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Higher plants require chloroplasts for essential functions in photosynthesis and other important 
physiological processes, such as sugar, lipid and amino-acid biosynthesis. most chloroplast 
proteins are nuclear-encoded proteins that are synthesized in the cytosol as precursors, and 
imported into chloroplasts by protein translocases in the outer and inner chloroplast envelope. 
The imported chloroplast proteins are then translocated into or across the thylakoid membrane 
by four distinct pathways. However, the mechanisms by which the imported nuclear-encoded 
proteins are delivered to these pathways remain largely unknown. Here we show that an 
Arabidopsis ankyrin protein, LTD (mutation of which causes the light-harvesting chlorophyll-
binding protein translocation defect), is localized in the chloroplast and using yeast two-hybrid 
screens demonstrate that LTD interacts with both proteins from the signal recognition particle 
(sRP) pathway and the inner chloroplast envelope. our study shows that LTD is essential for 
the import of light-harvesting chlorophyll-binding proteins and subsequent routing of these 
proteins to the chloroplast sRP-dependent pathway. 
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Correct and efficient targeting and translocation of proteins 
from their sites of synthesis into or across a membrane to 
their functional compartments is a fundamental process1,2. 

Chloroplasts contain about 3,000 proteins, but only 50–200 of them 
are encoded for in the plastid genome. Nuclear-encoded proteins 
are synthesized in the cytosol and post-translationally translocated 
across the chloroplast envelopes1–6. The protein import complexes 
located on the outer and inner envelope membranes are termed as 
TOC (translocon at the outer envelop membrane of chloroplast) 
and TIC (translocon at the inner envelop membrane of chloro-
plast) complexes, respectively1,2,5,6. The Toc159, Toc75 and Toc34 
proteins form the core TOC complex and are involved in protein 
transport across the outer envelope6–8. Tic110, Tic20 and Tic21 have 
been suggested to function as the protein translocation channel of 
the inner envelope1,2,7,8. Several stromal proteins, including chaper-
ones, proteases and redox regulators, are also involved in the import 
process6,9,10. The stromal domain of Tic110 and Hip/Hop domain 
of Tic40 may function as scaffolds that tether stromal chaperones, 
including Hsp93 and Hsp70, which facilitate protein translocation 
across the inner membrane2,6,11.

After translocation across the envelope, imported proteins are 
inserted into or transported across the thylakoid membrane through 
one of four mechanistically distinct pathways, which are classified on 
the basis of their energy and stromal factor requirements3,4: the Sec-
dependent pathway, the twin-arginine translocation (Tat) pathway, the 
chloroplast signal recognition particle (cpSRP) pathway and the spon-
taneous insertion pathway. The Sec pathway requires a translocation 
ATPase, SecA, and the translocation channel consisting of SecY and 
SecE, and is involved in transport of several lumenal proteins includ-
ing plastocyanin and 33-kDa protein of the oxygen-evolving complex 
(OE33) (ref. 12). The cpSRP pathway uses GTP, cpSRP54, cpSRP43, 
cpFtsY and Alb3 to target the abundant light-harvesting chlorophyll 
a/b-binding proteins (LHCP) to the thylakoid membrane13,14. The Tat 
pathway uses a trans-thylakoid pH gradient as its sole energy source, 
and Tha4, Hcf106 and TatC may form a complex for the transport of 
a subset of lumen proteins, such as the 17- and 23-kDa proteins of the 
oxygen-evolving complex (OE17 and OE23) (ref. 4). The ‘spontane-
ous’ pathway does not seem to require soluble factors or energy and 
is the mode of insertion of CFoII, PSII-W, PSII-X and ELIP into the 
membrane3,4. Although these pathways can be distinguished by their 
protein factors and energy requirements, how imported chloroplast 
proteins are sorted to these distinct pathways is still unknown.

LHCP form a soluble transit complex with cpSRP, which con-
sists of cpSRP54 and cpSRP43, after import into the chloroplast15–17. 
The ankyrin domain of cpSRP43 interacts with a conserved L18 
region between the second and third transmembrane domains of 
LHCP18,19. Targeting of LHCP to the membrane also requires the 
chloroplast SRP receptor homologue cpFtsY and GTP20. In the pres-
ence of GTP, cpFtsY interacts with cpSRP to promote GTP binding 
of both cpSRP54 and cpFtsY, which contain GTPase domains. On 
GTP hydrolysis, cpSRP is released from the membrane, and inser-
tion of LHCP into the thylakoid membrane is mediated by the inte-
gral membrane protein Alb3 (refs 21, 22). Besides the above typical 
cpSRP pathway, some LHCP might be able to bypass cpSRP54 and 
cpFtsY, and undergo cpFtsY-independent targeting to the mem-
brane by cpSRP43 and Alb3 (refs 23, 24).

Previous studies on the mechanisms of LHCP targeting to chlo-
roplasts have largely focused on how LHCP are inserted into the 
thylakoid membrane by the cpSRP pathway13. However, the mecha-
nisms of how LHCP are delivered to the cpSRP pathway during or 
after translocation across the envelope remain largely unknown. 
In this study, we characterized the LHCP translocation defect (ltd) 
mutant and found that light-harvesting chlorophyll-binding protein 
translocation defect (LTD) is involved in both facilitating LHCP 
translocation across the inner envelope and subsequently delivering 
them to the cpSRP pathway.

