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Loss-tolerant state engineering for
quantum-enhanced metrology via the
reverse Hong–Ou–Mandel effect
Alexander E. Ulanov1,2, Ilya A. Fedorov1,3, Demid Sychev1, Philippe Grangier4 & A.I. Lvovsky1,3,5

Highly entangled quantum states, shared by remote parties, are vital for quantum

communications and metrology. Particularly promising are the N00N states—entangled

N-photon wavepackets delocalized between two different locations—which outperform

coherent states in measurement sensitivity. However, these states are notoriously vulnerable

to losses, making them difficult to both share them between remote locations and recombine

in order to exploit interference effects. Here we address this challenge by utilizing the reverse

Hong–Ou–Mandel effect to prepare a high-fidelity two-photon N00N state shared between

two parties connected by a lossy optical medium. We measure the prepared state by

two-mode homodyne tomography, thereby demonstrating that the enhanced phase

sensitivity can be exploited without recombining the two parts of the N00N state. Finally,

we demonstrate the application of our method to remotely prepare superpositions of

coherent states, known as Schrödinger’s cat states.
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I
n the current race towards the practical implementation
of quantum techniques for information processing and
communications, a strong trend is to design loss-tolerant

quantum protocols, such as the preparation of non-local super-
positions of quasi-classical light states1, discord-assisted remote
state preparation2, quantum illumination3, undoing the effect of
losses on continuous-variable entanglement4 and the preparation
of single-qubit entangled states over a long distance5–8.

In this article we are interested in N00N states
N :: 0j i ¼ ð N; 0j i þ 0;Nj iÞ=

ffiffiffi
2

p
, which are useful in linear-optical

quantum computation9,10, quantum-optical state engineering11,12

and the preparation of photon-number path entanglement13,14.
But the most important potential application of these states is as a
resource for quantum enhanced metrology14–19. Interference
measurements with N00N states exhibit super-resolving
properties: the number of fringes per wavelength equals N, in
contrast to a single fringe in the case of coherent states. This
property can be exploited for precise measurement of diverse
physical quantities. Widespread application of N00N states for
metrology is however precluded by their extreme sensitivity to
losses. When exposed to even moderate losses, the degree of
entanglement and hence the super-resolution potential of the
N00N states dramatically degrade to an extent that eliminates any
advantage20,21.

In the present work, we address this challenge by developing a
technique to losslessly produce N00N states between parties that
are separated by a lossy quantum channel. In addition, using
N00N states usually requires bringing back together the two
entangled parts, introducing more propagation losses. But we will
show that this second step is not required, and that super-
resolution for the optical phase can be obtained remotely,
by using homodyne detection11.

Results
Concept. For N00N state production, we exploit some
peculiar properties of the Hong–Ou–Mandel (HOM) effect22,
a well-known quantum interference phenomenon in which two
indistinguishable photons that are overlapped on a symmetric
beam splitter (BS) always emerge in the same output mode,
preparing the N00N state

11j i ! 2 :: 0j i ¼ 2; 0j i þ 0; 2j iffiffiffi
2

p ð1Þ

in the beam splitter output. Our experiment relies upon the
reverse version of the HOM effect23, in which the measurements
in the two output modes of the BS project them onto single-
photon states. Because of the time-reversible nature of quantum
mechanics, such projection is equivalent to projecting the state of
the input onto the two-photon N00N state (1). If each of the
beam splitter inputs is, in turn, entangled with other modes, these
modes become entangled with each other, thanks to
entanglement swapping24. Whereas the original HOM setting
creates a two-photon N00N state, extension to any even N is
straightforward (see Supplementary Section ‘Preparation of
high-order N00N states’).

Specifically, consider a set-up in which two pairs of modes
(A,C) and (B,D) are prepared in two-mode squeezed states:

CAC=BD

�� �
/ 0; 0j i þ g 1; 1j i þ g2 2; 2j i þ � � � ; ð2Þ

by means of non-degenerate parametric down-conversion. Modes
C and D are then mixed on a symmetric BS, the outputs of which
are subjected to measurement in the photon-number basis via
single-photon counting modules (SPCMs), as shown in Fig. 1.

In the weak-squeezing limit |g|2oo1, every SPCM click is likely
to be caused by no more than one photon. Then, a coincidence

click in both SPCMs correspond to projection on state |1, 1iCD.
Due to the unitary nature of the BS operation, this event assures
that modes C and D were initially in the N00N state (1). This
corresponds to two pairs of photons having been produced in
either of two crystals; therefore, now the remaining modes A and
B also share a two-photon N00N state. The application of the
reverse HOM effect to N00N state preparation has been proposed
by Kok et al.13, albeit not in a remote fashion as we do here.

