;kb̂s0;k; ð6Þ

Mss0
ij ¼ 1sh ji 00h j

�� ��Ĥdip d̂i; d̂j; ri� rj

� �
00j ii 1s0j ij

� sdss0dijB:
ð7Þ

Due to the translational invariance, the single-excitation Hamil-
tonian can be diagonalised in the basis of momentum states k,
with the results shown in Fig. 2a,c. In accordance with the above
general phenomenological argument, for Ba0 the dispersion has
Weyl nodes (six in the first Brillouin zone, Fig. 2a,c).

To demonstrate the chiral nature of Weyl quasiparticles we
show in Fig. 2d–f the pseudospins ŝh i (with the Pauli matrices ŝi
acting in the space of the Jz¼ � 1 and Jz¼ 0 angular-momentum
projections) for the eigenstates with momenta k in the horizontal
(pz¼ 0), tilted (pz¼ px) and vertical (px¼ 0) planes (Fig. 2a) that
contain a Weyl node. Excitations in these planes are equivalent to
quasiparticles in graphene, the 2D counterpart of a Weyl
semimetal, and are characterized by the non-trivial Berry phase
p. Figure 2d–f demonstrates that the pseudospins ŝ of these states
are linked to their momenta p, measured from the Weyl node, in
agreement with the effective Hamiltonian (2).

j

� = +1 � = 0 � = −1 � = +1 � = 0 � = −1

Ji

Jj Ji = 0

Ji = 1

Jj = 0

Jj = 1

ba

i

Figure 1 | Weyl quasiparticles in 3D dipolar arrays. (a) Schematics of the

3D lattice potential that traps an array of dipolar particles. The lattice is

deep enough to pin the particles, most of which are prepared in the J¼0

ground state (blue spheres). Only a few particles are excited to the J¼ 1

states. Dipolar interactions between the J¼0 and J¼ 1 states give raise to

Weyl excitations. (b) Schematics of dipole mediated interactions: an excited

J¼ 1 state of one particle can be transferred to another particle in the

J¼0 state by dipole–dipole interactions (virtual photon exchange is

shown with a yellow wiggly line). Three types of allowed processes

include |00ii|1sij2|1sii|00ij, |00ii|10ij2|1, ±1ii|00ij and |00ii|1,
±1ij2|1, �1ii|00ij.

Γ X

M

R

Weyl points

Γ X M R Γ Γ X M R

E
ne

rg
y

E
ne

rg
y

00

10 10

−5−5

E
ne

rg
y

−1.2

−0.75

0.8

1.2

0.8

1.2

B = 0 B ≠ 0Weyl points

E
ne

rg
y

k
y a

/�

0.8

0.8

kza /�
kya /�

kya /�

k d
a /�

k x
a /�

0.55

−1.8

0.0

1.2
0.0

1.0

k k

E
ne

rg
y

0.9

1.1

0.1

−0.1

−0.9

0.2

z

x
y

a b c

d e f

b –1,k b
–1,k

ˆ
ˆ

Figure 2 | Weyl quasi-particle dispersion and eigenstates. (a) Brillouin zone for the simple cubic lattice. (b) Dispersion along high-symmetry lines in the

absence of magnetic field (all energies are measured in units of (3/4)g0/(k0a)3). (c) Dispersion in the presence of magnetic field B¼ g0/(k0a)3

demonstrating the existence of Weyl nodes (red points) with linear quasiparticle dispersion near them. Each node is characterized by the monopole charge
±1. In agreement with the fermion doubling theorem44 (the Nielsen–Ninomiya no-go theorem), there is an even number (six) of Weyl points in the first

Brillouin zone. (d) Dispersion in the horizontal (kx� ky) plane (shown by blue colour in panel (a)) containing the Weyl node near the R point. Quasiparticles

in this plane are similar to quasiparticles in graphene and are characterized by a non-trivial Berry phase of p. The arrows show the pseudospin ŝh i (the Pauli

matrices ŝi act in the space of the angular-momentum projections Jz¼0 and Jz¼ � 1). (e) Dispersion along the (yellow in panel (a)) plane consisting of

vectors k¼ (pþ kd/
ffiffiffi
2
p

, pþ ky, 0.71pþ kd/
ffiffiffi
2
p

) containing the Weyl point. Colour shows the weight of the |1� 1i state in the quasiparticle eigenstate, and

arrows represent the pseudospin ŝh i. (f) Dispersion along the (green in panel (a)) vertical plane (ky� kz) containing the Weyl point near the R point. For

each momentum k the colour represents the weight of the |1� 1i state.
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Effects of quenched disorder and dissipation. In general,
quasiparticles in interacting systems have finite lifetimes due to
elastic and inelastic scattering processes. Indeed, deep optical
lattices under consideration are usually not completely filled by
particles and thus inherently disordered due to the randomness
of the particle disptribution. Also, spontaneous and dipolar
collective emission from the internal J¼ 1 levels to the ground
state can lead to the decay of the excitations.