Results
The ltd mutant displays defects in LHCP biogenesis. The 
At1g50900 gene encodes a protein of 175 amino acids, with a 
putative chloroplast transit peptide of 68 amino acids in its amino 
(N) terminus (Supplementary Fig. S1). This protein is predicated 
to contain one ankyrin repeat between residues 117 and 149 
(Supplementary Fig. S1). At1g50900 was designated LTD because 
its mutation leads to LHCP translocation defect. Homologues 
of At1g50900 were found in higher plants, moss and green algae 
(Supplementary Fig. S1).

The At1g50900 gene contains two exons and one intron, and 
the mutant ltd carries a T-DNA insertion at the second exon 
(Supplementary Fig. S2). The ltd seedlings were not able to grow 
photoautotrophically in soil, but could be maintained on sucrose- 
supplemented medium. However, they did not develop fertile flow-
ers. The ltd mutant had yellow leaves and showed retarded growth 
compared with wild-type plants (Fig. 1a). The total chlorophyll con-
tents in ltd were 5% of that of wild type, and the chlorophyll a/b 
ratio was 7.1 in ltd mutants, compared with 3.4 in the wild type 
(Fig. 1b). Because LHCP are the only proteins that bind chlorophyll 
b25, the increased chlorophyll a/b ratio suggests that the LTD muta-
tion affects LHCP accumulation but does not rule out other effects. 
Transmission electron microscopy analysis showed that wild-type 
chloroplasts contained well-developed thylakoids and substantial 
granal stacks (Fig. 1c). However, grana stacking was impaired in ltd 
chloroplasts, which further suggests that the LTD mutation affects 
LHCP biogenesis26,27.

To elucidate the LTD function, we compared the effects of LTD 
inactivation on LHCP biogenesis with Arabidopsis mutants known 
to have defects in LHCP biogenesis (chaos, which lacks cpSRP43; ffc, 
which lacks cpSRP54; and cpftsY, which lacks cpFtsY)16,23,28 (Fig. 1d). 
Immunoblot analysis showed that LHCP in ltd were more severely 
reduced than in mutants that lack cpSRP pathway components. In 
particular, Lhcb1, Lhcb2, Lhca1 and Lhca2 were reduced to  < 5% 
of wild-type levels. Tic110, Tic40, cpHsp93, cpHsp70, cpSRP43, 
cpSRP54 and cpFtsY accumulated rather normally or were increased 
in ltd (Supplementary Fig. S3a), which suggests that the reduction 
in LHCP levels was not the result of secondary effects of the LTD 
mutation on other import components.

The levels of chloroplast proteins were also examined in ltd using 
specific antibodies (Supplementary Fig. S3a). The PSI and PSII 
core subunits PsaA/B, D2 and CP47 were reduced to about 50% of 
wild-type levels, whereas the levels of OE33, Cytf of Cytb6/f and the  
β-subunit of ATP synthase were unchanged compared with wild 
type. A previous report suggested that depletion of LHCP might 
result in impaired stability of photosynthetic proteins29. Pulse label-
ling for 20 min followed by a chase with unlabelled methionine 
in the presence of cycloheximide, which blocks the synthesis of 
nuclear-encoded proteins, showed that the turnover rates of the PSI 
and PSII subunits (PsaA/B, CP47, CP43, D1 and D2) were higher 
in ltd than in wild-type plants (Supplementary Fig. S3b). Thus, 
the reduced levels of the PSI and PSII core proteins are caused by 
reduced stability in ltd.

Cellular localization of LTD. To characterize the LTD function, we 
first determined its subcellular localization. The LTD-green fluo-
rescent protein (GFP) fusion protein was transiently expressed in 
protoplasts30, and GFP fluorescence exclusively co-localized with 
chloroplastic chlorophyll (Fig. 2a). This localization was similar to 
that of GFP fused to the transit peptide of LPA66 (ref. 31). GFP 
fusion proteins with the targeting signals of fibrillarin32 and FRO1 
(ref. 33) of Arabidopsis were located specifically in the nucleus and 
mitochondria, respectively (Fig. 2a). These results confirm that LTD 
is indeed localized to the chloroplast.

To determine the LTD localization within chloroplasts, intact 
chloroplasts were isolated and fractionated, and the proteins were 
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separated by SDS–polyacrylamide gel electrophoresis (PAGE) fol-
lowed by immunoblot analysis (Fig. 2b). Most of the LTD protein 
was detected in the stromal fractions, and a small amount was 
found in the envelope factions, whereas none was detected in the 
thylakoid fractions (Fig. 2b). cpSRP43, cpSRP54 and cpFtsY were 
detected both in the chloroplast stromal and thylakoid fractions, 
whereas most of the cpSRP43 protein was found in the stromal 
fractions. cpSRP54 was distributed almost equally between the 
stroma and thylakoids, and cpFtsY was mainly associated with the 
thylakoid membrane (Fig. 2b), which is consistent with previous 
reports16,23,34,35.

