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Palladium/N-heterocyclic carbene catalysed regio
and diastereoselective reaction of ketones with allyl
reagents via inner-sphere mechanism
Da-Chang Bai1, Fei-Le Yu1, Wan-Ying Wang1, Di Chen1, Hao Li1, Qing-Rong Liu1, Chang-Hua Ding1, Bo Chen2

& Xue-Long Hou1,3

The palladium-catalysed allylic substitution reaction is one of the most important reactions in

transition-metal catalysis and has been well-studied in the past decades. Most of the

reactions proceed through an outer-sphere mechanism, affording linear products when

monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed

protocol for reactions of b-substituted ketones with monosubstituted allyl substrates, simply

by using N-heterocyclic carbene as ligand, leading to branched products with up to three

contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities.

The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic

studies by both experiments and density functional theory (DFT) calculations reveal that the

reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on

Palladium followed by C–C bond-forming [3,3’]-reductive elimination.
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T
he palladium-catalysed allylic substitution reaction of
allyl reagents with nucleophiles has become one of the
most important carbon–carbon and carbon-hetero-atom

bond-forming processes1–4. In most cases, the reaction proceeds
through an outer-sphere mechanism, in which the nucleophile
attacks the allyl carbon of p-allyl-Pd complex, and affords linear
products when monosubstituted allyl reagents are used1–12. Less
commonly, the reaction can follow an inner-sphere mechanism;
in this case, the nucleophilic attack is targeted at Pd, forming an
intermediate at first, followed by reductive elimination13–20.
Recently, several studies on Pd-catalysed allylic substitution/
coupling reactions via inner-sphere mechanism have been
reported21–33. The key C–C bond-forming step was proposed
to occur via [3,3’]-reductive elimination in an allyl-Pd-allyl or
allyl-Pd-nucleophile intermediate. For example, Stoltz27 achieved
the construction of a chiral quaternary carbon centre at the
a-position of cyclic ketones using unsubstituted allyl carbonates
in an intramolecular decarboxylative process (Fig. 1a)25–27.
Morken realized excellent regio- and enantio-selectivities in the
cross-coupling of monosubstituted allyl reagents with allyl

boronates under Pd catalysis (Fig. 1b)28–32. These results reveal
the unique character of the inner-sphere mechanism; in
particular, branched products can be formed as major products
when monosubstituted allyl reagents are used21,28. Pd-catalysed
allylic substitution via an inner-sphere mechanism also
found applications in organic synthesis26,32. However, so far
only limited reaction modes following an inner-sphere process
have been explored, that is, coupling of diallyl-Pd-species21,28–31

and an intramolecular decarboxylative process, with narrow
substrate scope for the latter (Fig. 1a)27,34. The development of
more reaction modes with wider substrate scope remains a great
challenge.

Recently, we developed a regio- and chemo-tunable
Pd-catalysed allylic alkylation with nitrogen nucleophiles, yield-
ing branched allylated products with excellent regioselectivity;
mechanistic investigations including DFT calculations support an
inner-sphere mechanism for the reaction (Fig. 1c)33. In further
investigations, we realized (with an oxygen nucleophile)
Pd-catalysed allylic alkylation of monosubstituted allyl reagents
by acyclic ketones. Acyclic compounds having up to three
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Figure 1 | Examples of Pd-catalysed allylic alkylation following an inner-sphere mechanism. (a) Pd-Catalysed intramolecular decarboxylative allylic

alkylation. (b) Pd-catalysed allyl–allyl cross-coupling reaction, branched products with two stereocentres were given. (c) Pd-catalysed allylic alkylation with

nitrogen as nucleophile affording branched products with two stereocentres. (d) Pd-catalysed allylic alkylation with oxygen as nucleophile affording

branched products with three contiguous stereocentres.
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contiguous stereocentres can be obtained with excellent regio and
diastereoselectivities (Fig. 1d). The key to high selectivity is the
use of an N-heterocyclic carbene (NHC) as ligand. In this paper,
we would like to report this new type of Pd/NHC-catalysed allylic
alkylation (Fig. 1d) as well as mechanistic studies on the reaction
by both experiments and DFT calculations. The scope of the
protocol in organic synthesis is also examined preliminarily.

