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Probing topological protection using a designer
surface plasmon structure
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Topological photonic states, inspired by robust chiral edge states in topological insulators,

have recently been demonstrated in a few photonic systems, including an array of

coupled on-chip ring resonators at communication wavelengths. However, the intrinsic

difference between electrons and photons determines that the ‘topological protection’ in

time-reversal-invariant photonic systems does not share the same robustness as its

counterpart in electronic topological insulators. Here in a designer surface plasmon platform

consisting of tunable metallic sub-wavelength structures, we construct photonic topological

edge states and probe their robustness against a variety of defect classes, including some

common time-reversal-invariant photonic defects that can break the topological protection,

but do not exist in electronic topological insulators. This is also an experimental realization of

anomalous Floquet topological edge states, whose topological phase cannot be predicted by

the usual Chern number topological invariants.
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A
topological insulator (TI) is a material that is electrically
insulating in the bulk, but conducts along the surface via
a family of ‘topological edge states’, whose existence

is guaranteed by the topological incompatibility between the
TI’s electronic band structure and the vacuum1,2. Recently, a
novel field of ‘topological photonics’ has emerged, seeking to
exploit the phenomenon of topological photonic states using
classical electromagnetic (EM) waves3,4. These states are not only
promising for defect-resistant EM wave-guiding applications,
but also provide a unique platform for fundamental studies of
the physics of topological phases that are not easily available in
the condensed-matter context.

The first demonstration of topological photonic states was in
a microwave-scale two-dimensional (2D) photonic crystal
containing magneto-optic elements biased by an external
magnetic field to break time-reversal symmetry5,6. Two
time-reversal-invariant designs, operating at optical frequencies,
followed. First, Rechtsman et al.7 demonstrated an array of 3D
coupled helical waveguides in which the paraxial propagation
along the third dimension mapped formally to a periodically
driven, or ‘Floquet,’ 2D TI8. Second, Hafezi et al.9–11 realized
a time-reversal-invariant photonic TI in the form of an on-chip
lattice of coupled optical ring resonators, engineered to simulate a
uniform magnetic field in the quantum Hall effect. Many
other designs have also been proposed recently12–14. However,
the intrinsic difference between electrons and photons
determines that the ‘topological protection’ in such time-
reversal-invariant photonic systems7,9–13,15 does not share the
same robustness as its counterpart in electronic TIs, and the
limits require further experimental study. Furthermore, the
topological phases in previous photonic systems7,9,12 all have
existing condensed-matter realizations which can already provide
experimental platforms7,10,13 to study them. The usefulness of
topological photonics to understanding fundamental topological
physics can be demonstrated with the explicit construction of a
novel topological phase that still lacks a condensed-matter
realization.

Here we report on the implementation of a topological
designer surface plasmon structure operating in the microwave
regime. Designer surface plasmons (also called ‘spoof surface
plasmons’)16–20 are EM modes analogous to the familiar plasmon
modes, which occur in metallic surfaces and resonators at
infrared and optical frequencies; these modes, however, appear
at much lower frequencies and are supported by the presence
of periodic sub-wavelength corrugations in the underlying metal
structures. They hold considerable promise in microwave- to
infrared-frequency device applications, due to the ease with which
their properties can be fine-tuned by altering the underlying
structural parameters. This highly tunable platform allows us to
probe the robustness of topological edge states under a wide
variety of different defect conditions, including those that can
break the topological protection but do not exist in electronic TIs.
Furthermore, this system is a realization of an anomalous Floquet
TI, which is a topological phase that has not yet been realized in a
condensed-matter setting.

Results
Defect selection for testing topological protection. Using the
designer surface plasmon platform, we study the performance of
the photonic TI in the presence of specific defects. First, we show
that the topological edge states are indeed immune to back-
scattering from a variety of barriers that do not reverse the
propagation of edge states, including removal of entire unit cells.
However, the path detour of propagation around defects can

deteriorate the transmission of topological edge states, because of
the intrinsic propagation loss of designer surface plasmons.