LTD interacts with cpSRP43 and TIC components. To further 
investigate the LTD function, we used a protein overlay assay to 
detect its interaction proteins in the stroma (Fig. 3a). As shown in 
Figure 3a, LTD bound to cpSRP43; however, no signal was detected 
when the membrane was blotted either with chaos stromal protein 
or with wild-type stromal proteins in the absence of LTD (Fig. 3a). 
Overlays performed with the wild-type stromal proteins revealed 
that cpSRP43 interacted with cpSRP54, cpSRP43 and LTD (Fig. 3b). 
A parallel set of protein overlay experiments using ltd stromal pro-
teins showed the interaction between cpSRP54 and cpSRP43, which 
is consistent with the formation of a stable cpSRP43 and cpSRP54 
heterodimer19,36. However, cpSRP43 has also been suggested to be 

a dimer through gel filtration and chemical cross-linking experi-
ments20. Yeast two-hybrid analysis revealed that the third and fourth 
ankyrin repeats are responsible for the dimerization37. Equilibrium 
ultracentrifugation analysis showed that it is a monomer; however, a 
cpSRP43 mutant protein lacking the carboxy (C)-terminal chromo-
domains was able to form a stable dimer36. These together with our 
protein overlay results suggest a potential dimerization of cpSRP43 
(ref. 14).

To examine whether LTD interacts with other proteins related  
to the cpSRP pathway, yeast two-hybrid assays were performed  
(Fig. 3c). As shown in Figure 3c, LTD interacted with cpSRP43 but 
not with cpSRP54 and cpFtsY. Pull-down assays provided further 
support for the interaction between cpSRP43 and LTD (Fig. 3d). 
Co-immunoprecipitation analysis revealed that the interaction 
between LTD and cpSRP43 also occurs in vivo, although the inter-
action appeared weak (Fig. 3e). Because LTD only interacts with 
cpSRP43 and not cpSRP54, it is possible that LTD is not a compo-
nent of the transit complex. To test this, chloroplast stromal proteins 
were separated by sucrose gradient sedimentation and analysed by 
immunoblot using specific antibodies (Supplementary Fig. S4). 
Immunoblot analysis showed that LTD did not co-migrate with 
cpSRP43 and cpSRP54.

Because LTD was also found to be associated with the envelope 
membrane, we next studied its interactions with inner envelope 
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Figure 1 | The ltd mutant displays defects in the accumulation of LHCP and chloroplast development. (a) Phenotypes of the wild-type (WT), ltd, chaos, 
ffc, cpftsy, chaos/ffc and ltd complemented with full-length LTD (ltdcom) plants grown on ms plates containing 3% sucrose for 3 weeks. (b) Chlorophyll 
contents and chl a/b ratios of 3-week-old WT, ltd, chaos, ffc, chaos/ffc, cpftsY and ltdcom seedlings. FW, fresh weight. Data are the means ± s.e. (n = 7).  
(c) Transmission electron microscopic images of the chloroplast ultrastructure in WT, ltd and ltdcom leaf sections from the plants shown in a. scale bar, 
1 µm. (d) Immunoblot analysis of LHCI and LHCII in total leaf proteins extracted from 3-week-old WT, ltd, chaos, ffc, cpftsY, chaos/ffc and ltdcom plants. 
Actin served as controls to normalize protein levels. similar results were obtained in two additional independent experiments.
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proteins. As shown in Figure 4a, LTD bound to Tic110 and Tic40. 
Furthermore, yeast two-hybrid and pull-down assays provided  
further evidence that LTD indeed interacts with Tic110 and Tic40 
(Fig. 4b,c).

LTD interacts with both precursor and mature LHCP. The 
interaction of LTD with Tic110 and Tic40 suggests that LTD 
could interact with pLHCP during import. To test this possibility,  
in vitro-translated [35S]pLHCP were incubated with isolated chloro-
plasts under normal import conditions. After incubation for 5 and 
20 min, both pLHCP and mature LHCP (mLHCP) could be precipi-
tated with the anti-LTD antibody under nondenaturing conditions, 
but the pLHCP/mLHCP ratio was reduced after 20 min (Fig. 5a). 
In comparison, the cpSRP43 antibody only precipitated mLHCP 
under these conditions. After a 40 min incubation, neither LTD nor 
cpSRP43 antibody could precipitate LHCP.

To further investigate the LTD function in LHCP targeting, 
we tested the abilities of LTD, cpSRP43 and cpSRP54 to form a 
protein complex with in vitro-translated [35S]pLHCP (Fig. 5b). 
As expected, the transit complex was formed when recombinant 
cpSRP54 and cpSRP43 were incubated with [35S]pLHCP18,36. Incu-
bation of [35S]pLHCP with cpSRP43 resulted in the formation of 
a cpSRP43–pLHCP complex, which is consistent with previous 
reports that cpSRP43 alone prevents aggregation of LHCP by com-
plex formation38. As shown in Figure 5b, a LTD–pLHCP complex 
was also formed when [35S]pLHCP was mixed with LTD. In addi-
tion, incubation of pLHCP with LTD and cpSRP43 led to the for-
mation of a LTD–pLHCP complex and a cpSRP43–pLHCP com-
plex. However, when [35S]pLHCP were incubated with cpSRP43, 
cpSRP54 and LTD, a new complex was observed to form, as the 
LTD–pLHCP complex disappeared (Fig. 5b). Because this complex 
co-migrated with the transit complex containing pLHCP, cpSRP43 
and cpSRP54, it is possible that LTD is not a component of the 
transit complex.

