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A room-temperature magnetic semiconductor from
a ferromagnetic metallic glass
Wenjian Liu1,*, Hongxia Zhang1,*, Jin-an Shi2, Zhongchang Wang3, Cheng Song1, Xiangrong Wang4,5, Siyuan Lu1,

Xiangjun Zhou1, Lin Gu2, Dmitri V. Louzguine-Luzgin3, Mingwei Chen3, Kefu Yao1 & Na Chen1

Emerging for future spintronic/electronic applications, magnetic semiconductors have

stimulated intense interest due to their promises for new functionalities and device concepts.

So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains

challenging to increase their Curie temperatures above room temperature, particularly those

based on III–V semiconductors. In contrast to the concept of doping magnetic elements into

conventional semiconductors to make diluted magnetic semiconductors, here we propose

to oxidize originally ferromagnetic metals/alloys to form new species of magnetic

semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a

Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The

demonstration of p–n heterojunctions and electric field control of the room-temperature

ferromagnetism in this material reflects its p-type semiconducting character, with a mobility

of 0.1 cm2 V� 1 s� 1. Our findings may pave a new way to realize high Curie temperature

magnetic semiconductors with unusual multifunctionalities.
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M
agnetic semiconductors (MSs) hold a very special
position in the field of spintronics because they allow
effective manipulation of both charge and spin. This

feature is important in devices combining logic functionalities
and information storage capabilities. The existing technology to
obtain diluted MSs (DMSs) is to dope magnetic elements into
traditional semiconductors1–4. A successful example is the
manganese-doped GaAs system, which shows a relatively high
Curie temperature up to 200 K (ref. 5). Although ferromagnetism
of DMSs at or above room temperature has been reported in
various systems6,7, the distribution of magnetization is usually
heterogeneous and the obtained ferromagnetism is too weak
to be comparable to that of the conventional ferromagnetic
materials8–11. The lack of MSs with strong magnetism above
room temperature becomes, therefore, a bottleneck of the
fundamental development of MS-based spintronic/electronic
devices.

Amorphous metal oxide semiconductors are of both
fundamental and technological interest owing to their high carrier
mobility and large-area uniformity12,13. Following the tremendous
demands of transparent materials for flexible electronic devices
including e-paper, sensors and optical detectors, amorphous metal
oxides are potential candidates that can partially replace the silicon-
based semiconductors. These visually transparent semiconductors
are, however, usually non-ferromagnetic.

Metallic glasses (MGs) and amorphous metal oxides, both lack
of long-range order in atomic arrangements, have distinct
properties. The superior mechanical performance coupled with

their unique chemical and physical properties distinguishes MGs
as attractive materials that can be utilized in micro-/nano-electro-
mechanical system devices, where the integration of optical,
electrical and magnetic components is required14–18. In fact, MG
thin films have proven to be advanced metal–insulator–metal
electrode materials by holding very smooth surfaces with a root
mean squared roughness down to B0.2 nm (ref. 19).

Here we propose to introduce non-magnetic oxygen into
originally ferromagnetic metal-based MGs to convert them into
MSs. On the basis of this idea, we fabricate an amorphous MS by
utilizing a Co-Fe-Ta-B system, and realize a unique combination
of optical, electrical and ferromagnetic properties in one single
material. Such an unusual MS is produced by a magnetron
sputter deposition method, which has already been used
extensively in semiconductor industry to deposit thin films of
various materials in integrated circuit processing.

Results
A room-temperature MS from a ferromagnetic MG. The
introduction of oxygen to a Co-Fe-Ta-B system is performed by
magnetron sputtering under a gas mixture of argon and oxygen
(Fig. 1a). In this way, a single metal oxide Co28.6Fe12.4Ta4.3B8.7O46

(in atomic percentage) is produced from a ferromagnetic MG
precursor (Fig. 1b).