Next, we construct two kinds of common photonic defects,
without counterparts in electronic TIs, to break the topological
protection of these edge states. First of all, for electronic edge
states under topological protection in TIs, a default law is
particle number conservation1,2. In contrast, photons can be
easily annihilated or created by loss or gain in photonic systems21.
Although loss is already present in above defect studies, here we
construct an extreme case, a strongly dissipative defect that can
completely annihilate photonic topological states without
backscattering. This kind of annihilation defect has not been
observed in electronic TIs1,2. Second, it is well-known that a
‘magnetic,’ or time-reversal-breaking, defect in TIs can flip the
spin of electrons and cause backscattering for topological
edge states. In periodically driven Floquet TIs, a defect cannot
flip the time harmonic modulation on the whole structure,
and thus cannot reverse the propagation of topological edge
states. On the other hand, photonic pseudo spins/modulations
effectively realized with wave circulation can be flipped by some
common time-reversal-invariant defects. We demonstrate that
the photonic TI is not topologically robust against such defects; in
a practical photonic TI device, therefore, such defects need to be
explicitly suppressed.

It is worth noting that even though our study is based on an
anomalous Floquet photonic TI22, other photonic TIs which have
been demonstrated experimentally7,10,13 have the same features
and limitations. In particular, both the pseudo spin approach by
Hafezi et al.9 and the Floquet modulation approach by Rechtsman
et al.7 are effectively realized with wave circulation that can be
coupled to the opposite circulation. The coupled ring resonator
lattice studied by Hafezi et al.9–11 relies on having decoupled
photonic pseudo spins. Likewise, the coupled helical waveguide
arrays studied by Rechtsman et al.7 rely on propagation down one
direction along the waveguide axis, which determines an effective
circulation direction in the reduced 2D lattice as a time harmonic
modulation; backscattering along the axial direction, which would
induce the opposite circulation, is ignored. Our systematic
experimental tests of topological protection including the
possibility of flipping the pseudo spin or Floquet modulation are
therefore applicable to these systems as well.

Implementing topological designer surface plasmon structure.
The designer surface plasmon structure is shown in Fig. 1a.
It consists of closely spaced sub-wavelength metallic rods, placed
on a flat metallic surface in an arrangement similar to the
design of Hafezi et al.9–11 (but with a significant conceptual
difference in the topological phase, to be discussed in the next
section). Large rings, called ‘lattice rings’, are set in a square
lattice, and each pair of adjacent lattice rings is connected by a
smaller ‘coupling ring’. Designer surface plasmon waves can
circulate clockwise or counter-clockwise in the lattice rings,
serving as ‘pseudo spins’ in the photonic pseudo spin approach as
demonstrated in previous designs9–11. For the moment, we
consider the typical situation where the two circulations do not
couple to each other. Modes of the chosen circulation can be
excited via U-shaped input/output waveguides at the corners of
the lattice (Fig. 1b). The field pattern is recorded by a near-field
probe scanning above the metal rods, connected to a microwave
network analyser. (See Methods for details.)

Mapping to anomalous Floquet TI phase. A significant
departure from the design of Hafezi et al.9–11, where the coupling
rings were assigned different geometries for constructing an
incommensurate ‘magnetic vector potential’ to simulate the
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quantum Hall effect, is that the coupling rings in the present
lattice have identical geometries. Therefore, the lattice is entirely
commensurate, and cannot be mapped to a quantum Hall system.
Nonetheless, its band structure is topologically non-trivial21–23.
The lattice is described by a network model21–25, which can be
formally mapped onto a Floquet lattice, with the phase delay f
(as marked in Fig. 1a) in each quarter of a lattice ring playing
the role of a Floquet quasi-energy21–23. When the coupling
between adjacent lattice rings is increased beyond a critical value
(y¼ 0.25p in the parameterization of ref. 21 and ref. 22), the
lattice undergoes a topological transition from a topologically
trivial quasi-energy band structure to a topologically non-trivial
one with robust topological edge states (Fig. 2c; details to be
discussed later).