LTD recognizes a specific region in LHCP. As cpSRP43 spe-
cifically recognizes the L18 region in LHCP18,19, we next investi-
gated whether LTD also recognizes a specific region in LHCP. An 
alignment of the amino-acid sequences of LHCP (Lhcb1-6 and 
Lhca1-4) revealed several strictly conserved amino-acid regions 
(Supplementary Fig. S5). To identify the amino-acid sequence that 
mediates the interaction between LTD and LHCP, five contigu-
ous conserved segments in pLHCP, corresponding to amino acids 
51–90, 91–135, 163–206, 207–255 and 228–267 (indicated by red 
arrows in Supplementary Fig. S5), were used in Gal4-based yeast 
two-hybrid and pull-down assays (Fig. 6). As shown in Figure 
6a,b, LTD only interacted with pLHCP207 − 255 and not with other 
segments.

To further narrow down which LHCP regions are involved 
in the LTD-mediated protein interaction, serial overlapping 30 
amino-acid segments of LHCP were fused to the GAL4 activa-
tion domain or a GST tag for yeast two-hybrid and pull-down 
assays, respectively (Fig. 6c,d). LTD interacted with segments 
of pLHCP that corresponded to amino acids 196–225, 201–230, 
206–235, and 211–240, but not with either pLHCP191 − 220 or 
pLHCP216 − 245. We next used a split ubiquitin-based two-hybrid 
system to further test the interaction of LTD with the pLHCP 
segments in the transmembrane regions (amino acids 91–135, 
163–206, 207–255 and 228–255). As shown in Figure 6e,f, simi-
lar results were obtained using this system. As expected, cpSRP43 
interacted with the pLHCP163 − 206 region, which contains the L18 
region18,19 (Fig. 6e). These results suggested that the 14 amino-
acid sequence, T14 (located at the beginning of the third trans-
membrane domain), is an essential element for the LTD-medi-
ated protein interaction (amino acids 211–224 of pLHCP; red 
box in Supplementary Fig. S5).

The amino-acid sequences ELK and RLAM, similar to DPLG 
motif in L18, are the most conserved in T14 (Supplementary Fig. S5). 
We therefore generated three substitution mutants, pLHCP-DPLG, 
pLHCP-ELK and pLHCP-RLAM, which had Ala substitutions in the 
L18 or T14 regions. Incubation of pLHCP-ELK or pLHCP-RLAM 
with LTD did not yield the pLHCP–LTD complex, whereas these 
pLHCP substitution mutants could form complexes with cpSRP43 
(Fig. 6g). However, pLHCP-DPLG could form complexes with LTD 
but not with cpSRP43. These results further confirmed the essential 
function of T14 in the protein interactions of LTD.

T14 is essential for pLHCP translocation across the envelope. 
To clarify the function of this specific region in protein transloca-
tion, a synthetic peptide corresponding to T14 fused to the transit 
peptide of pLHCP (TpT14) was used to compete with pLHCP dur-
ing protein translocation (Fig. 7a,b). The specific cpSRP43-binding 
domain L18 fused to the transit peptide of pLHCP was used as the 
control (TpL18). As shown in Figure 7a, pLHCP protein transloca-
tion was not affected by increasing concentrations of TpL18; how-
ever, pLHCP translocation was severely inhibited in the presence of 
the TpT14 in a concentration-dependent manner. The specificity of 
this inhibition was supported by the observation that TpT14 had no 
significant effect on the import of Sec pathway substrate pOE33 or 
Tat pathway substrate pOE23 (Fig. 7b).

Because the above results suggest that T14 is essential for pLHCP 
translocation across the envelope, we performed import reactions 
with pLHCP-DPLG, pLHCP-ELK and pLHCP-RLAM mutants to 
further test this possibility (Fig. 7c). There were no apparent changes 
in protein import between the pLHCP and Ala substitution pLHCP-
DPLG. However, import of pLHCP-ELK and pLHCP-RLAM into 
the chloroplast stroma was greatly inhibited, with remarkably 
reduced amounts of mature proteins and increased levels of pLHCP. 
In addition, treatment of the chloroplasts with trypsin after the 
import reaction showed that mLHCP was protected from protease 
degradation (Fig. 7d).
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Discussion
Nuclear-encoded chloroplast proteins are inserted into or translo-
cated across the thylakoid membrane by four protein translocation 
pathways after import into the chloroplast3,4. We have attempted 
to uncover the molecular events that are responsible for routing 
imported proteins into these distinct pathways. In this study, we 
report the identification and functional characterization of the LTD 
protein, which is essential for the import of pLHCP and subsequent 
routing of these proteins to the cpSRP pathway. This study provides 
the first insight into the routing mechanisms of LHCP to cpSRP-
dependent transport pathway within chloroplasts.