Results
Reaction design. To test whether oxygen nucleophiles are
also compatible, as nitrogen nucleophiles are, in the Pd/PPh3-
catalysed allylic substitution to give branched products via an
inner-sphere mechanism33, we began our investigations with the
reaction of propiophenone 1a with cinnamyl tert-butyl carbonate
2a, using [Pd(Z3-C3H5)Cl]2 and PPh3 as catalyst and t-BuOK or
lithium diisopropylamide as base. Unfortunately, the linear
product was obtained as the major component in both cases,
with branched to linear ratios (B/L) of 6/94 and 15/85,
respectively, despite high yields (95% and 98%). Considering
the similar coordination chemistry of NHC and phosphine
ligands but different stereochemistry of reactions using the
two types of ligands35, we envisioned that using NHC ligand,
instead of PPh3, in the current reaction might lead to
predominantly branched product. Indeed, with imidazolium
salts IPr �HCl (L1), the precursor to corresponding NHC ligand
on deprotonation, branched product 3a was generated in 95%
yield with a B/L ratio of 96/4 in the reaction of 1a with 2a
(entry 1, Table 1). Since NHC has a better performance than
PPh3, leading to highly selective formation of branched product
in the reaction, only NHC ligands were used in the subsequent
reaction condition screening.

The diastereomeric ratio (dr) for the reaction of 1a and 2a
in the presence of an NHC ligand, determined by the ratio of
syn-3/anti-3, was modest, 20/80 (entry 1, Table 1). To increase
the diastereoselectivity of this reaction, ketones of substituted 1a
were tested. Reaction of butyrophenone 1b did not show any
increase in diastereoselectivity (entry 2, Table 1). Surprisingly,
when b-methyl butyrophenone 1c was use as the substrate,
the diastereoselectivity was reversed, and the syn-isomer became
the major product with a syn/anti ratio of 85/15 (entry 3 versus
entry 1, Table 1).

Next, we examined the effect of the structure of the NHC
ligand on the diastereoselectivity of this reaction. Using an
NHC ligand with a less sterically bulky aryl substituent, derived
from L2, or 1,3-di-tert-butyl NHC, derived from L3, led to
predominant linear product in low yield (entries 4 and 5,
Table 1). A lower yield was obtained if the reaction was run at
lower temperature (entry 6 versus entry 3, Table 1). Using an
NHC ligand derived from S-IPr �HCl (L4), a dihydrogenated
form of IPr �HCl (L1), high yields with excellent regio and
diastereoselectivities were achieved (entry 7, Table 1; see
Supplementary Table 5 for details). These results show that the
structure of the NHC ligand is critical in controlling the regio and
diastereoselectivities of the reaction.

In addition to ketones, some other carbonyl compounds were
also examined in our catalyst system. Reaction of butyryl
trimethylsilane 1ba led to 3ba in 72% yield with excellent
regio and diastereoselectivities (entry 8, Table 1). Similar yield
and B/L ratio, yet much lower dr were observed in the reaction of
b-methyl substituted butyryl trimethylsilane 1ca (entry 9,
Table 1). No desired product was observed when N-acyl pyrrole
1bb (entry 10, Table 1) or ethyl acetate (not shown in the table)
was used as substrate.

Table 1 | Influences of reaction parametes on Pd-catalysed reaction of ketone 1a–c with allyl substrate 2a*.