Before we elaborate on the theoretical modelling, we emphasize
that, as the most unusual feature of this topologically non-trivial
phase, the Chern numbers are zero for all bands, for each
(decoupled) circulation22. Normally, in spin-decoupled
condensed-matter and photonic systems, the net number of
topological edge states in each bandgap is equal to the sum of the
Chern numbers in all bands below the gap (‘bulk-edge
correspondence’)1–5,7,12,13,26. However, ‘anomalous Floquet TI’
phases are an exception27–29 for the following reason. Because
Floquet quasi-energies, unlike ordinary energies, are angle
variables27–29, Floquet band structures are thus not bounded
below by a ‘lowest band’. In other words, the infinite number of
bands below the gap makes it impossible to apply the usual
Chern-number-based bulk-edge correspondence. Although the
corresponding non-vanishing topological invariant of the
anomalous Floquet TI phase has recently been experimentally
confirmed30, an extended 2D lattice supporting this exotic
topological phase has not been demonstrated. Our designer
surface plasmon structure thus serves as an explicit realization of
an anomalous Floquet topological phase.

We start the theoretical modelling with a 2D illustration of this
periodic lattice as depicted in Fig. 2a. Each lattice ring acts as a
waveguide, constraining EM waves to propagate along the ring.
When the coupling through the coupling ring (scaled down
in Fig. 2a) has negligible internal backward scattering, the
mode-hopping from a lattice ring to neighbouring lattice
rings conserves the circulation. To determine the band
structure, we consider one unit cell of the lattice, shown
schematically in Fig. 2b. In each lattice ring, we define a
complex four-vector whose components are the input amplitudes

|ani¼ [a1n,a2n,a3n,a4n], and another four-vector containing the
output amplitudes |bni¼ [b1n,b2n,b3n,b4n]. These input and output
amplitudes are related by |ani¼ e� if|bni, where f is the phase
delay along a quarter lattice ring. For Bloch modes, which
satisfy |ani¼ |aKieiK?rn and |bni¼ |bKieiK?rn, the inter-cell scatter-
ing can be described by S(K)|bKi¼ |aKi, where S(K) is a unitary
scattering matrix derived from the couplings between the lattice
and coupling rings; it is periodic in K with the periodicity of the
Brillouin zone. (See Supplementary Note 1 for details.) We thus
obtain the governing scattering matrix equation

S Kð Þ bKi ¼ e� if bKij
�� ð1Þ

We can regard the eigenvectors |bKi in the above equation as
Bloch eigenstates; then f(K) plays the role of a band energy,
except for the fact that it is an angle variable (f�fþ 2p).
We refer to f as the ‘quasienergy.’

The Bloch modes of a periodic network are equivalent to the
Floquet modes of a periodically driven lattice. Suppose we have a
lattice, of the same spatial dimensions as our network, with a
Hamiltonian HK(t) that is periodic in time with period T. Then
the Floquet state with state vector |bKi and Floquet quasienergy
f(K)/T obeys exactly the governing scattering matrix equation,
provided S(K) is the time-evolution operator over one period:

S Kð Þ ¼ Texp � i
Z T

0
dtHK tð Þ

� �
ð2Þ

where T is the time-ordering operator. This relationship between
network models and Floquet lattices was pointed out in ref. 22.
One can regard S(K) as a discrete time-evolution operator acting
on a particle which is initially localized at one point in the
network (say the midpoint of a quarter lattice ring as the link);
over one time period, the particle moves along the link, tunnels
instantaneously across a node and moves midway along a
neighbouring link.