A remarkable feature of this scheme is its robustness to losses
in channels C and D. Such losses only reduce the probability of
the two SPCMs to click, but, if the clicks do occur and the down-
conversion amplitude g is sufficiently small, the leading term in
the state of channels A and B is still the two-photon N00N state.
We show in Supplementary equation (8) and Supplementary
Fig. 4 that the fidelity of this state is bounded from below by
FZ1� 4g2 for all loss values. Therefore, by pumping the down-
conversion crystals sufficiently weakly, one can prepare a N00N
state of arbitrarily high purity, no matter how high the losses. Our
method is equally robust with respect to low quantum efficiencies
of the SPCMs, because these are effectively equivalent to
additional losses in modes C and D25. Note, however, that our
technique does not help eliminate losses in modes A and B,
as well as the effect of detector imperfection in these modes.

N00N state tomography. Conditioned on coincidence clicks of
the two SPCMs, we characterize the state of modes A and B by
means of homodyne tomography (Methods section). The
measured states in both cases are very close to the ideal state (1)
that has suffered a 1–Z¼ 45% loss due to imperfect detection
efficiency26,27 (Fig. 2a).

To illustrate the reverse HOM effect and the critical
significance of the matching between modes C and D for proper
N00N state preparation, we measured the behaviour of the state
in modes A and B as a function of increasing temporal mismatch
between modes C and D. As evidenced by Fig. 3, the fraction of
the biphoton component |1,1i in that state exhibits a dip that is
characteristic as a signature of the HOM effect. The tomographic
state reconstruction for the case of complete mismatch is shown
in Fig. 2b. In addition to a macroscopic biphoton component,
no off-diagonal terms are present in this case because no
coherence between modes A and B can emerge in the absence of
interference.
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Figure 1 | Conceptual scheme of the experiment. A coincidence click of

the SPCMs projects modes C and D onto the two-photon N00N state due

to the reverse HOM effect. This, in turn, prepares modes A and B in the

same state, thanks to entanglement swapping.
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Phase sensitivity enhancement. The enhanced phase sensitivity
is manifested by the mean values of observables XAXB and X2

AX
2
B,

where XA¼QA cos yAþPA sin yA and XB¼QB cos yBþ PB sin yB,
are quadrature operators of modes A and B. For the one-photon
1 :: 0j i ¼ 1; 0j i þ 0; 1j ið Þ=

ffiffiffi
2

p
and two-photon N00N states one

has, respectively,

1 :: 0h jXAXB 1 :: 0j i ¼ � Z
2
sinDy;

1 :: 0h jX2
AX

2
B 1 :: 0j i ¼ 1þ 2Z

4

ð3Þ

and

2 :: 0h jXAXB 2 :: 0j i ¼ 0;

2 :: 0h jX2
AX

2
B 2 :: 0j i ¼ 1

4
þ Zþ Z2

2
cosð2DyÞ

ð4Þ

where Dy¼ yA� yB and we assumed the phases in modes C and
D to be constant.

We see that in order to compare between the one- and
two-photon N00N states using quadrature measurements,
we need to use different observables. This notwithstanding, the
phase dependence of the appropriate observable in each state is
as expected, that is, with period 2p/N for each N-photon
N00N state.
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Figure 2 | Density matrix of the conditionally prepared state of modes A

and B. The data are displayed with a 10-dB total loss in modes C and D

before the BS, reconstructed in the Fock basis. No correction is made for

losses in any of the channels. The numbers along the horizontal axes are

the indices of the bra and ket elements of that matrix. The components

shown in red correspond to the ideal N00N state, others appear due to

losses. (a) When modes C and D are matched to each other, a two-photon

N00N state is prepared. The |1, 1ih1, 1| component amounts to 0.01.

(b) In the case of a 5-ps mismatch between modes C and D, the HOM

interference and any coherence between modes A and B are eliminated.

The emerged |1, 1ih1, 1| component is shown in grey. Green hats show the

statistical error of the reconstruction.
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Figure 3 | The reverse HOM dip. Quantum and classical interference as a

function of the delay between modes C and D. The blue points represent

the weight of the |1, 1i h1, 1| component in the reconstructed density matrix

(obtained from homodyne tomography, not from photon counting). The red

points and red curve correspond to the visibility of the classical interference

between the master laser pulses that underwent the same spectral filtering

as quantum modes C and D. The horizontal axes for the classical and

quantum cases are scaled by a factor of
ffiffiffi
2

p
with respect to each other to

match the theoretically expected widths of the interference patterns.
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Figure 4 | Periodic phase-dependent behaviour of N00N states.

