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Any physical quantum device for quantum information processing (QIP) is subject to errors 
in implementation. In order to be reliable and efficient, quantum computers will need error-
correcting or error-avoiding methods. Fault-tolerance achieved through quantum error 
correction will be an integral part of quantum computers. of the many methods that have been 
discovered to implement it, a highly successful approach has been to use transversal gates and 
specific initial states. A critical element for its implementation is the availability of high-fidelity 
initial states, such as |0〉 and the ‘magic state’. Here, we report an experiment, performed in a 
nuclear magnetic resonance (nmR) quantum processor, showing sufficient quantum control 
to improve the fidelity of imperfect initial magic states by distilling five of them into one with 
higher fidelity. 
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Quantum information processing (QIP)1–4 promises a dra-
matic computational speed-up over classical computers for 
certain problems. In implementation, the physical quantum 

devices for QIP are subject to errors owing to the effects of unwanted 
interactions with the environment or quantum control imperfec-
tions. In order to be reliable and efficient, quantum computers will 
need error-correcting or error-avoiding methods. One method to 
achieve fault-tolerant quantum computation is to encode the state 
of a single quantum bit (qubit) into blocks of several qubits that 
are more robust to errors. On the basis of this idea, quantum error  
correction codes, the theory of fault-tolerant quantum computa-
tion and the accuracy threshold theorem have been developed5–7.  
A key element for fault-tolerant quantum computation is to avoid 
bad error propagation. One straightforward protocol is to use trans-
versal gates where an error occurring on the kth qubit in one block 
can only propagate to the kth qubit in the other blocks. A highly suc-
cessful approach to achieve fault-tolerant universal quantum compu-
tation is based on quantum error correcting codes, with gates from 
the Clifford group that can be applied transversally8,9. Unfortunately, 
they are not universal10,11 and they must be supplemented with the 
preparation of not only the |0〉 state but also another type of state 
such as a ‘magic state’12–16. Thus, a critical element for fault-tolerance 
is the availability of high-fidelity magic states. Consequently, in the 
pursuit of experimental fault-tolerant quantum computation, it is  
important to determine whether we have sufficient experimental 
control to prepare these magic states. In general, these will be pre-
pared with some imprecision. The states can be improved by distill-
ing many magic states to produce a fewer number of them which 
have higher fidelity. Here, we report an experiment, performed in a 
seven-qubit nuclear magnetic resonance (NMR) quantum proces-
sor, showing sufficient quantum control to implement a distillation 
protocol based on the five-bit quantum error correcting code12,17 that 
uses only Clifford gates. The fidelity of imperfect initial magic states 
is improved by distilling five of them into one with higher fidelity.

Results
Theoretical protocol. The Clifford group is defined as 
the group of operators that maps the Pauli group onto 
itself under conjugation. The Pauli group is defined as1 
{ , , , , , , , }± ± ± ± ± ± ± ± i i i ix x y y z zs s s s s s  where σx, σy , σz, and 
  denote the Pauli matrices and identity operator, respectively. The 
Clifford group on n qubits is a finite subgroup of the unitary group 
U(2n) and can be generated by the Hadamard gate H, the phase-shift 
gate Sph, and the controlled-not gate CNOT represented as
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in the computational basis {|0〉, |1〉}.
An arbitrary one-qubit state can be represented in the Bloch 

sphere as
 r s s s= + + +( )/ p p px x y y z z 2

where px, py and pz are the three polarization components of the 
state. The magic states12 are defined as the 8 states with px = ±1 3/ , 
py = ±1 3/ , pz = ±1 3/  (T-type) and the 12 states with px = 0, 
py = ±1 2/ , pz = ±1 2/ ; py = 0, pz = ±1 2/ , px = ±1 2/ ; pz = 0, 
px = ±1 2/ , py = ±1 2/  (H-type). These states are called ‘magic’ 

because of their ability, with Clifford gates, to enable universal 
quantum computation and the ability to be purified, when it has 
been prepared imperfectly, using only Clifford group operations12. 
In our current work, we distill an imperfect magic state into a  
T-type magic state represented as 

r s s sM x y z= + + +  ( )/ / .3 2

(1)(1)

(2)(2)

(3)(3)

