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Mapping quantum state dynamics in spontaneous
emission
M. Naghiloo1, N. Foroozani1, D. Tan1, A. Jadbabaie1 & K.W. Murch1,2

The evolution of a quantum state undergoing radiative decay depends on how its emission

is detected. If the emission is detected in the form of energy quanta, the evolution is

characterized by a quantum jump to a lower energy state. In contrast, detection of the wave

nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive

dynamics of a superconducting artificial atom under continuous homodyne detection of its

spontaneous emission. Using quantum state tomography, we characterize the correlation

between the detected homodyne signal and the emitter’s state, and map out the conditional

back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the

state as it decays, we characterize selective stochastic excitation induced by the choice of

measurement basis. Our results demonstrate dramatic differences from the quantum jump

evolution associated with photodetection and highlight how continuous field detection can be

harnessed to control quantum evolution.
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I
n spontaneous emission, an emitter decays from an excited
state by releasing radiation into a quantized mode of the
electromagnetic field. From the point of view of quantum

measurement theory, the light–matter interaction entangles
the quantum state of the emitter with its electromagnetic
environment1,2. The emission field may therefore serve as a
pointer state used to indirectly monitor the emitter’s evolution.
Subsequent measurements of the field convey information about
the state of the emitter and consequently cause back-action3.
Typically, spontaneous emission is detected in the form of energy
quanta, resulting in an instantaneous jump of the emitter to a
lower energy state. However, if the emission is measured with a
detector that is not sensitive to quanta, but rather to the
amplitude of the field, the emitter’s state undergoes different
dynamics over finite timescales. In this case, the emitter is
predicted to diffuse through its state space rather than abruptly
decay to the ground state in a quantum jump, and the choice
of measurement on the pointer will affect the dynamics of
diffusion4–7.

In this work, we perform homodyne measurements of the
spontaneous emission from an effective two-level system, formed
by the strong light–matter interaction between a superconducting
circuit and a microwave cavity. By performing phase-sensitive
amplification, we selectively amplify and de-amplify orthogonal
quadratures of the emission field, enforcing a choice of
measurement basis on the pointer state and limiting the
measurement back-action experienced by the emitter8,9. We use
quantum state tomography, in addition to weak measurements, to
study the back-action of homodyne measurements and track the
time evolution of the emitter’s state under radiative decay.
Contrary to the evolution expected for photodetection, we
observe quantum trajectories3,8,10 that stochastically diffuse
through the state space of the emitter. For certain phases of
homodyne detection we observe that the emitter evolves towards
its excited state under radiative decay5. This stochastic excitation
demonstrates how phase-sensitive amplification of spontaneous
emission can be utilized to control the emitter’s evolution.

Results
Experimental set-up. Our system (Fig. 1a) consists of an effective
two-level emitter formed by the resonant interaction of a trans-
mon circuit11 and a three-dimensional waveguide cavity12. The
strong light–matter interaction between the circuit and the cavity
strips them of their individual character and gives rise to hybrid
circuit-cavity states. We use the lowest energy transition
(o0/2p¼ 6.83GHz) as an effective two-level system. Deliberate
coupling to a 50 O transmission line results in a radiative decay
rate g¼ 2.3� 106 s� 1. The process of emission is described by
the interaction Hamiltonian, Hint¼ g(aws� þ asþ ), where aw (a)
is the creation (annihilation) operator for a photon in the
transmission line, and sþ (s� ) is the pseudo-spin raising
(lowering) operator. This interaction couples an arbitrary field
quadrature aweifþ ae� if to a corresponding emitter dipole
s� eifþ sþ e� if. Due to the Heisenberg uncertainty relations,
the emitted radiation exhibits quantum fluctuations in its
quadrature amplitudes. If these fluctuations are measured, they
provide information on the emitter state and drive its stochastic
evolution. Conversely, if the fluctuations are de-amplified, their
information is no longer available, eliminating the corresponding
stochastic back-action on the emitter state.

To accurately detect these quantum fluctuations, we perform
phase-sensitive amplification13 of outgoing signals near the
emission frequency using a near-quantum-limited Josephson
parametric amplifier14,15. In this mode of operation, the amplifier
squeezes the outgoing light along an axis in quadrature space

given by the phase of the amplifier pump f. This constitutes a
homodyne measurement of the amplified field quadrature
aweifþ ae� if. Due to the emitter-field interaction, the choice
of f effectively enforces a choice of measurement basis on the
emitter. In our experiment, we choose the amplifier phase f¼ 0;
the corresponding noisy homodyne signal (denoted dVt, Fig. 1b)
is then sensitive to the emitter dipole s� þ sþ ¼sx.