Dependence of the mean and mean-square product of Alice’s and Bob’s

quadratures on the difference yA� yB of Alice’s and Bob’s phases for states

|1::0i (a) and |2::0i (b) is shown. Enhanced phase sensitivity is evident for

the two-photon N00N state. Solid lines are theoretical predictions.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11925 ARTICLE

NATURE COMMUNICATIONS | 7:11925 | DOI: 10.1038/ncomms11925 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


An experimental check of this behaviour is demonstrated in
Fig. 4. In agreement with the results of state reconstruction,
the second-order interference of the |2 :: 0i state, generated in the
presence of the loss, exhibits the same visibility as without loss.

Loss-tolerant preparation of Schrödinger’s cat states. Being
path-entangled, the N00N state can also be used for single-mode
quantum-state engineering. Associating modes A and B with
fictitious observers Alice and Bob, we consider a setting in which
Alice, by performing quadrature measurements on her mode,
remotely prepares a state in Bob’s mode. Neglecting inefficiencies,
Alice’s quadrature outcome X measured at phase angle y brings
the Bob’s mode to the state

A Xyh j2 :: 0iAB¼A Xyh j2iA 0j iB þ A Xyh j0iA 2j iB ð5Þ

where

Xyh jmiA¼ eimye�X2 HmðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1=2m !

p ; ð6Þ

are Fock state wavefunctions, with Hm(X) being Hermite
polynomials. In this way, by postselecting specific values of
Alice’s observed quadrature, one can generate arbitrary super-
positions of the 0- and 2-photon states, which approximate
the even coherent-state superpositions (CSS) |aiþ |� ai,

sometimes viewed as a quantum-optical implementation of the
Schrödinger’s cat paradox11,12,28,29.

The states of Bob’s mode for different outcomes of Alice’s
homodyne measurement are displayed in Fig. 5. Projection
on X¼ 0 (Fig. 5, first column) results in superposition
0.052|0i� 0.85|2i, partially mixed due to losses in Alice’s
channel. After correcting for Bob’s homodyne detection
inefficiency, this state has a fidelity of 0.88 with the even CSS
state of amplitude a¼ 1.84, squeezed with parameter z¼ 0.48.
This value compares favourably with state-of-the-art results12,29,
with the added advantage that our protocol is tolerant to the
losses in the optical channel between Alice and Bob.

Effective CSS amplitudes and approximation fidelities for
other values of X are shown in Fig. 5b. With increasing X, the
two-photon fraction initially increases relative to the vacuum
because the two-photon state wavefunction hX|2i decreases faster
than the vacuum wavefunction hX|0i. Wavefunction hX|2i
changes sign near the value X¼ 0.7, where ideally a pure two-
photon state in Bob’s mode should be observed. In practice, due
to the losses and finite width of Alice’s post-selection window, a
phase-insensitive mixture of 0.4|0ih0|þ 0.6|2ih2| is produced
(second column). In this region, the remotely prepared state
approximates the CSS poorly because of the high two-photon
component. For higher values of X, this two-photon component
in Bob’s state reduces again, resulting in increasingly
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Figure 5 | Schrödinger’s cat states. (a) Bob’s Wigner functions after conditioning on Alice’s quadrature measurement, with 55% efficiency correction in

Bob’s mode. Top row: experimental results. Bottom row: theoretical simulation. Fidelities between experiment and theory are 0.98, 0.98, 0.97, 0.99 from

left to right. The top-right panel shows the marginal distribution of Bob’s position quadrature in the case of XA¼ 2, which exhibits squeezing. The black line

fits the data, the green line corresponds to the vacuum state. (b) Amplitude of the CSS that best approximates the state of Bob’s mode versus Alice’s

quadrature, and the corresponding fidelity. Lines show theoretical predictions. Filled (empty) markers and solid (dashed) lines stand for the data with

(without) the efficiency correction. The approximation of Bob’s state with a CSS state near X¼0.7 (second column) is unreliable because of the

unproportionally large two-photon fraction and low phase dependence; this instability causes opposite behaviour of the blue lines in the shaded region.
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faithful approximation of even CSSs with decreasing amplitudes
(third column). For very low amplitudes, this state approximates
a weakly squeezed vacuum state. This is the case for X¼ 2
(fourth column): Bob’s quadrature spectrum exhibits squeezing
by 0.65±0.24 dB (without efficiency correction). The correspond-
ing quadrature histogram is shown in the upper right panel
of Fig. 5.