The ltd mutant of Arabidopsis displays a severe pigment defi-
ciency phenotype (Fig. 1). Inactivation of LTD caused a severe 
decrease in the levels of various LHCPs and a mild decrease in the 
levels of photosynthetic protein complexes, but there was no effect 
on the accumulation of protein import components (Fig. 1 and  
Supplementary Figure S3). As LHCII has been suggested to be 
involved in the assembly of thylakoid membranes into grana stacks26, 
the dramatic decrease in LHCP in ltd may cause the observed 
defect in thylakoid membrane structure. Previous studies demon-
strated that several Arabidopsis mutants lacking cpSRP54, cpSRP43, 
cpSRP43/cpSRP54, cpFtsY and Alb3 showed different degrees of 
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pigment deficiency phenotypes16,21,23,28,29,34. The ltd mutant did not 
develop any fertile flowers (Fig. 1a), indicating that LTD, similarly 
to cpFtsY and Alb3, is required for photoautotropic growth21,34,35.

The presence of LTD at the envelope suggests that it possibly 
assists in pLHCP translocation across the envelope. Consistent 
with this hypothesis, LTD interacts with both precursor and mature 
LHCP (Fig. 5a). Previous studies have shown that the C-terminal 
region, including the third transmembrane domain of LHCP, was 
essential for the translocation of pLHCP into the chloroplast39,40. 
However, another report showed that its C terminus is not required 
for pLHCP import into the chloroplast41. The reason for this discre-
pancy is unclear. In this study we identified a T14 region (amino 
acids 211–224) at the beginning of the third LHCP transmembrane 
domain functioning as an LTD-binding segment that facilitates 
pLHCP translocation across the inner membrane, which agrees with 
the report on the function of its C terminus in protein import39,40. 

Several lines of evidence lend support for the function of T14 
region in pLHCP import. First, a 5 amino-acid deletion in the T14 
region of LHCP leads to the loss of interaction with LTD (Fig. 6).  
Second, substitutions of several conserved amino acids in T14 
severely affect pLHCP translocation efficiency (Fig. 7). Third, syn-
thetic peptides corresponding to TpT14 severely inhibited pLHCP 
translocation across the envelope but not the import of Sec- and 
Tat-dependent substrates. Meanwhile, the addition of TpL18 only 
slightly inhibited the translocation of pLHCP into the chloroplast 
(Fig. 7). The interactions of LTD with Tic110 and Tic40 suggest that 
LTD function at the envelope is mediated through the interaction 
with TIC proteins. Tic110 and Tic40 have been proposed to have 
roles in the recruitment of stromal molecular chaperones to the stro-
mal face of TIC2,6,11. The tic110 and tic40 mutant plants also showed 
dramatically reduced levels of LHCP, and had few granal stacks8,42,43.  
Thus, LTD may be specifically recruited to the envelope for pLHCP 
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fused with His-tag was used as the prey, and GsT, full-length GsT-tagged LTD and Tic110 were used as bait, respectively. The purified recombinant 
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recognition and translocation across the inner membrane as they 
emerge from the TIC channel.

Studies on the import and integration of LHCP into the thyla-
koid membrane have revealed that pLHCP is rapidly processed to 
its mature form on import, concomitantly with the formation of a 
soluble stromal transit complex, which is competent to be inserted 
into the membrane22,44. Interaction of LTD with newly imported 
LHCP during chloroplast import (Fig. 5) suggests that LTD is 
likely to recruit the protease for the processing. LTD interacts with 
cpSRP43 but not with cpSRP54 and cpFtsY; however, the interaction 
between LTD and cpSRP43 is relatively weak (Fig. 3). Thus, LTD 
may not form a stable complex with cpSRP43, which is consistent 
with the observation that LTD does not co-migrate with cpSRP43 
and cpSRP54 (Supplementary Fig. S4). LTD formed an intermediate 
complex with pLHCP, but a LTD–cpSRP43–pLHCP triple complex 
was not observed (Fig. 5). In addition, a cpSRP43/cpSRP54/pLHCP 
transit complex was formed concomitantly with the disappear-
ance of LTD–pLHCP complex when pLHCP was incubated with 
cpSRP43, cpSRP54 and LTD. Moreover, time course import experi-
ments provide further support that LHCP first contacts LTD and is 
then handed over to cpSRP (Fig. 5). cpSRP43 was found to be asso-
ciated with mLHCP, but not pLHCP in chloroplast protein import 
assay (Fig. 5a); however, cpSRP43 efficiently forms a complex with 
pLHCP in vitro (Fig. 5b). In vitro reconstitution assay also showed 
that both precursor and mature LHCP can integrate into the thyla-
koid membrane44. The interaction of cpSRP43 with mLHCP may 

reflect the process after import into the chloroplast. Thus, these 
results suggest that LTD routes LHCP to the cpSRP pathway during 
or shortly after translocation across the inner envelope membrane 
into the stroma.