To analyse the effects of dissipation in a unit-filled lattice we
compute numerically the quasiparticle dispersion for retarded
dipolar interactions, equation (5), with parameters of the J¼ 1 to
J¼ 0 transition of the electronic 3P0� 3D1 levels of bosonic
88,84Sr atoms trapped in a magic optical lattice with a¼ 206.4 nm
considered in ref. 35. The wavelength and the dipole moment for
this transition are 2.6 mm and d¼ 4.03D, leading to the linewidth
g0¼ 290� 103 s� 1 and the dissipation parameter ak0B0.5.
Albeit quasiparticle damping in this regime is rather strong, it
is significantly suppressed (by more than three orders of
magnitude) near the Weyl nodes, as our simulations show,
Fig. 3a,b. Our results indicate that the quasiparticle scattering in
such a system would be dominated by quenched disorder rather
than by collective radiative decay or spontaneous emission.

To account for the effects of disorder we evaluate numerically
the quasiparticle dispersion for a lattice filling of 93%. This filling
fraction could be achieved by preparing a cold bosonic Mott
insulator using moderate atom numbers that allow one to
suppress doubly occupied states at the trap centre. Mott
insulators have already been realised with bosonic AEAs in in
the ground 1S0 state36,37. These atoms can be excited to the
desired 3P0 state by laser pulses38.

As our simulations demonstrate, the characteristic energy
scales of Weyl excitations significantly exceed the elastic
scattering rate, demonstrating that the excitations could be
conveniently observed in current experiments.

Experimental observation. For probing the Weyl character of the
excitations we propose a Ramsey protocol illustrated in Fig. 4a.
After preparing a Mott insulator of particles in the J¼ 0 state, a
pulse of interfering Raman beams is used to create excitations in
the |1,� 1i angular-momentum state with translational
momentum k. Here we consider the case when k is set to be close
to the Weyl point with intersecting Jz¼ 0 and Jz¼ � 1 branches.
For the proposed 3P0� 3D1 electronic levels in Sr, two inter-
mediate states |ei, |e0i could be used to create the Raman pulses,

imparting a net momentum to the atoms proportional to
k¼ k1þ k2þ k3 (Fig. 4a). A possible excitation level scheme
consists on using 5s6s 3S1 and 5s6p 3P1 as the intermediate |ei and
|e0i levels respectively. After a waiting time t, another pulse is
applied to measure the fraction of particles in the Jz¼ 0 angular-
momentum state. Because of the interference of the two branches,
this fraction oscillates with the frequency E1

k � E2
k

� �
= 2pð Þ, where

the energy splitting E1
k �E2

k between the two branches is linear in
k and vanishes near the Weyl node.

Another signature of the Weyl node is the strong dependency
of the amplitude of such oscillations on momentum k near the
node, as the amplitude is determined by the projection of
the Bloch vector on k̂z (the magnetic field direction).

In Fig. 4c–f we show the fraction of particles in the Jz¼ 0 state
as a function of time at the end of the above described Ramsey
protocol, for the six different quasi-momenta in the kz� ky plane
near the Weyl point indicated in Fig. 4b. Figure 4c shows the
dynamics for an ideal unit filled lattice in the dissipationless limit
k0aoo1. Figure 4d shows the dynamics in the presence of
dissipation for the experimentally relevant scenario discussed
above. The population dynamics in disordered systems is shown
in Figs 4e and 4f for 99% and 93% filled lattices respectively.
Quasiparticles scattering on empty sites in a disordered system
leads to the decay of the oscillations.