Entries 1 L T (oC) 3/4w drw Yield (%)z

1 1a L1 50 96/4 20/80 95 (3a)
2 1b L1 50 95/5 30/70 98 (3b)
3 1c L1 50 95/5 85/15 83 (3c)
4 1c L2 50 15/85 — 32 (3c)
5 1c L3 50 o5/95 — 33 (4c)
6 1c L1 RT 92/8 92/8 50 (3c)
7 1c L4 RT 99/1 92/8 98 (3c)
8 1ba L4 30 91/9 7/93 72 (3ba)
9y 1ca L4 30 91/9 70/30 70 (3ca)
10 1bb L4 30 — — NR

NR, no reaction; RT, room temperature; T, temperature.
*Reaction conditions: 1/LiHMDS/2a/[Pd(Z3-C3H5)Cl]2/ligand¼ 200/200/100/2.5/5; 0.1 M of ketone 1.
wDetermined by 1H NMR, dr is the ratio of syn-3/anti-3.
zIsolated yield.
yThe configuration for major component of 3ca is not determined.
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We also investigated preliminarily the enantioselectivity of
reactions of 1b and 1c using chiral NHCs. So far, only poor
enantioselectivity with lower regio and diastereoselectivities has
been achieved (see Supplementary Tables 7 and 8 for details).
Realizing highly asymmetric induction in this type of reaction is
the task of further investigations.

Using b-substituted ketones to construct three stereocentres.
The structural motif of three contiguous stereocentres in an
acyclic system can be found in a wide range of natural products,
pharmaceuticals and synthetic building blocks36–38. In view of
above results and following investigations on the mechanism
(vide infra, Mechanistic investigations), we reasoned that highly
selective formation of three contiguous stereocentres in this
reaction might be possible if we introduce a chiral centre at the b
position of 1c by changing one methyl at the b position to other
groups. Following this thought, reactions of ketones 1 with
different b-substituents were carried out. While using ketones 1d
and 1e with, respectively, nhexyl and ethyl at the b position led to
very low diastereoselectivities (entries 1 and 2, Table 2), using
b-phenyl substituted ketone 1f results in 98% branched product
(syn, anti)-3f with 86/14 dr (entry 3, Table 2; see Supplementary
Table 6 for details). These results seemed to indicate that
unsaturated groups at the b position are necessary to achieve high
dr, presumably due to some favourable interaction between the
unsaturated group at the b position of ketone and the phenyl on
allyl39–41. It could be deduced that high stereoselectivity might
also be obtained if other unsaturated groups were installed at the
b position of ketone. Indeed, higher stereoselectivity was observed
in reactions of b-alkenyl ketone 1g (ref. 42) and 1h, and b-alkynyl
ketone 1i (ref. 43), with dr of 77/23, 86/14 and 93/7, respectively
(entries 4–6 versus entry 1, Table 2). Note, also the high
yields and regioselectivity for 3g (92%, B/L¼ 93/7) and 3i
(99%, B/L¼ 95/5), and somewhat lower yield and regioselectivity
of reaction of Z-type b-alkenyl ketone 1h, compared with those of
reaction of E-type b-alkenyl ketone 1g.

Substrate scope. With the optimized reaction conditions, the
compatibility of both ketone substrates and allyl reagents in
the reaction was studied. As depicted in Table 3, the reaction is

efficient for a wide range of b-substituted ketones, 1f–1l,
affording the branched products 3f–3l bearing three contiguous
stereocentres in nearly quantitative yields, with excellent regio
and diastereoselectivities. Specifically, not only b-phenyl ketones
(1f and 1j), but also b-alkynyl ketones with a variety of terminal
substituents on alkynyl (1i, 1k and 1l) are suitable substrates for
this reaction. Notably, ketones with sterically bulky substituents
also react smoothly to produce the corresponding allylated
product 3y in high yield with high diastereoselectivity, despite
the somewhat lower B/L ratio of 85/15. Regarding the allyl
reagents, we first examined mono-aryl substituted allyl reagents
with both electron-withdrawing and donating substituents. With
b-triisopropylsilylacetylenyl ketone 1l as nucleophile, allylated
product 3l–3v were obtained in excellent yields (4 90%) with
excellent regio and diastereoselectivities (B/L490/10 and
dr493/7). Using b-methyl butyrophenone 1c as nucleophile,
equally good yields and selectivities were obtained for 3ca–3ce.
We also found that furanyl- and naphthyl-substituted allyl
reagents are compatible in the reaction, delivering 3w and 3x.
Note that the structures of one enantiomer of each of (±)-syn-3c
and (±)-(syn, anti)-3f have been determined by X-ray
crystallography and are shown in Table 3.