To quantify how near a state ρ is to the magic state, we define the 
m-polarization (polarization in the direction of the magic state)

 p Tr p p pM x y z= − = + +2 1 1
3

[ ] ( ).r r

The distillation algorithm requires five copies of a faulty magic 
state ρin = ρ5 as the input state. In the original proposal12, the 
measurement of four stabilizers Si (i = 1, …, 4) is applied to ρin, 
where S x z z x1 = ⊗ ⊗ ⊗ ⊗s s s s , S x z z x2 = ⊗ ⊗ ⊗ ⊗ s s s s ,  
S x x z z3 = ⊗ ⊗ ⊗ ⊗s s s s  and S z x x z4 = ⊗ ⊗ ⊗ ⊗s s s s . 
If the outcome of any of these observables is  − 1, the state is dis-
carded and the distillation fails. If the results of all the measure-
ment are  + 1, corresponding to the trivial syndrome, one applies the 
decoding transformation for the five-qubit error-correcting code17 
to the measured state and obtains the output state ρdis|0000〉〈0000| 
where ρdis has the output m-polarization pout. If the input m-polari-
zation p pin > = ≈0 3 7 0 655/ . , distillation is possible and pout > pin 
and produces a state nearer to the magic one. In an iterative manner, 
it is possible to obtain the output m-polarization approaching 1.

As NMR QIP is implemented in an ensemble of spin systems, 
only the output of expectation values of ensemble measurements18 
are available. Consequently, the above projective measurement of the  
stabilizers cannot be implemented in our experiment. However,  
as the decoding operation is just a basis transformation from one  
stabilizer subspace to another, it is possible to evaluate the result of 
the distillation after decoding. Therefore, we directly apply the decod-
ing operation to the input state ρin, and the output state becomes a 
statistical mixture of 16 possible outcomes represented as 

r q rout = | |
=0

15

i
i i i i∑ ⊗ 〉〈

where θi is the probability of each outcome, and |i〉 = |0000〉, |0001〉, 
…, |1111〉, for i = 0, 1, 2, …, 15, noting ρ0 = ρdis. Now measuring |0〉 
on all four qubits in |i〉 indicates a successful purification. We can 
obtain θi and ρi using partial quantum state tomography19.

Experimental results. The data were taken with a Bruker 700 MHz 
spectrometer. We choose 13C-labelled trans-crotonic acid dissolved in 
d6-acetone as a seven-qubit register. The structure of the molecule and 
the parameters of qubits are shown in Table 1. We prepare a labelled 
pseudo-pure state ρs = 00σz0000 using the method in ref. 20, where 
0 = |0〉〈0| and the order of qubits is M, H1, H2, C1, C2, C3, C4. One should 
note that we are using the deviation density matrix formalism.

We prepare an initial imperfect magic state with three equal 
polarization components by depolarizing the state 0 = +( )/ sz 2 . 
First, we apply a π/2 pulse to rotate the state 0 to ( )/+sx 2  and 
then another π/2 pulse along direction [cos a, sin a, 0] is applied. We 
use phase cycling to average the x and y components of the state to 
zero, and therefore the polarization of the spin initially in the state 0 
is reduced. The depolarized state is represented as

( sin )/ .−sz a 2
   

Finally, we apply a rotation with angle arccos ( / )1 3  about the 
direction [ / , / , ]−1 2 1 2 0  to obtain an imperfect magic state

 r s s s= + + +  p x y z( )/ /3 2

where p =  − sin a. The evolution of σz in the preparing ρ is shown 
in Figure 1. By doing the above operation for qubits M, C1, C2, C3, 
C4, respectively, we obtain five copies of the imperfect magic states 
ρin = ρ5. Exploiting partial state tomography, we measure p for each 
qubit and use the average as the input m-polarization pin for ρin.

The circuit for the distillation operation is shown in Figure 2. 
C1 carries the distilled state after the distillation. With partial state 
tomography, we can determine θi and ρi in equation (5), where 
ρ0 = ρdis, from which the output m-polarization pout is obtained. The 
experimental results for magic state distillation for various pin are 

(4)(4)

(5)(5)

(6)(6)

(7)(7)
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shown in Figure 3, where a and b show the measured pout and θ0, 
respectively. The straight line in a represents the function pout = pin.  
The data points above the line show the states that have been  
distilled experimentally.

The implementation time of the distillation procedure is about 
0.1 s, a non-negligible amount of time (10%) compared with coher-
ence time (T2 in Table 1). Hence, the decay of the signals due to the 
limitation of coherence time is an important source of errors. We 
extract pout by measuring the ratio of θ0 pout and θ0, where these two 
factors are obtained by various single coherent terms in a series of 

experiments. We have assumed that the terms have the same amount 
of decoherence. The results of simulations with dephasing rates T2* 
and T2 are shown in Figure 3 as blue squares and red triangles. The 
simulation results show that the decoherence rates are long enough 
to allow the distillation and suggest that the deviation of θ0 from 
the theoretical expectation can be mainly attributed to relaxation 
effects. Additionally, imperfection in the shaped pulses and inho-
mogeneities of magnetic fields also contribute to errors.

