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Climate warming due to human activities will be accompanied by hydrological cycle changes. 
Economies, societies and ecosystems in South America are vulnerable to such water resource 
changes. Hence, water resource impact assessments for South America, and corresponding 
adaptation and mitigation policies, have attracted increased attention. However, substantial 
uncertainties remain in the current water resource assessments that are based on multiple 
coupled Atmosphere Ocean General Circulation models. This uncertainty varies from 
significant wetting to catastrophic drying. By applying a statistical method, we characterized the 
uncertainty and identified global-scale metrics for measuring the reliability of water resource 
assessments in South America. Here, we show that, although the ensemble mean assessment 
suggested wetting across most of South America, the observational constraints indicate 
a higher probability of drying in the Amazon basin. Thus, over-reliance on the consensus of 
models can lead to inappropriate decision making. 
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Combined with increasing water demand due to population 
growth and economic development, alterations in water 
availability due to climate change1,2 will significantly impact 

human health, socioeconomic activities and ecosystems in South 
America3,4. Even in the present day, partly due to the lack of an  
adequate disaster prevention strategy, South American countries  
are vulnerable to floods and droughts related to unforced climate 
variability3. In addition, if water resources are scarce, the Amazon  
rainforest may be negatively affected, seriously impacting both  
biodiversity and the carbon cycle5–7. To inform adaptation and  
mitigation policies for future climate change, it is necessary to  
provide reliable water resource assessments. However, water 
resource assessments for South America are subject to substan­
tial uncertainties3,4,8,9. As climate change projections from Atmos­
phere Ocean General Circulation models (AOGCMs) are fed into  
impact assessment models, AOGCM uncertainties also result in 
uncertain impact assessments4. Nevertheless, water resource impact 
studies (and other impact studies) have used projections from only 
a single or a few AOGCMs4 for quite some time. Recently, impact 
studies have started to more vigorously incorporate projections 
from multiple AOGCMs2,7–15. However, studies regarding the mecha­
nisms of the cascade of uncertainty and creditability in impact 
assessments are in their early stages.

Multiple projections and/or impact assessments were used to 
create the best-estimate weighted ensemble mean (together with 
error bars) or the weighted ensemble distribution as an approxima­
tion of the probability density function. Whereas this paper focuses 
on the best estimate, the basic philosophy of weighting discussed 
below was used for both the best estimate and the probability den­
sity function. In the past, three primary approaches were used to 
weigh regional impact assessments from multiple AOGCMs. The 
first approach uses the equal-weighted ensemble, which has recently 
been called model democracy16. The creditability of an impact 
assessment is established by majority voting from AOGCMs based 
on the ‘one-model, one-vote’ assumption9,11,12,14,15. To move beyond 
this widely used, but naive, approach, the following two approaches 
have recently been investigated. One approach is to trust climate 
change projections from AOGCMs with high levels of accuracy 
for simulating the climate over a target region in the present13,17. 
However, because climate change patterns have spatial scales of 
several thousand to tens of thousands of kilometres, it is not clear 
whether regional climate simulations in the present can provide  
sufficient information for constraining the uncertainties. In the  
second approach, overall metrics of accuracy for global-scale 
present climate simulations (such as the root mean square error 
of the surface air temperature over a global domain) are used to  
select or weigh AOGCM projections in an attempt to reduce uncer­
tainties of climate projections and relevant impact assessments. 
However, two studies using different overall metrics disagreed  
even about the sign of runoff changes in South America8,10. In addi­
tion, recent studies18,19 have suggested that the association between 
overall metrics and future projections is weak in ensembles of 
AOGCMs. One intrinsic difficulty of establishing metrics for model 
skills and weights is that no observations of the future climate  
are available. Hence, we cannot evaluate the reliabilities of future 
projections by directly comparing them to any corresponding 
observations. Metrics should at least be physically reasonable  
and strongly related to future projections and impact assessments; 
however, there is no roadmap for determining adequate metrics16 
thus far.

Here, we show how to identify global-scale metrics for measur­
ing the reliability of runoff change assessments in South America. 
The observational constrains indicate a higher probability of drying 
in the Amazon basin than that expected by the model democracy 
approach.