Applications. To demonstrate the usefulness of this protocol,
gram-scale reactions were carried out. Under optimal conditions,
reaction of 1,6-enyne 1i can be scaled up, affording 1.34 g of
product 3i, with almost no decrease in yield and selectivities
(Fig. 2a). Our protocol can be used to allylate the C16 position of
estrone 3-methyl ether 6, providing product 7 in 96% yield
with 84/16 B/L and 91/9 dr (Fig. 2b). Since optically active
b-substituted ketones are easily available44–49, the capacity of this
reaction for chirality transfer from optically active substrates was
explored (Fig. 2cd). Products (3R, 4S, 5S)-3j and (3R, 4S, 5S)-3l
were obtained in excellent yields with excellent regio and
diastereoselectivities without loss of optical activity when optical
active ketones (S)-1j (ref. 47) and (S)-1l (ref. 48) were used.

1,6-Enynes are important and versatile synthetic inter-
mediates50,51. Thus, further transformations of the 1,6-enyne
product 3i, generated by the titled Pd/NHC-catalysed allylic
substitution, were studied. Subjecting 3i to Pauson–Khand
reaction conditions leads to bicyclo[3.3.0]octane 8, which

Table 2 | Reaction of ketone 1d–I with allyl substrate 2a*.

Entries 1 3/4w drw Yield (%)z

1 1d 95/5 57/43 56 (3d)
2 1e 98/2 60/40 98 (3e)
3 1f 95/5 86/14 98 (3f)
4 1g 93/7 77/23 92 (3g)
5 1h 88/12 86/14 56 (3h)
6 1i 95/5 93/7 99 (3i)

*Reaction conditions: 1/LiHMDS/2a/[Pd(Z3-C3H5)Cl]2/S-IPr �HCl¼ 200/200/100/2.5/5; 0.1 M of ketone 1; 30 �C, 24 h.
wDetermined by 1H NMR, dr is the ratio of (±)-(syn,anti)-3/other diastereo isomers.
zIsolated yield.
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Table 3 | Substrate scope of the reaction*.

*Reaction conditions:1/LiHMDS/2/[Pd(Z3-C3H5)Cl]2/S-IPr �HCl¼ 200/200/100/2.5/5; 0.1 M of ketone 1; T¼ 30oC; B/L and dr was determined by 1H NMR, dr is the ratio of (±)-(syn,anti)-3/other
diastereoisomers; Isolated yield. wT¼ 50 oC. zSolvent¼THF. yOBoc of 2 was replaced with OP(OEt)2. ||The yield was determined by 1H NMR.
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has been found to be a core skeleton in many natural
products52,53, in 70% yield with excellent stereoselectivity
(Fig. 3a). Also, desilylation of 3i with tetra-n-butylammonium
fluoride, followed by intramolecular cyclization in the presence of
ethylene and Grubbs II catalyst, yields tetra-substituted
cyclopentene (2S, 3S, 4R)-10 with three contiguous chiral
centres in 83% yield without loss of optical activity (Fig. 3b).

The 1-vinyl cyclopentene framework in 10 is a useful building
block in the synthesis of many complex molecules54–57.