The Co28.6Fe12.4Ta4.3B8.7O46 thin film exhibits an amorphous
structure with a maze-like pattern, similar to that of the
Co44Fe20Ta10B26 MG ribbon (Fig. 1c,d). Nevertheless, the
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Figure 1 | Formation of an amorphous metal oxide from a ferromagnetic metallic glass. (a) Schematic diagram illustrating deposition of thin films.

(b) Oxidation mechanism of the ferromagnetic (FM)–non-ferromagnetic (NFM) system. (c,d) High-resolution transmission electron microscopy images of

the single-phase Co44Fe20Ta10B26 MG ribbon and the single-phase Co28.6Fe12.4Ta4.3B8.7O46 amorphous metal oxide. The insets are the corresponding

selected-area electron diffraction patterns of the MG ribbon and the amorphous metal oxide, respectively. Scale bars, 5 nm.
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corresponding selected-area electron diffraction patterns reveal
their local structural difference. The amorphous Co28.6Fe12.4

Ta4.3B8.7O46 (a-CFTBO) thin film presents one halo adjacent to
the direct beam spot, which is much broader than that of the MG
ribbon (insets of Fig. 1c,d). This indicates a more homogeneously
disordered structure formed in the metal oxide phase.

Inclusion of oxygen in the MG precursor opens its optical
bandgap, which is estimated to be about 2.4 eV from the Tauc
plot based on an optical transmission spectrum of the a-CFTBO
thin film (inset of Fig. 2a). As a result, the a-CFTBO thin film,
which has a thickness of 25 nm, is much more transparent than
the MG thin film at the same thickness (Fig. 2a). Owing
to photoelectric interaction in the material, a characteristic
photoluminescence spectrum at room temperature is observed at
a wavelength of 490 nm, corresponding to a direct bandgap of
about 2.5 eV (inset of Fig. 2a). This is consistent well with its
optical bandgap.

The a-CFTBO thin film shows a negative temperature
dependence of resistivity, indicative of a non-metallic behaviour
(Fig. 2b). In comparison, the resistivity of the MG ribbon changes
linearly with temperature by yielding an extremely small
temperature coefficient of order of 10� 5 K� 1, in agreement
with electrical behaviour of conventional MGs (Fig. 2b). In
addition, the room-temperature resistivity of the a-CFTBO thin
film is of order of 1O cm (in the range of 10� 3 to 1012O cm for
semiconductors), which is higher than that of the MG ribbon
(B10� 4O cm) by about four orders of magnitude. Moreover,
its resistivity shows a negative temperature dependence of
ln(r/r0)p1/T1/2 (inset of Fig. 2b), characteristic of a
semiconductor20.

In addition to its semiconducting properties, the a-CFTBO thin
film sustains its intrinsic ferromagnetic properties. Owing to the

shape anisotropy, the a-CFTBO thin film with a thickness of
100 nm has an in-plane axis of easy magnetization, as expected
(Fig. 2c). The temperature dependence of its magnetization gives
a Curie temperature higher than 600 K (Fig. 2d). A residual
magnetization of B20 emu cm� 3 can be observed in the
temperature range from 600 to 705 K. This originates from
structural relaxation and nucleation of crystals before apparent
crystal growth occurring in the a-CFTBO thin film. At about
705 K the magnetization starts to increase due to such crystal-
lization, consistent with early findings that nanocrystallized
CoFeMB (M¼Ta, Hf) thin film has a higher Curie temperature
than the corresponding amorphous CoFeMB smaple21,22. The
ferromagnetism together with its semiconducting properties
indicates that the single-phase a-CFTBO thin film is a MS.