Discussion
We modify the original distillation protocol by avoiding the projective 
measurement, which is not possible to implement in the NMR QIP’s. 
We exploit partial state tomography to obtain each output in the  
mixture of the outcomes after the distillation, and only in a post-
processing step do we choose the one we need. Although we could 
access the |0000〉〈0000| subspace using a procedure similar to the 
pseudo-pure state preparation, the method would take substantially 
longer time and would be more error-prone. In this work, we aim for a 
quantitative result, that is, increasing the magic state purity. We need to 
minimize the readout manipulations to avoid control-error-induced 
distortions of the inferred final state and associated purity. Hence, we 
limited ourselves to simple high-fidelity readout procedures.

Z Z

ZZ

X X

XX

Y Y

YY

Figure 1 | The evolution of σz in the preparation of a faulty magic state 
in Bloch sphere. Arrows represent the states of the qubit. (a) A π/2 
rotation along y axis transforms σz (blue) to σx (green). (b) Another 
π/2 rotation along direction [cos a, sin a, 0] transforms σx (green) to 
σx cos2a + σy cos a sin a − σz sin a (black). In phase cycling, we apply the 
second π/2 rotation by changing a to π + a to transform σx to σx cos2 a + σy 
cos a sin a + σz sin a. After taking the average of the x and y components 
to zero, the polarization is reduced to  − σz sin a, shown as the yellow 
arrow in (c), noting that a∈[π, 3π/2]. (d) A final rotation with angle 
arccos ( / )1 3  along [ / , / , ]−1 2 1 2 0  transforms  − σz sin a (yellow) to 
− + +sin ( )/a x y zs s s 3  (red).
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Figure 2 | Gate sequence for magic state distillation. The 
sequence is constructed from the five qubit error correction code17, 
where  ± X = exp( ± iπσx/4),  ± Y = exp( ± iπσy/4) and  ± Zα = exp( − iασz/2). 
Qubits labelled as m, C1, C2, C3 and C4 are used to encode the five copies 
of the initial state. owing to the nature of the algorithm, the carbon C1 
contains the distilled magic state only when m, C2, C3 and C4 are in the 
|0000〉 state. It is important to emphasize that all gates are Clifford gates. 
The refocussing pulses (which also decouple H1 and H2) are not shown.

Table 1 | Characteristics of the molecule trans-crotonic acid.

M H1 H2 C1 C2 C3 C4 Molecular structure

m  − 1,309

OH

OH1

H2

1
2

3
4

M

H

H

H

H1 6.9  − 4,864
H2  − 1.7 15.5  − 4,086
C1 127.5 3.8 6.2  − 2,990
C2  − 7.1 156.0  − 0.7 41.6  − 25,488
C3 6.6  − 1.8 162.9 1.6 69.7  − 21,586
C4  − 0.9 6.5 3.3 7.1 1.4 72.4  − 29,398

T2(s) 0.84 0.85 0.84 1.27 1.17 1.19 1.13
T2

*(s) 0.61 0.57 0.66 1.04 0.66 1.16 0.84

The chemical shifts and J-coupling constants (in Hz) are on and below the diagonal in the table, respectively. The transversal relaxation times T2 measured by a Hahn echo and T2
* calculated by  

measuring the width of the peaks through fitting the spectra are listed at the bottom. The chemical shifts are given with respect to reference frequencies of 700.13 mHz (protons) and 176.05 mHz 
(carbons). The molecule contains nine weakly coupled spin half nuclei but consists of a seven qubit system as the methyl group can be treated as a single qubit using a gradient-based  
subspace selection20.
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In summary, we have implemented a protocol for distilling magic 
states on the basis of the five qubit quantum error correction code. 
We exploit five qubits by controlling a seven-qubit NMR quantum 
information processor. The experiment shows that we have obtained 
enough control to purify faulty magic states through distillation.

Methods
Overview of the experiment. To implement the experiment, we exploit standard 
Isech and Hermite-shaped pulses as well as numerically optimized GRAPE pulses21 
to implement single-spin operations. The GRAPE pulses are optimized to be 
robust to radio frequency (r.f.) inhomogeneities and chemical shift variations. All 
pulses are combined in a custom-built software compiler22. The compiler loads the 
information about the internal Hamiltonian and the desired unitary transforma-
tion from simple predefined building blocks. The blocks are then systematically put 
together to form a pulse sequence, ensuring that the errors in the building blocks 
do not propagate as the sequence progresses.

R.f. selection. The effect of pulse imperfections because of r.f. inhomogeneities is 
reduced by selecting signal based on r.f. power20. The signal selection is achieved 
by spatially selecting molecules from a small region in the sample. The method 
is similar to imaging methods23 and has been used in previous works20. Here, we 
substitute the original pulse sequence proposed in ref. 20 by a single GRAPE pulse 
to optimize the performance. Besides reducing r.f inhomogeneities, the spatial 
selection of spins can also reduce the static field inhomogeneities and therefore 
reduces the loss of signal during the experiment24. We have found that the  

effective relaxation time (T2*) of spins after the r.f. selection increases significantly, 
for example, up to a factor 2 for some spins.