Mechanistic investigations. To shed some light on the reaction
mechanism, deuterium-labelled and cyclic allyl reagents were
used as probes. According to the known stereochemistry
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Pd-catalysed allylic substitution1–3, (S)-(Z)-3 and (R)-(E)-3 will
be formed if the reaction of deuterium-labelled, optically active,
allyl ester (S)-(Z)-5 proceeds via an inner-sphere mechanism,
while (R)-(Z)-3 and (S)-(E)-3 will be afforded when the
outer-sphere mechanism is at work (Fig. 4).

When (S)-(Z)-5 was subjected to reaction with ketone 1a
(Fig. 5a)33, only (R, R)-(E)-3a and (S, S)-(Z)-3a were
obtained after chiral HPLC separation, which clearly suggests
that the reaction proceeds via an inner-sphere mechanism.
Similarly, the reaction of (S)-(Z)-5 with b-substituted ketones
(S)-1h yielding (3R, 4S, 5S)-(E)-3i (Fig. 5b), also supports

that the reaction proceeds via an inner-sphere mechanism. In
addition, the fact that the reaction of cis-disubstituted
cyclohexene 11 afforded trans-product 12 in 73% isolated
yield as a single diastereomer (determined by 1H NMR
spectroscopy), again, confirms the inner-sphere mechanism
(Fig. 5c)7,10.

To further understand the reaction mechanism, DFT
calculations were carried out on both inner-sphere and outer-
sphere pathways (Fig. 6). The energy reference is set as separated
reactants (that is, lithium enolate and allyl-Pd complex). In outer-
sphere pathways, the transition states leading to linear product
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(TS-outer-linear) and branched product (TS-outer-branched)
were calculated to be, respectively, 33.9 and 41.3 kcal mol� 1

above the separated reactants. These very high-reaction barriers
suggest that the outer-sphere mechanism is unlikely to be
operative. In addition, if an outer-sphere pathway were followed,
linear product would be predicted to be formed exclusively, which
contradicts experimental observations. In inner-sphere pathways,
lithium enolate first reacts, exothermically, with allyl-Pd complex
to yield allyl-Pd enolate (IM1 or IM2) and tBuOLi; then, [3,3’]
reductive elimination takes place in the allyl-Pd enolate. The
transition state for the branched product (TS-inner-branched)
was computed to be 14.9 kcal mol� 1 above separated reactants,
much lower in energy than TS-inner-linear and the two transition
states in outer-sphere pathways. These calculations suggest that
the branched product is the kinetically favourable one and should
be formed as the major product in experiment through an
inner-sphere mechanism. We note here previous theoretical work
on the inner- and outer-sphere mechanisms of allylic alkylation
of lactones58.

To explain the stereochemistry of the reaction, possible
conformations of the favourable transition state (TS-inner-
branched) of the inner-sphere pathway were explored by DFT
calculations (Fig. 7). We find that for the reaction of ketone 1b,
the seven-membered ring transition state with a chair conforma-
tion is favoured over the boat transition state by 1.4 kcal mol� 1.
The favourable chair transition state leads to anti product, in
agreement with experiment. On the other hand, the boat
transition state was predicted to be lower in energy than the

chair transition state by 2.0 kcal mol� 1 for the reaction of ketone
1c, suggesting that syn product should be the major one. The
reversal of diastereoselectivity, predicted by calculations and
observed in experiments, on going from reaction of 1b to 1c, is
probably associated with 1,3-diaxial interaction in the chair
transition state. The steric encumbrance in the chair transition
state for 1c, arising from the phenyl on the allyl and one methyl at
the b position of the enolate, might destabilize the chair transition
state, making it higher in energy than the boat transitions state.
However, such, presumably unfavourable, 1,3-diaxial interaction
is absent in the chair transition state for 1b.