Discussion
We demonstrated that Weyl quasiparticles generically emerge in
3D systems of polar particles in magnetic field. This opens
intriguing prospects of observing chiral anomaly, non-local
electrodynamics, non-Anderson disorder-driven transitions, and
other fascinating phenomena in the realm of fully controllable
atomic systems. We showed that observing Weyl excitations is
currently possible in arrays of AEA in 3D lattices, in particular,
using the 3P0� 3D1 levels of bosonic Sr atoms. Other experi-
mentally convenient schemes, that deserve further exploration,
include using metastable levels of Sr or Yb atoms that can be
trapped in magic lattices with spacings smaller than the
wavelength39 or arrays of polar molecules with the rotational
levels dressed to avoid the splitting of J¼ 1 levels in the presence
of hyperfine interactions30. The long lifetimes and the topological
character of Weyl excitations in interacting dipolar systems also
open new possibilities for implementing optical-lattice clocks
with sensing capabilities beyond those of non-interacting systems.
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Figure 3 | Effects of disorder and dissipation on Weyl quasiparticles. (a) Real part of the quasiparticle dispersion in the presence of dissipation (including

spontaneous emission and collective radiative decay). The parameters of the J¼ 12J¼0 transition correspond to those of the electronic 3P0� 3D1 levels

of bosonic 88,84Sr atoms, trapped in a magic optical lattice potential with a¼ 206.4 nm (ref. 35) at unit filling. Momentum k is measured in units p/a.

(b) The upper bound on the inelastic scattering rate estimated from simulating the full quasiparticle spectra including all allowed elastic and inelastic

dipolar processes. The dissipation is significantly suppressed near the Weyl node (blue line). In striking contrast, the dissipation is enhanced close to the

G point (red line) due to the enhanced collective emission (superradiance). (c) Disordered case: quasiparticle dispersion for a lattice with filling fraction

f¼0.93 in the limit of small dissipation k0aoo1 (the energy is measured in units g0/(k0a)3). The line thickness shows the inelastic scattering rate.
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Methods
Dispersion near Weyl nodes. In this work, we define the quasiparticle dispersion
as the poles of the retarded Green’s function averaged with respect to quenched
disorder.

While long-wave quasiparticles (k-0) are insensitive to the details of the lattice
potential, their effective Hamiltonian preserves rotation and inversion symmetries,
and in the absence of magnetic field– time-reversal symmetry, with the generic
form of the Hamiltonian given by equation (1) and with the vector x parallel to the
magnetic field.

We assume the existence of excitations with momentum J¼ 1 and focus on the
respective manifold of states in what follows. The dispersion of such excitations has
three branches for each momentum k.

For momenta k parallel to x the respective excitations have momentum
projections Jz¼ 0 and Jz¼±1 on the direction x. The branch with Jz¼ 0 intersects
the branch with Jz¼±1 at momenta K||o such that

F Kj j;K2; 2
� �

�o¼F Kj j; 0; 2ð Þ; ð8Þ

where we used that Ĵ2 ¼ J J þ 1ð Þ ¼ 2 for the states under consideration.
The quasiparticle dispersion near the nodes can be found by expanding the

Hamiltonian in small momenta p¼ k�K. Momentum deviation from a node
along the z axis leads to the splitting F[Kþ pz, (Kþ pz)2, 2]±o� F[Kþ pz, 0, 2]
between the intersecting branches. Using that

Kþ pð Þ � Ĵ
� 	2 � K2

2 þ K2

2 ŝz þKpz þKpz ŝz � Kffiffi
2
p pxŝx þ pyŝy
� �

, with ŝi being the
Pauli matrices in the space of momentum projections Jz¼ þ 1 (Jz¼ � 1) and

Jz¼ 0, we obtain the quasiparticle Hamiltonian (2) with

z pð Þ ¼ 1
2 F K þ pz ; K þ pzð Þ2; 2
� 	

� 1
2 F K;K2; 2½ �

þ 1
2 F K þ pz ; 0; 2ð Þ� 1

2 F K; 0; 2ð Þ; ð9Þ

v?¼ �
1ffiffiffi
2
p KF 2ð Þ K;K2; 2

� �
ð10Þ

v j j ¼ KF 2ð Þ K;K2; 2ð Þ
þ 1

2 F 1ð Þ K;K2; 2ð Þ� F 1ð Þ K; 0; 2ð Þ
� 	 ð11Þ

where the upper (lower) sign in equation (10) applies to the intersection of the
Jz¼ 0 branch with Jz¼ þ 1 (Jz¼ � 1), and F(1) and F(2) are the derivatives of the
function F with respect to the first and the second argument.