Using the above formalism, we have calculated the
quasi-energy band structure of a semi-infinite strip with 50
lattices in y direction and periodic in x direction; the results are
shown in Fig. 2c. (See Supplementary Note 1 for additional
details.) By tuning the effective inter-ring coupling strength y,
we can achieve a topological phase transition. For weak couplings
yo0.25p, the band structure is gapped; the gaps close at a critical
value y¼ 0.25p, and for strong couplings y40.25p the gaps
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Figure 1 | Construction of a topological designer surface plasmon structure. (a) Photo of metallic rods with diameter 2.5mm and height 5.0mm

distributed with center–center distance 5.0mm on a flat metallic surface. A lattice ring formed by 56 metallic rods is with radius R1¼44.56mm. A coupling

ring formed by 48 metallic rods is with radius R2¼ 38.2mm. The ring–ring distance is g¼ 5.0mm. f denotes the phase delay of electromagnetic waves

along a quarter of a lattice ring. (b) Schematic of a 5� 5 lattice in experiment. A network analyser records the field pattern by scanning a near-field probe

above the metallic rods. The red meandering curve above the structure represents edge states.
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re-open with topologically protected edge states, while the Chern
numbers of all bands are still zero22.

Simulation of designer surface plasmons. We implement
designer surface plasmons by arranging periodic metallic rods on
a metal surface. The dispersion of the designer surface plasmons
can be tuned by changing the rod heights. Figure 3a shows a 1D
periodic array of metallic rods with periodicity p¼ 5.0mm on a
flat metallic surface. Each metallic rod has radius r¼ 1.25mm
and the same height h (h can be varied). The background is free
space. We simulate the dispersion relation of the guided designer

plasmon waves, for different values of h; the results are shown in
Fig. 3b. The mode profile of the electric field, for h¼ 5.0mm, is
shown in Fig. 3c. We observe that the fields are tightly confined
around the rods; other choices of h give similar mode profiles.
This strong waveguiding makes it feasible to probe the field
distribution using a near-field scanning measurement.

Only part of the quasi-energy band structure shown in Fig. 2c
is accessible, because the designer surface plasmons propagate
only within a narrow frequency band as in Fig. 3b. As it is
unfeasible to simulate the band structure of the full 3D structure
ab initio, we adopt an alternative approach based on repetitive
frequency scanning, which shortens the computation time; see
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Figure 2 | Network model description of the topological structure and its topological transition. (a) Schematic of a unit cell in a two-dimensional lattice
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amplitudes |ai and output amplitudes |bi, related by |bi¼ e� if|ai. These amplitudes also scatter with those of neighbouring cells, with coupling matrices Sx
and Sy. (c) Topological transition as the inter-ring coupling strength y is tuned from weak to strong. Before and after the transition, all bands have zero

Chern number C¼0. Red and blue lines denote edge states confined to the upper and lower edges of the strip, respectively.
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Figure 3 | Dispersion and field profile of designer surface plasmons. (a) Schematic of an array of metallic rods on a flat metallic surface. (b) Dispersions
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The black solid line is the light line. (c) Mode profile of |E| field in the cross-section of a metallic rod that is perpendicular to the wave-guiding

direction (h¼ 5.0mm).
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Methods for details. Figure 4a shows the simulated band structure
for a semi-infinite strip which has five lattice rings in the y
direction, and is infinite in the x direction (choosing the
circulation where the modes run clockwise along the lattice
rings). These results reveal a gap between 11.1 and 11.7GHz,
spanned by unidirectional states localized to opposite edges of the
strip. Note that within such a narrow bandwidth, the inter-ring
coupling strength y is mainly determined by the spacing g
between lattice and coupling rings. We estimate that for the
current setting with g¼ 5.0mm, the coupling strength is y¼ 0.41
p±0.03p within the bandgap of interest (see Supplementary
Fig. 2 and Supplementary Note 2). According to calculation from
the network model in Fig. 2, this bandgap is topologically
nontrivial.

Demonstration of topological protection and its robustness.
We now experimentally and numerically (Supplementary Fig. 1)
study the topological edge state in a finite 5� 5 lattice. First, we
apply a monopole source to the bulk, at a mid-gap (11.3 GHz)
frequency; this produces a mode localized in the vicinity of the
source (Fig. 4b), verifying that the bulk is insulating. Next,
we excite the structure via one of the U-shaped input/output
waveguides at 11.3GHz. This produces a mode which propagates
along the edge (Fig. 4c), including around one corner of
the lattice. No obvious reflection is observed in experiment.