The LTD protein contains ankyrin-repeat-containing domain, 
which has been implicated in mediating protein–protein interac-
tions45. Several Arabidopsis ankyrin proteins have been shown to 
interact with substrate proteins and participate in the protein trans-
location process16,46. cpSRP43 contains a chromodomain at the N 
terminus, which is followed by four ankyrin repeats and then two 
chromodomains16. The ankyrin domain of cpSRP43 provides the 
binding site for the L18 region of LHCP and is involved in post-
translational targeting of LHCP to the thylakoid membrane18,36. 
Another ankyrin protein, AKR2A, has been also shown to inter-
act with the outer envelope membrane protein OEP7 and targets it 
to the chloroplast46. However, it is surprising that LTD specifically 
interacts with at least four different components (cpSRP43, LHCP, 
Tic40 and Tic110) given that LTD is rather small and has only one 
predicted ankyrin repeat. Previous results have also revealed sev-
eral interaction partners of small proteins. Tim12, a small periph-
eral membrane subunit of TIM22 translocation component with a 
molecular mass of 12 kDa, has been shown to interact directly with 
Tim9, Tim10, Tim22 and carrier proteins, and delivers these carrier 
proteins to the inner membrane47,48. Distinct properties of N- and 
C-terminal ends of Tim12 have been demonstrated to be important 
for its interactions and functions47. It is likely that the LTD function 
may also rely on the distinct functional regions of this protein.

The identification of LTD in LHCP import and subsequent deliv-
ery to the cpSRP pathway was unexpected, as both the envelope and 
cpSRP transport pathways have been extensively investigated and 
this component has not been detected before11,15,20,21,49,50. One pos-
sibility is that the inability of LTD to form the stable complexes with 
cpSRP43 or with Tic40 and Tic110, making it difficult to be detected 
using the biochemical assays currently applied in the identifica-
tion of the components of the envelope and cpSRP transport path-
ways11,15,20,21,49,50. Another possibility is that an intermediate stage of 
such process cannot be trapped or reconstituted in vitro for further 
identification of the components involved in because the transport 
from the inner envelop to the SRP pathway is so rapid. Moreover, 
LTD cannot be identified by analogue with protein export pathway 
in mammalian and Escherichia coli. Homologues of prokaryotic 
SRP54 and its receptor FtsY have been identified in chloroplasts15,20. 
However, LTD and cpSRP43 homologues are found in higher plants, 
moss and green algae but not in cyanobacteria and red algae23 
(Supplementary Fig. S1). It is possible that LTD and cpSRP43 are 
evolved after the origin of chloroplasts by endosymbiosis for LHCP 
biogenesis. Furthermore, the lack of extensive characterization of 
ltd and thorough studies of the LTD function may also account for 
this. Thus, in this study, we have taken genetic and biochemical 
approaches to uncover the unexpected, novel function of the LTD 
protein. The LTD protein was first suggested to be involved in the 
biogenesis of LHCP through biochemical analysis of the ltd mutant 
(Fig. 1). Further subcellular localization studies (Fig. 2) indicate that 
LTD likely functions in the early stages of LHCP translocation dur-
ing or after import into the chloroplast. The interactions of LTD with 
TIC, cpSRP and LHCP, and its functions in LHCP targeting and 
sorting processes provide further evidence for the functions of LTD 
in facilitating the import of LHCP and subsequent routing of these 
proteins to the cpSRP pathway. These functions may be important 
for maintaining efficient targeting and sorting processes as well as 
preventing mistargeting to other pathways. It is possible that similar 
components may also exist for routing of imported proteins to other 
translocation pathways besides the cpSRP pathway.

In summary, we propose a model based on the results described 
here (Fig. 8): LTD is recruited to the envelope and recognizes the 
T14 region at the beginning of the third transmembrane domain 
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of LHCP as LHCP emerge from the inner envelope translocation 
channel; then it directs the imported LHCP to the cpSRP pathway, 
in which cpSRP43 interacts with the L18 region between the second 

and third transmembrane domains of LHCP to form a transit com-
plex with cpSRP54, resulting in targeting of LHCP to the thylakoid 
membrane.
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Methods
Isolation and growth conditions of the ltd mutant. The T-DNA insertion lines 
ltd (SALK_126967C), cpftsY (SALK_049077)34 and ffc mutant (CS850421) were 
obtained from the Arabidopsis Biological Resources Centers, and the homozygous 
mutants and precise T-DNA insertion sites were confirmed by PCR and sequenc-
ing with primers A, C and LB1 (all primer sequences are listed in Supplementary 
Table S1) for ltd; primers LP54, RP54 and LB2 for ffc; and primers FtsYF, FtsYR 
and LB1 for cpftsY. The chaos mutant and chaos/ffc double mutant were kindly 
provided by Dr Laurent Nussaume23,29. Wild-type and homozygous mutant plants 
were grown on Murashige and Skoog (MS) media supplemented with 3% sucrose 
under short-day conditions (10 h of light/14 h of dark) with a photon flux density 
of 80 µmol m − 2 s − 1 in a growth chamber at 22 °C.