Magnetotransport properties of the a-CFTBO MS. The Hall
resistance Rxy can be expressed as

Rxy¼
RH

t
Hþ Rs

t
M; ð1Þ

where RH is the ordinary Hall coefficient, Rs is the anomalous
Hall coefficient, t is the thickness of the thin film, H is the applied
magnetic field and M is the magnetization of the sample.
An anomalous Hall effect is obtained (Fig. 3a), which occurs
typically in a ferromagnetic solid as a consequence of spin–orbit
coupling23. The slope of the ordinary Hall effect in the Rxy-H
curve measured at 50 K under magnetic fields up to 85 kOe
reveals that the electric conduction is p-type with a
hole concentration of order of 1020 cm� 3 (Fig. 3a). The
mobility is B0.1 cm2 V� 1 s� 1. Structurally, the composition
of the a-CFTBO thin film can be written in form of
(FMxNFM1� x)On� d, where FM denotes ferromagnetic metals,
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Figure 2 | Properties of the a-CFTBO thin films. (a) The optical transmission spectra of the a-CFTBO and the MG thin films at the same thickness of

25 nm. Left inset shows the Tauc plot derived from the transmission spectrum of the a-CFTBO thin film. Right inset shows its room-temperature

photoluminescence (PL) spectrum. (b) The normalized resistivity r/r0 as a function of temperature (r0 is the room temperature resistivity). Inset is the

plot of ln(r/r0) versus 1/T1/2 based on the experimental data. (c) Magnetic field dependence of the magnetization (M–H curves) measured at different

temperatures. (d) Temperature dependence of the magnetization measured under an in-plane magnetic field of 100 Oe.
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NFM denotes non-ferromagnetic elements, n denotes a fully
compensated state and d denotes oxygen deficiency. In this sense,
a huge number of holes are supposed to arise from the oxygen
deficiency-induced oxygen vacancies in the amorphous metal
oxide, which therefore account for its p-type conductivity.

The anisotropic magnetoresistance is observed in the a-CFTBO
MS by measuring the changes of its electrical resistance in an
applied field either parallel or perpendicular to the current, which
are indicated as MR// or MR> (Fig. 3b). At low fields in which
the saturation magnetization is being approached, both MR//
and MR> decrease significantly with the field (Fig. 3b). At high

fields, they reach a saturation value of around � 6% as the
magnetization of the thin film saturates. These curves are in line
with the in-plane and out-of-plane magnetization of the
a-CFTBO MS (Fig. 2c). In addition, the anisotropic magnetore-
sistance effect of the a-CFTBO MS is also similar to that observed
in the single-phase (Ga,Mn)As DMS24,25.

A p–n heterojunction based on the p-type a-CFTBO MS. Since
most of the amorphous metal oxide semiconductors are n-type
and are notoriously hard to be doped into p-type, formation of
the p-type MS in this study would help to realize p–n junctions
based on amorphous oxide semiconductors, which are the origin
of various active functions of semiconductors26. We hence
fabricated a rudimentary p–n heterojunction with a structure of
Au/p-type a-CFTBO/n-type Si/Au as shown in Fig. 4a. To further
validate that the p–n junction is able to allow electrical current to
flow in one direction, yet not in the opposite direction, the
p–n–p structure was also fabricated as shown in Fig. 4b. The
current–voltage curve of the p–n junction exhibits a rectifying
characteristic with a threshold voltage of 1.6 V (inset of Fig. 4c).
In addition, no current flows through the p–n–p structure as
expected (Fig. 4c). These experimental results consolidate that the
p-type a-CFTBO MS can fulfil the basic functionalities of the
heterojunctions and also demonstrate its potential for device
applications.

Discussion
Although the classification of metals, insulators and semiconduc-
tors refers to crystals with periodic structures in the classical band
theory, such definition can also be extended to amorphous
materials. Insulators and semiconductors are those whose Fermi
levels lie in the energy gaps between two nearby mobility edges
(boundaries between localized and extended states), while metals
are those whose Fermi level lies in the extended states. The
term semiconductor in our case is adopted for amorphous
semiconductors. Thus, MSs discussed here are those amorphous
semiconductors with spontaneous magnetization.

Generally, MSs refer to single-phase crystalline materials in
which ferromagnetism and semiconducting properties coexist27.
Such definition of crystalline MSs is obviously inapplicable
to amorphous semiconductors, which lack periodic lattice
structures. In analogy to those crystalline MSs, amorphous MSs
refer to non-crystalline solids in which, ferromagnetism and
semiconducting properties coexist.