Results
Uncertainty propagation. There are substantial inconsistencies in 
annual mean runoff changes (∆R) in South America. Supplementary 
Figure S1 shows the pattern of ∆R from the observed climatology 
in 1980–1999 to the projected 2080–2099 mean under the A2 
emissions scenario20 for 14 AOGCMs (Supplementary Table S1) 
and the ensemble mean. As in our previous study2, we performed 
ensembles of hydrological simulations using a global water resource 
model21 (hereafter H08, see Methods) to obtain ∆R. Here, we 
did not take into account the uncertainties in the water resource 
models. The H08 inputs were the changes in temperature (∆T) and 
precipitation (percent change, ∆P) from 14 AOGCMs. The ∆T, ∆P 
and ∆R were normalized by the global mean temperature change 
for each AOGCM, meaning that we did not take into account the 
uncertainty in the global mean temperature change. Whereas the 
ensemble mean assessment showed increases of ∆R over most areas 
of South America, the patterns of ∆R were remarkably different 
across models.

We examined the physical mechanisms underlying uncer­
tainty propagation from climate projections to ∆R (Supplementary  
Fig. S2). We analysed the covariance matrix among 14 annual mean 
∆Rs in South America and 14 pairs of annual mean ∆Ts and ∆Ps 
over a global domain by applying singular value decomposition 
(SVD) analysis22, which has been used in meteorological studies 
(see Methods). This statistical method identifies pairs consisting 
of a ∆R mode and a (∆T, ∆P) mode (Fig. 1a–d for the first mode 
and Fig. 1e–h for the second mode), so that the covariance between 
their expansion coefficients (Supplementary Fig. S3) is maximized. 
The first ∆R mode shows a pattern of drying and wetting over 
the northern and southern areas of South America, respectively  
(Fig. 1a). This asymmetric pattern of ∆R in the north versus the south 
is related to an increase in ∆T over the eastern tropical Pacific Ocean 
(Fig. 1b), which is known as El-Niño-like warming23. AOGCMs 
with stronger El-Niño-like warming accompany a greater weaken­
ing of the Walker circulation (Fig. 1d). Downward and upward wind 
anomalies, which are atmospheric teleconnections of El-Niño-like 
warming, induce decreases and increases of ∆P in northern and 
southern South America, respectively (Fig. 1c). These changes in 
precipitation lead to the positive phase of the first ∆R mode.

The second ∆R mode shows drying over northeast South America  
and wetting over most of the other regions (Fig. 1e). This pattern 
of ∆R is related to positive and negative anomalies, relative to  
the ensemble mean, of ∆T over the Northern and Southern Hemi­
spheres, respectively (Fig. 1f). This north–south gradient of ∆T is 
associated with a northward shift of the Hadley circulation24–25 over 
the Atlantic Ocean (Fig. 1h). This shift of the Hadley circulation 
induced downward wind anomalies over northeast South America, 
resulting in decreases in the ∆P and ∆R values (Fig. 1g,e). Down­
ward wind anomalies over northeast South America are related  
to a convergence of low-level horizontal winds over northwest 
South America, leading to upward wind anomalies (Supplementary 
Fig. S4) and increases in ∆P and ∆R (Fig. 1g,e). The result, that ∆R 
in South America is influenced by El-Niño-like warming and the 
north–south ∆T gradient, is consistent with findings from previous 
studies6,17,24,26.

Present climate patterns related to impact assessments. Next, 
we investigated whether the leading ∆R modes were signifi­
cantly correlated with particular, physically reasonable patterns of 
present climate simulations. Figure 2a–c shows the present climate  
(1980–1999) patterns of surface air temperature (T0), precipitation 
(P0) and atmospheric circulations regressed onto the expansion 
coefficients of the first ∆R mode in the impact assessments, respec­
tively (Supplementary Fig. S2). The first ∆R mode is correlated with 
a relatively warm T0 over the tropical and subtropical ocean, but no 
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significant correlation is found in the central tropical Pacific Ocean. 
This pattern of T0 is associated with higher and lower P0 values in 
the western and central tropical Pacific Ocean, respectively, and  
is related to stronger Walker circulations in the tropical Pacific 
Ocean. These results indicate that AOGCMs with a stronger Walker 
circulation in the present climate simulations (Fig. 2c) tend to have 
stronger El-Niño-like warming patterns in the future climate change 
projections (Fig. 1b), leading to a more positive phase for the first 
∆R mode (Fig. 1a).