The transmission reaches � 12.94 dB at the output as shown in
Fig. 4d. High transmission within a frequency range B11.3GHz
corresponds extremely well with the bandgap predicted in Fig. 4a.
The transmission drop of 12.94 dB arises from the propagation
loss over nine lattice constants. We thus estimate that the
propagation loss per lattice constant is about 1.44 dB at 11.3GHz.
Finally, to verify that the observed topological edge state is a
consequence of the bulk structure in the 2D lattice, we remove all
the rings except those along the bottom and left boundaries,
which form a 1D chain (Fig. 4f,h). The defect ring is left in place
along this chain. The mode is now strongly reflected by the defect
ring (Fig. 4e), and the transmission at the output reaches the
noise level (Fig. 4d).

To probe the robustness of the topological edge state, we
introduce a defect by altering one of the lattice rings along the
edge, decreasing the height of its rods from 5.0 to 3.5mm
(Fig. 4i). As can be seen in the dispersions in Fig. 3b, this decrease
of height forms a sharp momentum mismatch when the edge
state intends to go through this defect ring. As a result of
topological protection, the resultant edge state circumvents the
defect ring, and continues propagating along the modified edge
(Fig. 4g). However, as can be seen in Fig. 4d, the path detour of
propagation leads to the transmission drop from � 12.94 to
� 19.86 dB at the output. This roughly 7-dB drop is consistent
with the propagation loss over extra five lattice constants as a
result of the path detour.
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The robustness of topological protection can be further
demonstrated by varying the height of the defect ring, as
analogues of defects with different ‘potential barriers’ in
electronic materials. The first defect variation is achieved by
fully removing a lattice ring (or equivalently, reducing its
height to zero) and its surrounding coupling rings (Fig. 5e),
being similar to the defect in ref. 10. Because of the zero
probability for the waves to couple to this defect, it corresponds
to an ‘infinite potential barrier’. Simulation (Fig. 5a) and
experiment (Fig. 5c) show that the edge mode circumvents
the defect of missing rings without touching. The transmission at
the output reads � 16.04 dB, as summarized in Table 1.
Compared with the case with no defect, the path detour leads
to a longer propagation length with two more lattice constants
(shorter than the case of 3.5-mm-tall defect ring), which drops
the transmission for about 3 dB.

The second defect variation consists of a lattice ring of metallic
rods with 4.3mm height (Fig. 5f). Since the dispersion in the
modified lattice ring is close to a regular lattice ring, this defect can
be considered as a low potential barrier (substantially weaker than
the similar defect in Fig. 4i that can be treated as a medium
potential barrier). The low potential barrier allows part of the mode
to directly tunnel through this defect, while the remainder still
circumvents the defect, as can be seen clearly in simulation (Fig. 5b)
and experiment (Fig. 5d). Therefore, the transmission at the output
reads � 17.4 dB (see the summarized measurement in Table 1), at
the level between cases of 3.5-mm-tall defect ring and no defect.

Demonstration of breaking topological protection. The above
defects, similar to previous demonstrations in topological pho-
tonics, do not break topological protection. The first defect that
we will demonstrate to break the topological protection is a
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Figure 5 | Demonstration of the robustness of topological protection against defect variations. Simulated (a) and observed (c) field pattern when

removing a lattice ring and its surrounding coupling rings (shown in e). Simulated (b) and observed (d) field pattern when the height of metallic rods

of a lattice ring is decreased to s¼4.3mm (shown in f). All other rods maintain their height h¼ 5mm. Metal is modelled as a perfect electric conductor in

simulation.

Table 1 | Summary of testing results on topological protection against defects.