Generic Hamiltonian of retarded dipole–dipole interactions. The dynamics of
internal transitions J¼ 02J¼ 1 in a system of N particles is described by the
Hamiltonian

Ĥ¼
XN

j¼1

Dĉ
y
j � ĉj þ

X
ql

oqâ
y
q;lâq;l

þ d
XN

j¼1

E rj
� �
� ĉyj þ ĉj

� �
;

ð12Þ

where the operator ĉ
ay
j ¼ aj i 0h j excites the j-th atom from the ground state |0i to

one of the Cartesian states a¼ x, y, z of the J¼ 1 manifold with energy D; d is the
dipole moment of such a transition; âyq;l and âq;l are the creation and annihilation
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Figure 4 | Observation of Weyl quasiparticles. (a) Momentum-selective Ramsey spectroscopy: interfering Raman beams create an excitation with the

angular-momentum projection Jz¼ � 1 and with translational momentum k near the Weyl node (see text). After a waiting time t the second pulse is

applied to measure the fraction of particles in the Jz¼0 angular-momentum state. (b) Six quasimomenta near the Weyl node. (c) The fraction of particles

in the Jz¼0 state oscillates as a function of time t with the frequency (E1
k� E2

k )/(2p), where E1
k� E2

k is the energy splitting between the two branches of the

quasiparticle dispersion. (d) The oscillations in the presence of dissipation for k0a	0:5. (e) The oscillations in a 99% randomly filled lattice. (f) The

oscillations in a 93% filled lattice. For (c,d) a 3D cubic lattice of 100� 100� 100 sites was used and we took advantage of the translational symmetry. For

(e,f) a 3D cubic lattice of 10� 10� 10 was used.
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operators of a photon with momentum q, frequency o, and polarization l;
E rð Þ¼i

P
ql

ffiffiffiffiffiffiffi
oq

2E0V

q
êq;l â

y
q;le� iq�r � âq;leiq�r

� �
is the operator of electric field and V

is the volume of the system.
Eliminating the electromagnetic-field modes gives in the Born–Markov

approximation the master equation for for the density matrix of the particles28,40

_̂r¼� i Ĥ0 þ Ĥel; r̂
� 	

þD r̂ð Þ; ð13Þ

where Ĥ0¼
PN

j¼1 Dĉ
y
j � ĉj is the Hamiltonian of the internal states of the particles,

and the effective interaction Hamiltonian is given by

Ĥel
j;k¼

X
j 6¼ k

A rjk
� �

r̂jk � d̂j

� �
r̂jk � d̂k

� �
þB rjk
� �

d̂j � d̂k

� �
ð14Þ

with A rð Þ¼ 3g0
4d2 y2 k0rð Þ, B rð Þ¼ 3g0

4d2

P1
n¼0 � 1ð Þnyn k0rð Þ= k0rð Þ and yn being the

n-th-order spherical Bessel function of the second kind, k0 is the wavevector
of the J¼ 0 to J¼ 1 transition, d̂

y
j 
 dĉyj , rjk¼rj � rk; rjk¼ rjk

�� ��, and r̂jk¼rjk=rjk .
The operator D r̂ð Þ in equation (13) accounts for dissipation and is given by

D r̂ð Þ¼� i
X

j;k

Ĥdi
j;kr̂� r̂Ĥdi�

j;k

� �
þ�j;k

h i
ð15Þ

where Ĥdi
j;k ¼ A rjk

� �
ðr̂jk � d̂jÞðr̂jk � d̂kÞþB rjk

� �
d̂j � d̂k , A rð Þ¼� i 3g0

4d2 j2 k0rð Þ,
B rð Þ¼� i 3g0

4d2

P1
n¼0 � 1ð Þnjn k0rð Þ= k0rð Þ, with jn being the n-th-order spherical

Bessel function of the first kind, and �j;k / ĉj � T j;k � ĉyk is the so-called recycling
operator28 that does not affect the dynamics of a single excitation and is thus
omitted in the present paper. Combining the interaction Ĥel

j;k and dissipation Ĥdi
j;k

terms we obtain the effective (non-Hermitian) Hamiltonian (5) of the dipole–
dipole interactions.

Excitation dispersion in a deep lattice. As particles cannot move from site to site
in a deep optical lattice, the quasiparticles are represented by the angular-
momentum degrees of freedom that propagate through the system. Assuming there
is one particle per site and introducing bosonic operators d̂yis and d̂is for creating
and annihilating the particle state |1sii on site i with angular momentum J¼ 1 and
projection s and the operators âyi and âi for creating and annihilating the
momentum state J¼ 0 on site i, the system Hamiltonian can be rewritten as