Figure 2d–f shows the present climate patterns related to the 
second ∆R mode. The second ∆R mode is correlated with more 
intense precipitation in the Intertropical Convergence Zone of the 
Atlantic Ocean and a drier subtropical ocean in the present climate 
simulations. This intense Intertropical Convergence Zone accompa­
nies stronger Hadley circulations over the Atlantic Ocean (Fig. 2f).  
AOGCMs with stronger Hadley circulations in the present climate  
simulations (Fig. 2f) tend to have larger northward shifts of  
the Hadley circulation in the future climate projections (Fig. 1h), 
leading to a more positive phase for the second ∆R mode (Fig. 1e).

Despite considerable efforts of climate scientists, substantial 
uncertainties remain in the projections of El-Niño-like warming 
and the north–south ∆T gradient23,27,28. We identified relationships 
between future and present climate simulations that concern these 
phenomena. The physical mechanisms for the relationships between 
future and present climate simulations are not clear and remain to 
be investigated in future research.

Global-scale metrics and observational constrains. Here, to deter­
mine a set of metrics measuring bias magnitudes for each model 
corresponding to the leading ∆R modes, we computed the inner 
products of the vectors of bias patterns (the differences between 
the climatologies predicted by each model and actual observations) 
for each model (Supplementary Figs S5 and S6) and the vectors of  
the present climate patterns associated with the leading ∆R modes 
(Fig. 2, the norms are normalized to 1; Supplementary Fig. S7). 
There are clear correlations between the expansion coefficients of 

the leading ∆R modes and the metrics of T0 and P0 (the value 0 
indicates the best estimate; Fig. 3). An important finding is that the 
ensemble mean assessment of the runoff changes (with ∆R mode 
expansion coefficients of zero) has considerable negative biases for 
the present climate patterns corresponding to both the first and the 
second modes. Thus, we infer that the ensemble mean changes in 
the Walker and Hadley circulations are underestimated. This result 
is consistent with previous studies suggesting that past changes in 
the Walker and Hadley circulations of AOGCMs are smaller than 
those in the observations28,29, although it is not clear whether his­
torical records are sufficient to constrain the model simulations30.

In Figure 3, about  + 0.7 and  + 1.6 s.d. of the first and second 
∆R mode expansion coefficients (the intersections of the regression 
lines with the horizontal axes) yield the best estimate (the corres­
ponding biases of the present climate simulations are zero). If we 
trust the equal-weighted ensemble mean assessment, then the best 
estimate is ‘light wetting over most of South America’ (Fig. 4a). 
By contrast, our evaluation based on the present climate observa­
tions suggests that ‘drying over the Amazon basin and wetting over 
the La Plata basin and in northwestern South America’ (Fig. 4b) is 
most plausible.

Discussion
In the Amazon basin, the sign of ∆R is different between the 
ensemble mean assessment and our observationally constrained 
assessment. Adaptation strategies used to cope with increases and 
decreases of runoff are very different. It has been suggested that an 
over-reliance on consensus assessments could lead to inappropriate 
adaptation policies relating to water resources. Notably, the obser­
vationally constrained assessment of ∆R seems qualitatively similar 
to that of the outlier model 14 (HadCM3; Fig. 4b and Supplemen­
tary Fig. S1), although this model overestimated the first ∆R mode 
(Fig. 3a,b; also see Methods). This model projects catastrophic 
drying that could lead to dieback of the Amazon rainforest5,6. The 
probability of Amazon rainforest dieback could be higher than that 
indicated by projections based on model democracy.
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Figure 1 | First and second modes of the SVD analysis. (a) The first ∆R mode (mm per year per K). (b) The first ∆T mode (K/K). (c) The first ∆P mode 
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850 and 250 hPa (10 − 3 Pa s − 1 K − 1). Contours in the all panel indicate statistically significant correlations at  ± 10% t-test levels.
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Recently, climate scientists have been actively exploring how 
to evaluate, beyond the use of model democracy, the reliability of 
climate change projections from AOGCMs16. Although there have 
been a few successful examples31,32, the problem is still significant16. 
By contrast, most impact assessment studies use the model demo­
cracy approach or the single-model approach. We stress that our 
study can be used as a possible roadmap for objective development 
of observational constraints on impact assessments and climate  
projections for a given target region. Our approach can be applied 
not only to water resource assessments but also to other impact 
assessments and climate projection studies.