Defect no. Figure Defect type Physical meaning Transmission Reflection Comment

0 Fig. 4c No defect Perfect lattice � 12.94 dB o� 35 dB Measuring propagation loss
1 Fig. 5d Rod height decreased to 4.3mm Low potential barrier � 17.4 dB o� 35 dB Path detour and tunneling
2 Fig. 4g Rod height decreased to 3.5mm Medium potential barrier � 19.86 dB o� 35 dB Path detour
3 Fig. 5c Rings removed Infinite potential barrier � 16.04 dB o� 35 dB Shorter path detour
4 Fig. 6b Rod heights gradually decreased Dissipation o� 35 dB o� 35 dB 435 dB dissipation at defect
5 Fig. 7c Metallic block approached Partial flip of spin/modulation � 20.25 dB � 18.36 dB B7 dB coupling loss at input
6 Fig. 7d Metallic block inserted Complete flip of spin/modulation o� 35 dB � 16.29 dB B7 dB coupling loss at input
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backscattering-immune strongly dissipative defect, which is
realized by gradually decreasing heights of the rods in the defect
ring (inset of Fig. 6a). As simulated in Fig. 6a, the scattering
occurring at this defect is able to fully dissipate, or ‘annihilate,’
the edge states, while backscattering is suppressed due to the
adiabatic momentum change on the rods with gradually
decreasing heights. The measured field pattern in Fig. 6b confirms

this dissipating phenomenon. The stronger radiation in Fig. 6b
than in Fig. 6a is because in experiment the monopole probe of
finite length collects fields in a finite range of heights, while in
simulation only fields at a single height are captured. The
transmission at the output reaches noise level.

We then demonstrate the second defect, which breaks the
topological protection by reversing the propagation of edge states.
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This propagation reversal of edge states corresponds to spin flip
in the photonic pseudo spin approach9–11,31 or the modulation
reversal in the Floquet modulation approach7. Hereafter we adopt
the ‘spin’ flip picture to describe this process for convenience.
First, we implement a partial ‘spin’ flip defect by approaching a
metallic block to the lattice ring without touching (Fig. 7e).
This defect can mix the two pseudo ‘spins’. Similar defects such as
a semi-transparent scatterer9 have been proposed previously, but
have not been demonstrated. For the purpose of imaging
the propagation of ‘spin’ flipped modes, we deliberately
decrease the height of input waveguide from 5.0 to 4.3mm,
such that the coupling of ‘spin’ flipped mode to the input
waveguide is weak. We estimate that the coupling loss from the
input waveguide to the structure is about 7 dB. (See in
Supplementary Fig. 3 and Supplementary Note 3 the estimation
on coupling efficiency). Both the simulated (Fig. 7a) and
measured (Fig. 7c) field patterns reveal partial mixing between
the two pseudo ‘spins,’ with a portion of the mode with clockwise
circulation continuing to propagate to the left and eventually
exiting from the upper leg of the U-shape waveguide at the upper
left corner, while the remainder is reflected to the right
with counter-clockwise circulation, eventually exiting from the
lower leg of the U-shape waveguide. Because signals reaching
the output waveguide are too weak to observe, we measure the
transmission/reflection at the location marked by a white
horizontal line in Fig. 7c, where the transmitted and reflected
waves have the same propagation length. The measured
transmission/reflection at � 20.25 dB/� 18.36 dB shows that the
ratio between the transmitted ‘spin’ down state and the reflected
‘spin’ up state is about 1:1.54.

Second, we construct a defect capable of flipping the ‘spin’
completely by inserting the metallic block between two metallic
rods in a lattice ring (Fig. 7f). Simulation in Fig. 7b shows a
complete conversion from the clockwise circulation, or pseudo
‘spin-down,’ to the counter-clockwise circulation, or pseudo
‘spin-up,’ by the defect at the bottom edge of the structure.

The edge state only exits from the lower leg of U-shape waveguide
at the upper left corner. The measured field pattern (Fig. 7d)
matches well with the simulated results. The measured reflection
of � 16.29 dB at the location on the marked horizontal line in
Fig. 7d is consistent with the transmission in Fig. 4c without
defect after considering the coupling loss at the input and the
reduced propagation length in experiment.