For complementation of the ltd phenotype, a fragment containing the full-
length LTD-coding sequence was amplified with the primers LTDcomF and 
LTDcomR. The PCR product was digested with KpnI and SacI and subcloned into 
the pSN1301 vector under the control of the cauliflower mosaic virus 35S pro-
moter. The construct was transferred to heterozygous LTD plants by Agrobacterium 
tumefaciens-mediated transformation using the floral dip method51. Transgenic 
plants were selected on MS medium containing 50 mg l − 1 hygromycin and grown 
in a greenhouse to produce seeds for PCR analysis. The success of complementa-
tion was confirmed by immunoblot analysis. The expression of LTD (At1g50900) 
was determined by reverse transcription–PCR using the primers LTDRTF and 
LTDRTR. To ensure equal amounts of RNA were used for each sample, reverse 
transcription–PCR analysis of the actin cDNA was performed using the actinF  
and actinR primers.

Total protein preparation and immunoblot analysis. Total proteins were 
extracted from Arabidopsis leaves52 and from yeast strain NMY32 (ref. 53). Protein 
concentrations were determined using the Bio-Rad DC protein assay (Bio-Rad). 
For immunoblot analysis, total proteins were separated by SDS–PAGE and trans-

ferred to nitrocellulose membranes. The membranes were incubated with specific 
primary antibodies, and signals from secondary conjugated antibodies were 
detected by enhanced chemiluminescence.

Yeast two-hybrid assays. Gal4-based yeast two-hybrid assays were performed 
using the Matchmaker Gold Yeast Two-Hybrid System from Clontech according 
to the manufacturer’s instructions. The vectors pGADT7 and pGBKT7 were used 
to construct the prey and bait plasmids, respectively. The plasmids constructed for 
yeast assays are listed in Supplementary Table S1. Y2HGold yeast cells containing 
each of the activation domain constructs were transformed with each of the bind-
ing domain constructs and plated on synthetic dropout (SD) medium containing 
10 µg l − 1 X-α-Gal (5-bromo-4-chloro-3-indolyl-α-d-galactopyranoside) without 
tryptophan, leucine and histidine. β-Galactosidase activity was assayed in the pres-
ence of X-α-Gal.

Split ubiquitin-based yeast two-hybrid assays were performed using the yeast 
strain NMY32 supplied by Dualsystems Biotech54. The pCCW vector encoding 
the Cub-LexA-VP16 fragment was used to construct the bait plasmids. The prey 
plasmids were constructed from the vector pDSLNx, which encodes the NubG 
fragment (Dualsystems Biotech). Plasmids constructed for the yeast assays are 
listed in Supplementary Table S1. Interactions were determined by growing diploid 
yeast colonies on SD-His-Leu-Trp plates and by β-galactosidase activity using an 
X-gal (5-bromo-4-chloro-3-indolyl-b-d-galactopyranoside) filter assay. NMY32 
containing x-Cub-LexAVP16 (x represents various deletion mutants of LHCP) 
was transformed with the NubI-Alg5 expression plasmid as a positive control, and 
NMY32 containing x-Cub-LexA-VP16 was transformed with the plasmid express-
ing NubG-Alg5 as a negative control.

In vitro translation of precursor proteins and protein import. Fragments 
encoding full-length Lhcb1, OE23 and OE33 were amplified using the following 
primers: Lhcb1TNTF and Lhcb1TNTR for pLHCP; OE23TNTF and OE23TNTR 
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for pOE23; and OE33TNTF and OE33TNTR for pOE23 (Supplementary Table S1). 
Amplified PCR products were cleaved and subcloned into the EcoRI-SalI sites of 
the pTNT expression vector (Promega). Transcription/translation was performed 
using a wheat germ system (Promega) containing [35S]-methionine and SP6 RNA 
polymerase according to the manufacturer’s instructions. The pLHCP substitution 
mutants were generated using the Fast mutagenesis system (Trans Gen Biotech).