Discussion
The protocol developed here addresses the primary challenge in
the way of employing nonclassical states of light, particularly the
N00N state, for quantum metrology: optical losses. With
conventional optical fibres, it allows establishing nearly ideal
N00N entanglement over large distances, with a considerably
increased tolerance to the loss in the channel connecting the
parties. Due to its extreme sensitivity to the overall phase between
Alice and Bob (see Supplementary Section ‘Phase behavior’ for
details), our scheme could be used for ultra-precise measurements
of the distance between Alice’s and Bob’s homodyne detectors. Its
further advantage is that there is no need to recombine the two
parts of the N00N states, thanks to the homodyne detections.

In many cases, however, it is likely that a simple laser
interferometric measurement would do better than our scheme
due to the much larger number of available photons. Our scheme
becomes advantageous in settings where the amount of light
transmitted between the two parties is limited. Suppose, for
instance, that a lossy biological medium, very sensitive to the light
intensity, is inserted in channels C and/or D. Then it will be
possible to get high-precision interferometric measurements
through this medium, with almost negligible light intensity, as
long as channels A, B and the associated homodyne detections
have a high quality.

At this stage our experiment is a proof-of-principle only, and
its application in practical settings would involve a number of
challenges—in particular, the synchronization of the photons in
channels C and D within the inverse down-conversion band-
width. Furthermore, the production of higher-order N00N states
would be required to achieve a significant practical gain over
interferometry with coherent states, which are not limited in
photon number. Our scheme can be generalized to enable
producing N00N states with an arbitrary even N. To this end, we
can use a sequence of N/2 reverse HOM measurements to subject
modes C and D to operator ĉN þ d̂N using the recipe of Kok
et al.13. An event in which the application of this operator has
been successful (all N SPCMs have clicked) implies that either C
or D initially contained at least N photons, but is unable to
distinguish which one. This means, in turn, that modes A and B
are in the |N :: 0i state. Similarly to the two-photon case, the
down-conversion amplitude g must be sufficiently low in order to
reduce the contribution of higher-order terms in the output state.
We present a detailed theoretical and numerical analysis of this
scheme in the Supplementary Section ‘Preparation of high-order
N00N states’. In particular, we find that the fidelity of the
prepared state for a given g does not strongly depend on the
losses in modes C and D. This enables preparation of high N00N
states at reasonable rates, even with quite lossy channels.

In addition to interferometry, the generalization of our scheme
to higher-order N00N states may have other applications,
based on ultraremote preparation of quantum states of light, as
illustrated by the ‘cat state’ generation presented above. In that
case, fibre transmission over long distances may be used, with
possible quantum cryptography applications. The present scheme
is therefore a valuable addition to the quantum-state engineering
toolbox, for both discrete- and continuous-variable degrees of
freedom of optical modes11,30,31.

Methods
Experimental details. We employ a pulsed Ti:Sapphire laser (Coherent Mira
900D) with a wavelength of 780 nm, mean power 1.3W, repetition rate of 76MHz
and a pulse width of B1.6 ps. Most of the laser output is directed into an lithium
triborate crystal for frequency doubling. We obtain up to 300mW second
harmonic; after subsequent spectral cleaning, about 100mW remain. Then we
implement parametric down-conversion in two periodically poled potassium
titanyl phosphate crystals in a type II spectrally and spatially degenerate, but
polarization non-degenerate configuration. The single-photon detection is
implemented using SPCMs by Excelitas. The modes entering the SPCMs are
spectrally filtered and delivered to the detectors by means of single-mode fibres,
which ensures proper preparation of the heralded photon mode26,27. Including the
filters and fibres, the quantum efficiency of these detectors is estimated as
ZSPCMB0.15.

Without losses, the experimental double-coincidence event rate is B100Hz,
which corresponds to a probability of B10� 6 per pulse and the down-conversion
amplitude g2B0.007. With a total of 10 dB loss equally distributed between modes
C and D, the coincidence rate decreases by a factor of 10 due to the reduction of the
equivalent SPCM efficiency down to B0.1.

A total of 500,000 quadrature samples have been acquired in each setting for the
tomographic reconstruction of the N00N state. The density matrix was obtained
from these data using the iterative maximum likelihood algorithm32–34, which in
case of N00N states requires the knowledge of the phase difference between two
local oscillators at each moment in time. This information was collected from the
quadrature correlations exhibited by |1 :: 0i state (Fig. 4, top), which was produced
upon a single click of one of the SPCMs. The rate of these events was about
100 kHz, which allowed us to evaluate the quadrature correlation and hence the
phase at any moment in time with a sufficient precision.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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