For crystalline MSs, it is essential to have an exchange
interaction between the carriers in the semiconducting band and
the localized electrons of the magnetic ions occupying the lattice
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of the host semiconductors10. As already demonstrated in III–V
DMSs, electric field control of ferromagnetism can be realized due
to this interaction1,4. Nevertheless, the Curie temperature of the
III–V DMSs is lower than room temperature, which poses a
significant hurdle to broad applications. For amorphous MSs, the
charge carriers contributing to their semiconducting properties
are therefore expected to show exchange interaction with the
randomly distributed magnetic moments as well.

To probe such exchange interaction between the carriers and
the local magnetic moments in the a-CFTBO MS, the electric
field-induced change in its saturation magnetization (Ms) was
measured by altering the gate voltage (VG) exerted by an ionic
liquid as shown in Fig. 5a. Such method has proven to be effective
for realizing stable modulation of carrier densities even when the
gate voltage is removed28–30. When VG is positive, the holes move
along the direction of the electric field and some of them
annihiliate once combined with electrons from the Au electrode
(Fig. 5b). As a result, the carrier concentration of the a-CFTBO
MS decreases, leading to a reduction of its Ms. In contrast, a
negative VG enables the carrier concentration to increase, thus
enhancing its Ms (Fig. 5c). By varying VG on the a-CFTBO MS
with a thickness of 50 nm from � 2 to 1.5 V, the measured Ms

decreases from 297 to 268 emu cm� 3 at 300 K (Fig. 5d). As the
thickness of the a-CFTBO MS is reduced from 50 to 25 nm, the
affected zone by the ionic liquid gate increases. Consequently,
the change in Ms becomes more significant (inset of Fig. 5d).
These experimental results indicate that the magnetic behaviour
of the a-CFTBO MS can be modulated by electrical means,
which permits an external control of the room-temperature
ferromagnetism. Moreover, our observations also demonstrate
the presence of exchange interaction between the carriers
and the localized magnetic moments in the a-CFTBO MS,
which is the key to utilize the interplay of semiconductivity with
ferromagnetism.

For MGs, oxygen is usually a harmful impurity element
because of its detrimental effects on both glass-forming ability
and mechanical properties, mostly associated with crystalline
oxide precipitates31. However, the introduction of oxygen to the
present material is favoured, mediating the transition from a MG
conductor to an amorphous semiconductor. Such a fascinating
emergence of combined functionalities (optical, electrical and
ferromagnetic) in one novel material has not yet been reported
before, which provides a fertile ground for creating new physics
and device concepts. The approach of introducing light atoms
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such as oxygen into a ferromagnetic amorphous metal opens up
an avenue to make high Curie temperature MSs that may allow
MS-based spintronic/electronic devices to be operable at room
temperature. Such a method may be further extended to the
crystalline ferromagnetic metals for producing new materials with
unique physical properties.

Methods
Sample preparation and structural characterization. The ferromagnetic
Co-Fe-Ta-B-O thin films with thickness of o400 nm were deposited on Si and
quartz glass substrates by using magnetron sputtering with an alloy target under a
gas mixture of argon and oxygen32,33. The average composition was determined by
using an electron probe micro-analyser equipment. The structure of the thin films
was investigated using high-resolution transmission electron microscopy.

Property measurements. The optical transparency of the samples was measured
by using Jasco V-650 UV-vis Spectrophotometer (Lambda 950 UV/Vis/NIR
Spectrophotometer). The photoluminescence spectrum of the samples was
measured by using RM1000 Raman Microscope. Electrical properties of the
samples were measured using Physical Property Measurement System (PPMS-9,
Quantum Design). The gate voltage was applied using an Agilent 2901 A
instrument. All of the magnetic measurements were conducted after maintaining
VG for 30 min without special instruction. Magnetic properties, for instance,
magnetic moment–temperature relations, were measured using SQUID-VSM
(Quantum Design).

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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