Ĥ ¼
X

i;j;s;s0
1sh ji 00h jjĤdip d̂id̂j; rij

� �
00j ii 1s0j ij d̂

y
isd̂js0 â

y
j âi

þ
X

i;j;s;s0
1sh ji 1s

0
D ��

j
Ĥdip d̂id̂j; rij

� �
00j ii 00j ij d̂

y
isd̂y

js0
âjâi




þ 00h jih00 j j Ĥdip d̂id̂j; rij

� �
1sj ii 1s0j ijâ

y
j â
y
i d̂isd̂js0

i

�B
X

is

sd̂yisd̂isâiâ
y
i þBJ

X
is

d̂yisd̂is

þU
X

is

d̂
y
isd̂is d̂

y
isd̂is � 1

� �
þ â
y
i âi â

y
i âi� 1

� �h

þ d̂
y
isd̂isâ

y
i âi

i
:

ð16Þ

The first term in the Hamiltonian (16) is responsible for moving angular-
momentum excitations from site to site; the angular-momentum state |1sii can be
transferred by the dipole–dipole interactions from site i to another state |1s0ij on
site j that initially was in the J¼ 0 state. The terms in the second sum in
equation (16) change pairs of sites i and j from the J¼ 0 to J¼ 1 angular-
momentum states or vice versa. The term pB is the Zeeman energy. The term
pBJ accounts for the internal rotation (internal levels) of the particles. The terms
pU¼N in equation (16) enforce the hard-core constraints for the bosons created
by the operators d̂yis and âyi , taking into account that there is one particle on each
site.

In this paper we consider excitations on top of the ground state with all sites
(particles) in the J¼ 0 state. Exciting the internal degree of freedom of a particle on
a site costs the rotation energy BJ that significantly exceeds all the other energy
scales, except U¼N, including the matrix elements 	 Ĥdip

�� �� of hopping of such
angular-momentum degrees of freedom between sites (for instance, for dipolar
molecules and AEAs Ĥdip

�� ��=BJt10� 6). As a result, the number of sites excited to
the J¼ 1 states is conserved to a good approximation, and the second sum in
equation (16), that creates or annihilates pairs of J¼ 1 excitations, can be neglected
when considering the angular-momentum dynamics.

Therefore, the quasiparticles in the system are hard-core bosons that carry
angular-momentum (J¼ 1) degrees of freedom and hop from site to site as
described by the effective Hamiltonian (6) and (7) with b̂is¼d̂isâyi .

Details of disorder averaging. Realistic systems of particles pinned in deep
optical lattices are inherently disordered due to the randomness of the spatial
distribution of the particles. Each lattice site hosts either a particle with probability
f or a vacancy with probability 1� f.

For a small concentration of vacancies, excitations in the system are delocalized
and their dispersion is close to that in the disorder-free system but acquires a small
finite imaginary part ImEk due to the scattering on the vacancies.

To numerically obtain the quasiparticle spectra in such a disordered system we
diagonalize the Hamiltonian Ĥ¼Ĥ0 þ V̂ , where Ĥ0 is the excitation Hamiltonian
in the clean case and the operator V̂ models vacancies as sites with infinite
potential V(ri)¼N. We compute the retarded Green’s function

G r1s1; r2s2;Eð Þ¼
X
a

c�as1
r1ð Þcas2

r2ð Þ
E�Ea þ iZ

ð17Þ

for multiple disorder realizations, where ca and Ea are the eigenfunctions and
eigenenergies for a particular disorder realization, s1 and s2 label projections of the
angular momentum J¼ 1, and Z is a small positive number introduced to ensure
that the disorder-averaged Green’s function hG(r1s1, r2s2, E)idis is a smooth
function of its arguments for a given number of disorder realizations. At the same
time, Z has to be chosen sufficiently small to not affect the results for the
quasiparticle dispersion. The energy E has to be chosen close to the energies of the
quasiparticles of interest.

Disorder averaging restores translational invariance, yielding an averaged
Green’s function that depends only on the coordinate difference r2� r1.
Computing the Fourier transform of the function hG(r1s1, r2s2, E)idis with respect
to r2� r1 and diagonalising it in the angular-momentum space gives 1/(E� Ekn),
where n¼ 1, 2, 3 labels the dispersion branch for a given k, ReEkn is the
quasiparticle dispersion and � 2ImEkn is the scattering rate.

In this paper we perform averaging over 100 disorder realizations on a
10� 10� 10 cubic lattice with periodic boundary conditions for the filling fraction
f¼ 0.93, close to that in the recent experiments41–43. The results for the
quasiparticle dispersion and scattering rates are shown in Fig. 3c.

Data availability. The datasets generated in the current study are available from
the corresponding author on reasonable request.
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