Chloroplast isolation and protein import assays were performed as described 
previously55 with the following modifications. Briefly, 3-week-old Arabidopsis 
plants were homogenized in isolation buffer (0.33 M sorbitol, 5 mM MgCl2, 5 mM 
EGTA and 5 mM EDTA, 50 mM HEPES-KOH pH 8.0, and 10 mM NaHCO3), 
filtered through Miracloth and centrifuged for 1 min at 1,000 g. The pellets were 
resuspended and loaded onto Percoll step gradients (40 and 70% in isolation 
buffer), and chloroplasts were collected and washed twice with import buffer 
(50 mM HEPES-KOH, pH 8.0, 3 mM MgSO4 and 0.33 M sorbitol). For protein 
import, chloroplasts at a final concentration of 0.2 mg ml − 1 chlorophyll were 
incubated with 8 µl precursor in 100 µl import buffer supplemented with up to 
5 mM ATP. Import reactions were performed in white light (100 µmol m − 2 s − 1) at 
25 °C. To examine the effects of the T14 and L18 peptides on protein import, TpL18 
(transit peptide fused to the L18 peptide (MAASTMALSSPAFAGKAVNLSPADL-
LYPGGSFDPLGLATDP)) and TpT14 (transit peptide fused to the T14 peptide 
(MAASTMALSSPAFAGKAVNLSPAELKVKELKNGRLAM);  > 80% purity by 
Seajetsci) were added to the import reaction buffer, and import was performed 
for 10 min. For protease digestion of intact chloroplasts, the import reaction was 
incubated for 20 min and then was supplemented with 200 µg ml − 1 trypsin for 
30 min on ice, and trypsin reactions were quenched by addition of a protease 
inhibitor cocktail with final concentrations of 100 µg ml − 1 phenylmethanesulfonyl 
fluoride, 1 µg ml − 1 aprotinin, 1 µg ml − 1 pepstatin and 1 µg ml − 1 E64 (3-carboxy-
trans-2,3-epoxypropyl-leucylamido-(4-guanidino)butane). Chloroplasts were 
collected through a 40% Percoll cushion at 4 °C, separated on 15% SDS–PAGE gels 
and analysed by autoradiography.

Chloroplast fractionation and overlay analysis. Intact chloroplasts were 
fractionated into the outer and inner envelope, stromal and thylakoid membrane 
fractions as described previously56. For the protein overlay assay, the fractionated 
stromal or inner envelope proteins were separated by SDS–PAGE and transferred 
to nitrocellulose membranes, which were blocked with TTBS buffer (20 mM Tris-
HCl, pH 7.6, 0.137 M NaCl, and 0.1% Tween-20) containing 5% skimmed milk and 
incubated with the recombinant LTD or cpSRP43 proteins carrying a polyhistidine 
tag at both their N- and C-terminus at a concentration of 0.1 mg ml − 1 in TTBS 
buffer with 1% skimmed milk. The membrane was washed three times with TTBS 

buffer, probed with an anti-His-tag antibody and visualized by the enhanced 
chemiluminescence method.

Pull-down and co-immunoprecipitation assays. Fifty-microliter aliquots of 
50% glutathione-agarose beads were washed with buffer (10 mM Tris-HCl, pH 
7.5, 1 mM EDTA, 1 mM EGTA, 0.5% NP40, 1% Triton X-100, 150 mM NaCl and 
1 mM DTT) three times, then 4 µg purified bait and 4 µg pre-cleared prey proteins 
were added to a final volume of 100 µl. After incubation in 10 mM Tris-HCl, pH 
7.5, 1 mM EDTA, 1 mM EGTA, 0.5% NP40, 1% Triton X-100, 150 mM NaCl and 
1 mM DTT for 4 h at 4 °C, unbound proteins were removed by washing for three 
times. The bound proteins were eluted and separated by SDS–PAGE followed by 
immunoblot analysis or Coomassie staining.

To analyse the interactions of LTD with import precursors, in vitro-translated 
[35S]pLHCP was incubated with isolated Arabidopsis chloroplasts under white 
light (100 µmol m − 2 s − 1) at 25 °C with 1 mM ATP for 5 min, and chloroplasts were 
collected through a 40% Percoll cushion at 4 °C. The pellets were solubilized with 
1% docecyl β-d maltoside in the presence of 50 mM HEPES-KOH, pH 8.0, 150 mM 
NaCl and 4 mM MgCl2, and the supernatant was collected by centrifugation at 
180,000 g for 45 min. For immunoprecipitation, antibodies were added to the clari-
fied supernatant, which was incubated overnight at 4 °C and then precipitated with 
Protein-A-agarose. After washing the beads with 50 mM HEPES-KOH, pH 8.0, 
150 mM NaCl and 4 mM MgCl2 five times, the bound proteins were eluted, sepa-
rated on 15% SDS–PAGE gels and analysed by immunoblot and autoradiography.

Subcellular localization of GFP proteins. DNA encoding the full-length LTD  
protein was amplified by PCR using prime LTDGFPF and prime LTDGFPR, and 
the PCR products were ligated into the GFP fusion vector pUC18-35s-sGFP with 
GFP as a reporter. The constructs for nuclear, chloroplast and mitochondria locali-
zation were constructed according to the previous methods31,32,33. The resulting  
fusion constructs and the control vector were introduced into wild-type Arabidopsis. 
The GFP in the examined samples was performed as described previously31.

In vitro reconstitution analysis. [35S]pLHCP, which was synthesized in wheat 
germ extracts according to the method described above, was mixed with recom-
binant LTD (200 ng), cpSRP43 (400 ng) or cpSRP54 (200 ng) in import buffer in the 
presence of 1 mM ATP in a final volume of 50 µl for 15 min at 25 °C. All samples 
contained equal amounts of wheat germ extract. The samples were separated on 
6–12% nondenaturing polyacrylamide gels57, and the resolved protein complexes 
were visualized by autoradiography.

Transmission electron microscopy. Samples of 3-week-old wild-type and mutant 
leaves were fixed as described in Peng et al.58 Micrographs were taken using a 
transmission electron microscope (JEM-1230; JEOL). 
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