Investigations of the uncertainty of hydrological models remain 
for future work. It is better to use multiple global-scale hydrological 
models and the outputs from multiple AOGCMs. However, it is still 
difficult for us to use models developed by other institutes, although 
progress is being made in international coordinated intercompari­
son projects for global-scale hydrological models33. Although it will 
be possible to use multiple hydrological models in the future, we 
should advance our analysis methods so that we can investigate  
the uncertainty cascades from multiple AOGCMs to multiple 
hydrological models.

The incorporation of the direct CO2 effect on the transpiration of 
plants is a challenging issue for global-scale hydrological modelling 
and also remains to be investigated in future work. H08, along with 
most current hydrological models, does not take the CO2 effect on 
plants into account. Some studies have suggested that the CO2 effect 
on plants will have a major impact on future runoff34,35, whereas one 
study showed relatively small impacts36.

An alternative methodological option is analysing the direct 
runoff outputs from the AOGCMs rather than the outputs of H08. 
AOGCMs have a variety of land hydrological schemes and some 
AOGCMs take the CO2 effect on plants into account. However, run­
offs from AOGCMs have considerable biases; for example, some 
AOGCMs have negative runoff values in their current climate simu­
lations. The runoff biases in AOGCMs may be partly due to errors in 
land hydrological schemes and biases in the atmospheric hydrologi­
cal cycles for the present climate. Therefore, it was preferable to use 
the outputs of H08 with bias corrections (see Methods) in this study.

Methods
Hydrological simulations. We computed ∆R using a global water resource model 
of H08 (refs 2, 21) with a methodology typical of that adopted in previous studies 
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of water resource assessments. H08 consists of six modules, including those for 
anthropogenic activities, but the two modules for natural hydrology (the land 
surface hydrology and the river routing modules) were used in this study. For 
the present climate simulation of runoff, we used the 1980–1999 meteorological 
forcing data set (NCC)37 as the input data for H08. For future climate simulations 
of runoff, we altered the input data of H08 by adding ∆T to the NCC data and mul­
tiplying the NCC data by ∆P. It should be noted that these processes (adding ∆T to 
the NCC data and multiplying the NCC data by ∆P) also act as simple bias correc­
tion techniques. By subtracting the runoff in the present climate from that in the 
future climate, we obtained 14 ∆R values. Grids with  <1mm per month runoff were 
eliminated from the calculations. The spatial resolution of the outputs of H08 was 
1°×1°, and those of the AOGCMs vary from model to model. For convenience of 
analysis, these data were interpolated to a 2.5°×2.5° regular latitude/longitude grid.  

If outputs of some ensemble members with different initial conditions were avail­
able for a given AOGCM (Supplementary Table S1), we analysed their average.

SVD analysis. SVD analysis has often been used in meteorology22,38, but impact 
researchers may not be familiar with this methodology. Therefore, we describe the 
SVD method below.

Here, M, N1 and N2 are the ensemble size ( = 14), the number of grids for ∆R 
and the number of grids for ∆T and ∆P, respectively. We define ai,k as ∆R for the 
kth model and ith grid: 


a a i N Nk i k

T= ={ ; , .., } , ( ), 1 1 1
   

A a k M N Mk= = ×{ ; , .., }( )


1 1

Vectors 

tk  and 


pk  are the ∆T and ∆P values of the kth model. 
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Here, we remove the ensemble means from 

ak  and 


bk .

We investigate the covariance matrix between A and B: 

C BA N NT≡ × ×(( ) )2 12

Here, (N2×2)≥N1. Before we compute C, the following preprocesses are applied. 
Because the units of ∆R, ∆T and ∆P are different from each other, we divide them 
by the corresponding inter-model standard deviations aggregated over the analysed 
areas. Furthermore, ai,k and bj,k are weighted by the square root of the cosine of the 
latitude.

We compute the SVD of matrix C: 
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Matrix Σ is an N1×N1 diagonal matrix with non-negative elements σll = σl 
(l = 1,…N1; s s s1 2 1≥ ≥ ≥... N ), called singular values. Here yl and 


xl are the lth 

left and right singular vectors of C, respectively.
The fraction of the squared Frobenius norm of the covariance matrix  

determined by the lth pair of the ∆R mode and the (∆T, ∆P) mode is computed by
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The first and second pairs explain about 45 and 20%, respectively, of the squared 
Frobenius norm (Supplementary Fig. S3a). The expansion coefficients of the  
∆R mode (


el) and the (∆T, ∆P) mode (


fl; Supplementary Fig. S3b–c) are obtained 

by projecting A and B onto 

xl  and yl , respectively: 

 
e A x Ml

T
l≡ ,( );

 
f B y Ml

T
l≡ .( ).