In summary, a novel, simple and effective Pd/NHC-catalysed
protocol has been developed to produce acyclic a-allylated
ketones bearing three contiguous stereocentres with excellent
regio and diastereoselectivities, starting with readily available
ketones and allyl reagents. This reaction features facile yet highly
efficient Pd catalysis, the use of commercially available NHC
ligands and wide substrate scope. It was found that substituents
on the NHC and b-substituents on ketones have a critical impact
on the stereochemistry of the reaction. The synthetic applications
of the methodology have also been examined preliminarily.
The products from current protocol are likely to be useful in
the synthesis of more complex molecules. Mechanistic
investigations using stereo-probing allyl reagents and DFT
calculations suggest that the reaction proceeds via an inner-
sphere mechanism. DFT calculations also showed that the
diastereoselectivity of this reaction is highly dependent on the
b-substituent on ketone.
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Methods
Materials. For 1H and 13C NMR spectra of the compounds in this article, see
Supplementary Figs 1–66. For X-ray analysis data of 3c, 3f, 7 and 8, see
Supplementary Tables 1–4. Details of DFT calculations see Supplementary
Figs 67–73 and Supplementary Information Computational methods. For
coordinates and energies of calculated structures, see Supplementary Data 1.

General. Commercially available reagents were used without further purification.
Solvents were purified before use according to the standard methods. Unless
otherwise noted, all reactions were carried out under an atmosphere of argon and
flame-dried glassware with standard vacuum-line techniques. NMR spectra are
recorded at room temperature on 400 MHz Varian-400, 400M Agilent-400 or
300 MHz Bruker AM-300 NMR spectrometers. The chemical shifts for 1H NMR
are reported in p.p.m. from tetramethylsilane with the solvent resonance as the
internal standard (7.26 p.p.m. for CHCl3). Data are reported as follows: chemical
shift, multiplicity (s¼ singlet, d¼ doublet, t¼ triplet, q¼ quartet, sept¼ septet,
bs¼ broad singlet, m¼multiplet), coupling constants (Hz) and integration.
Chemical shifts are reported in p.p.m. from tetramethylsilane with the solvent
resonance as the internal standard (CDCl3: 77.15 p.p.m.). Infra-red spectra were
measured in cm� 1. HRMS were carried out on the Finnigan MAT 8430
spectrometer. Thin-layer chromatography was performed on pre-coated glassback

plates and visualized with ultraviolet light at 254 nm. Flash column chromato-
graphy was performed on silica gel.

General procedure for the palladium-catalysed allylic alkylation. A dry Schlenk
tube was flame-dried and flushed with Argon. Ketone 1 (0.4 mmol) and toluene
(2.0 ml) were added into the dry Schlenk tube. LiHMDS(1.0 M in THF, 0.4 ml,
0.4 mmol) were added at 0 �C and stirred at room temperature for 30 min. In a
separated flask, [Pd(Z3-C3H5)Cl]2 (1.9 mg, 0.005 mmol), S-IPr �HCl (4.2 mg,
0.005 mmol) and toluene (1.0 ml) were mixed, followed by addition of t-BuOK
(1.0 M in THF, 25 ml, 0.025 mmol) at 0 �C. The resulting mixture was stirred at
room temperature for 30 min, then added to the ketone solution. The allylic
substrate 2 (0.2 mmol) and toluene (1.0 ml) was then added and the mixture was
stirred at corresponding temperature. After the reaction was complete, the reaction
mixture was quenched by H2O (0.5 ml). The solution was dried (anhydrous
Na2SO4) and then filtered through a 0.5-inch plug of silica gel (eluting with EtOAc)
to remove the solid. The crude reaction mixture was concentrated under reduced
pressure. CDCl3 (0.7–0.8 ml) was added to dissolve the crude reaction mixture, and
mesitylene (23ml) was added as an internal standard. The regio and diastereos-
electivity was then determined by 1H NMR spectroscopy. After this analysis, the
crude reaction mixture was purified by flash column silica gel chromatography
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(eluting with petroleum ether/toluene 1/1 or petroleum ether/ethyl acetate 10/1) to
afford the product 3. For additional procedures see Supplementary Methods.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article (and Supplementary Information files), and
also are available from the corresponding author on request.
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