Demonstration of a topologically trivial phase. For
completeness, we finally demonstrate the behaviour of the
designer surface plasmon structure in the topologically trivial
phase. As shown in Fig. 2c, the network band structure is
topologically trivial when the coupling between lattice rings is
sufficiently weak. To accomplish this, we increase the inter-ring
separation g from 5 to 7.5mm. We first simulate the band
diagram as shown in Fig. 8a. It can be seen that between the two
bulk bands, there is no edge state in the bandgap which spans
from 11.35 to 11.5GHz. When the structure is excited at
11.3 GHz (in a bulk band), an extended field pattern is observed
in both simulation (Fig. 8b) and experiment (Fig. 8d). When the
excitation is tuned to 11.45GHz (in the bandgap), the field pat-
terns in both simulation (Fig. 8c) and experiment (Fig. 8e) show a
mode that is localized in the vicinity of excitation and does not
propagate. The retrieved coupling strength within this frequency
band of interest shows weaker coupling strength than the critical
value of topological phase transition (See Supplementary Note 2).

Discussion
The above results, as summarized in Table 1, demonstrate the
topological protection and its robustness against various defects on
a time-reversal-invariant photonic platform of designer surface
plasmons. When facing the defects analogous to low (defect no. 1),
medium (defect no. 2) and infinite (defect no. 3) potential barriers,
the topological edge states can circumvent these defects without
backscattering. However, the path detour still deteriorates the
transmission because of propagation loss over the elongated path.
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Figure 8 | Demonstration of a trivial insulator phase. (a) Simulated band diagram of the topologically trivial designer surface plasmon structure.

(b) Simulated field pattern of bulk state at 11.3GHz. (c) Simulated field pattern at 11.45GHz in the bandgap. (d) Observed field pattern at 11.3GHz in the

bulk band. (e) Observed field pattern at 11.45GHz in the topologically trivial bandgap. Metal is modelled as a perfect electric conductor in simulation.
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On the other hand, the strongly dissipative defect (defect no. 4)
and the metallic block (defects no. 5 and 6) can break the
topological protection for completely dissipating the edge states
and inducing reflection, respectively. The reflection corresponds to
spin flip in the pseudo spin approach by Hafezi et al.9–11 and
modulation reversal in the Floquet modulation approach by
Rechtsman et al.7. Furthermore, the anomalous Floquet topological
phase constructed in this study cannot be predicted by the usual
Chern number topological invariants. Our demonstration makes
the first step to explicitly construct this exotic topological phase in
a physical photonic structure. In view of the tunability of the
designer surface plasmon structure, intriguing avenues to explore
in the future include the possibility of topologically protected mode
amplification21, which can be achieved by integrating microwave
amplifiers, and topological many-body physics by incorporating
non-linear components.

Methods
Sample and experimental set-up. The 5� 5 lattice of lattice rings contains a total
of 3,320 metal rods, each having a diameter 2.5mm and a height 5.0mm, standing
on a flat aluminium plate which is 1� 1m in size and 5.0-mm thick. Each lattice
ring consists of 56 rods arranged in a circle of radius of R1¼ 44.56mm. Adjacent
lattice rings are coupled through coupling rings, each consisting of 48 rods
arranged in a circle of radius R2¼ 38.20mm.

The excitation source is a single-mode cable-to-waveguide adaptor with a
rectangular port. Half of the port is covered with aluminium foil to increase the
cutoff frequency of the waveguide port. Exciting the U-shape waveguide at different
legs (input 1 or 2) can excite different circulations of surface EM wave in lattice
rings. The field pattern of Ez component is recorded with a 3-mm-in-length
monopole probe which scans in the xy plane, 1mm above the top of the metal rods.

Simulation set-up. The commercial software CST Microwave Studio is used for
numerical simulation. In band structure simulation, a supercell of the designer sur-
face plasmon structure that consists of five lattice rings in y direction and one lattice
ring in x direction is adopted. The periodic boundary condition is imposed with a
phase shift in x direction. An external dipole source close to the top ring is used to
excite the network. By scanning the frequency, each dip of the receiving spectrum
(widely termed ‘S11’ parameter) of this dipole source should correspond to a mode of
this network for a specific phase shift in x direction. By further scanning the phase
shift through the whole Brillouin zone, the complete band structure can be obtained.
Circulation of the edge states can be monitored with dynamic field distributions.
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