Partial state tomography. We use the spectra obtained from the labelled pseudo-
pure state ρs = 00σz0000 shown in Figure 4 as a phase reference and to normalize 
the signals in C1 and C2 spectra, for measuring the initial and output m-polariza-
tion. To obtain the reduced density matrix of C1 through the partial state tomogra-
phy, we expand equation (5) as a sum of product operators19, and represent ρi as 

r s s si i x x i y y i z zI p p p= + + +1
2
( )., , ,

In the expansion, there are 128 terms that are required to be determined by  
the experiment.

The coefficients of such expansion can be directly related to the measurable 
spectral amplitudes19. On the other hand, such coefficients can also be related to 
the relevant parameters of equation (5), that is, pi,x, pi,y, pi,z and θi for i = 0, 1, 2, 
…, 15. The relation between these parameters and the NMR observables can be 
expressed by the set of linear equations

 
C A R= × .

The nth element, C(n), of the column vector C is the coefficient related to the operator 
s s s s sz
n

z z
n

z
n

z
nI s4 1 2 3  with the order of qubits M, H1, H2, C1, C2, C3, C4, where s can be 

one element of the Pauli group {σx, σy, σz, I} and the vector n n n n n= ( , , , )1 2 3 4  is the 
four digit binary representation of the integer n − 1. For s = σx, σy, σz and I, R(n) = θnpn,x, 
θnpn,y, θnpn,z and θn, respectively. The elements of the matrix A  are given by

 
A k m i

kimi( , ) ( ) .= −=Π 1
4 1

Providing that we have all necessary coefficients measured, we can reconstruct 
the distilled states using the following approach. First, we fit the NMR spectral lines 

(8)(8)

(9)(9)

(10)(10)
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Figure 4 | Pseudo-pure state NMR spectra. (a, b) spectra of C1 and C2 
obtained by π/2 readout pulses when the system lies in the labelled pseudo-
pure state ρs = 00σz0000. The vertical axes have arbitrary but the same units.
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Figure 5 | Spectrum of C1 after the completion of distillation for pin = 0.95. 
The spectra are divided in four different parts shown as (a–d) for better 
visualization. The vertical axes have arbitrary but the same units. The 
experimentally measured, fitting and ideal spectra are shown as the red, 
black and blue curves, respectively.
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Figure 3 | Experimental results after the completion of magic state 
distillation. output m-polarization of the faulty magic state (a) and 
the probability θ0 (b) of finding this state in the mixture of outcomes 
(see equation (5)) as a function of the input m-polarization of the initial 
faulty magic state. The experimental data are represented by the filled 
circles and the error bars are estimated from the uncertainty of the fitting 
parameters. The line in a represents the function pout = pin. The experimental 
points above the line show the states that have been distilled, whereas 
the points below the line show the states that cannot be distilled in the 
protocol. The theoretical prediction is represented by the black solid 
curves. The blue squares and red triangles, connected by dashed lines for 
visual convenience, are the simulation results where the dephasing rates 
are chosen as T2* and T2 (Figure 1), respectively. The effective T2 during 
the experiment should be similar to the Hahn echo T2. The deviation can 
be attributed to other error sources (see text). The dephasing times of 
H1 and H2 actually do not influence the results because H1 and H2 can be 
effectively assumed in 0 and σz during the whole experiment, respectively.
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to the yield complex amplitudes for measuring all necessary coefficients19. Figure 5 
illustrates the spectra of C1 after the completion of distillation for pin = 0.95, where 
the experimentally measured, fitted and ideal spectra are shown as the red, black 
and blue curves, respectively. Then the state (equation (5)) is reconstructed by 
solving the set of equation (9). Our calculation shows that four readout operations 
are sufficient to determine all coefficients: first, read out on C1; second, read out on 
C1 after the application of a π/2 pulse; third, read out on C2 after the application of 
a π/2 pulse; and forth, read out on C2 after a polarization transfer from H1 to C2. 
The last two readout operations are sufficient to measure all θi, and the first two are 
used to measure θiρi. The errors for the coefficients, as well errors for pi,x, pi,y and pi,z 
and θi, are estimated from the uncertainty of the fitting parameters. The measured 
initial and output m-polarization, as well as θi and ρi, are listed in Supplementary 
Tables S1–S10. The comparison of the various measured ρ0 with the theory is 
shown as equations (1–7) in the Supplementary Methods. 
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