The correlation coefficient between the expansion coefficients, 

el  and 


fl , pro­

vides a measure of how strongly the ∆R mode and the (∆T, ∆P) mode are related to 
each other (Supplementary Fig. S3d). The first ten pairs have high correlations.
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their corresponding 10 and 90% t-test-based confidence intervals, 
respectively.
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Figure 4 | The ensemble mean and best estimate of runoff changes.  
(a) Changes in runoff (mm per year per K) for the ensemble mean.  
(b) Changes in runoff (mm per year per K) for the observationally 
constrained best estimate.
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By regressing A onto 
 
f fl l/ ( )Stdev , we obtain the spatial pattern of ∆R  

corresponding to the lth (∆T, ∆P) mode: 

  
g Af f Nl l l≡ / ( ), ( ).Stdev 1

We also compute the spatial patterns of ∆T and ∆P corresponding to the lth ∆R 
mode by regressing B onto 

 
e el l/ ( )Stdev :

  
h Be e Nl l l≡ ×/ ( ).( ).Stdev 2 2

These patterns are called heterogeneous regression maps. Figure 1a–c,e–g shows 
heterogeneous regression maps. Heterogeneous correlations are also computed 
using a similar procedure. We test the statistical significance of the heterogeneous 
correlations at  ± 10% t-test levels.

Testing the influence of outlier model. Our observationally constrained assess­
ment of ∆R seems ro be similar to that of the outlier model 14 (HadCM3; Fig. 4b 
and Supplementary Fig. S1). It may be inferred that this single model had a domi­
nant role in producing this result. However, as discussed below, our most plausible 
∆R pattern changed little when we excluded HadCM3 from our analyses.

We tested whether our most plausible ∆R pattern is sensitive to the exclusion of 
HadCM3 from our analyses. Although the first and second modes of ∆R and (∆T, 
∆P) obtained using the 13 AOGCMs (Supplementary Fig. S8) were similar to those 
of all of the 14 AOGCMs (Fig. 1), there were some differences. Here, we defined 
R1

14( ) and 

R2

14( ) as the spatial pattern vectors of the first and second ∆R modes, 
respectively, using all 14 AOGCMs (Fig. 1). In addition, 


R1

13( ) and 

R2

13( ) were the 
first and second runoff modes when we excluded HadCM3 from our analyses  
(Supplementary Fig. S8). When we projected 


R1

13( ) and 

R2

13( ) onto 

R1

14( ) and 

R2

14( ) 
(before the projections, their norms were normalized to 1), it appeared that  
R1

13( )  and 

R2

13( ) were mixtures of 

R1

14( ) and 

R2

14( ):

  
R R R1

13
1
14

2
140 75 0 57( ) ( ) ( ). .= − + residuals,

  
R R R2

13
1
14

2
140 42 0 79( ) ( ) ( ). .= + + residuals.

Thus, the present climate patterns associated with 

R1

13( ) and 

R2

13( )  
(Supplementary Fig. S9) were also somewhat different from those of 


R1

14( ) and 
R2

14( ) (Fig. 2). The most plausible 

R1

13( )  and 

R2

13( )  modes were about  − 0.5 
and  + 1.6 s.d. of their expansion coefficients, respectively (Supplementary Fig. S10). 
Supplementary Figure S11 demonstrates the runoff changes in the ensemble mean 
and the best estimate. Although the drying region in the Amazon basin is narrower 
in the Supplementary Figure 11b than in Figure 4b, these patterns are qualitatively 
similar to each other. Therefore, our estimates of the most plausible ∆R patterns are 
not sensitive to the inclusion of HadCM3 in our analyses.

Testing the influence of internal variability. Here, we tested whether our finding 
is sensitive to the influence of internal variability. For some models, the outputs 
from members of different initial condition ensembles (DICEs) were available 
(Supplementary Table S1). In this case, to reduce the influence of internal vari­
ability on our results, we used the average of the DICE members for each model in 
our analyses. Here, we computed the first and second ∆R mode coefficients and the 
corresponding T0 and P0 biases for each DICE member (Supplementary Fig. S12). 
There is little difference between the DICE members for each model. Therefore, our 
finding is not sensitive to the influence of internal variability. 
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