The variance of the homodyne signal originates not only from
the quantum fluctuations of the detected mode, but also from
losses and added noise in the amplification chain. We account for
this loss of information into the incoherent and dissipative
classical environment with the quantum efficiency Z. Meanwhile,
we treat the quantum noise as a Weiner process; the fluctuations
of the measurement signal dVt in an infinitesimal time step dt are
described by stochastic noise increments dWt. Known as Weiner
increments3, these are zero-mean, Gaussian random variables
with variance dt. To accurately reflect this stochastic and
dimensionless nature of the homodyne signal, we scale dVt

such that it has a variance s2¼ gdt, with the full measurement
record given by dVt¼

ffiffiffi
Z

p
g sxh idtþ ffiffiffi

g
p

dWt .
To experimentally demonstrate that our homodyne detection

scheme is sensitive to a single quadrature of the emitter’s dipole,
we prepare the emitter in a specific state, perform homodyne
measurement with f¼ 0, and integrate the resulting signal
(Fig. 1c,d). By repeating the measurement for several iterations,
we can create histograms of the homodyne signal. We compare
the resulting distributions for two state preparations, ±x (the
positive or negative eigenstates of the sx Pauli operator). The
observed separation of the two histograms, DV¼2

ffiffiffi
Z

p
gdt, gives

the quantum efficiency of our detection set-up as Z¼ 0.3.

Conditional dynamics of radiative decay. We now study the
conditional dynamics of the emitter’s state under radiative decay.
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Figure 1 | Experimental set-up. (a) The experiment uses a near-quantum-

limited Josephson parametric amplifier, labelled here as a homodyne

detector, to perform homodyne measurements of the fluorescence emitted

by an effective two-level system. (b) A sample of the dimensionless

homodyne signal (denoted dVt at time step t). The noisy signal reflects the

quantum fluctuations of the measured electromagnetic mode and is

normalized such that its variance is gdt. (c) To calibrate the measurement,

we use p/2 rotations to prepare the emitter in the states ±x and average

the ensuing homodyne signal for a time dt¼ 20ns. (d) Histograms of the

averaged homodyne signals c show how the measurement carries partial

information about the sx quadrature of the emitter’s dipole. The strength of

measurement, set by the emitter’s decay rate g, is inversely proportional to

the overlap of the histograms.
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We conduct the experimental sequence depicted in Fig. 2a,b;
we first use a resonant rotation to prepare an initial state, then
obtain the average homodyne signal �V by integrating the detected
homodyne signal for a variable period of time, and finally
perform projective measurements to conduct quantum state
tomography as described in the Methods section. The results of

these projective measurements are averaged conditionally on the
integrated homodyne signal. This yields the conditional Pauli
averages, sxh i �Vj , sy

� �
�Vj , szh i �Vj . In Fig. 2d–f we plot szh i �Vj and

sxh i �Vj parametrically on the X–Z plane of the Bloch sphere for
different integration times. We study the conditional evolution
for three different state preparations.

When the emitter is prepared in the excited state (Fig. 2d),
the x-component of the state develops a correlation with the
average homodyne signal. This highlights how our homodyne
measurement provides an indirect signature6 of only the real part
of s� ¼ (sxþ isy)/2. As the state is allowed more time to decay,
it evolves to different deterministic arcs in the interior of the
Bloch sphere.

Under phase-sensitive amplification, the choice of homodyne
phase can vary the stochastic back-action on the emitter’s state.
To study this, we compare two different state preparations, þ x
and þ y. When the emitter is prepared in the state þ x (Fig. 2e),
we observe that some of the conditioned states evolve towards the
excited state5. This stochastic excitation is unique to amplitude
measurements of the field quadrature, since such excitation is not
possible under photodetection6. In contrast, when the emitter is
prepared in the state þ y, an eigenstate of the imaginary part of
our measured operator s� ¼ (sxþ isy)/2, the emitter dipole
corresponds to the de-amplified quadrature of the emission field,
and no stochastic excitation is observed (Fig. 2f). This different
state preparation is equivalent to preparing the emitter in the
same state þ x (as depicted in Fig. 2e) and instead changing the
homodyne phase by p/2. This demonstrates how the choice
of homodyne measurement phase can be used to control the
evolution of the emitter.

We take advantage of the deterministic evolution of the
emitter, conditioned on the integrated homodyne signal, to
characterize the back-action at different points in the Bloch
sphere. Figure 3 shows a vector map of the state evolution due to
a specific detected homodyne signal dV at various points. By
preparing the emitter in the excited state and averaging the
homodyne signal for various periods of time, we can prepare a
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Figure 2 | Mapping spontaneous decay. (a) The experimental sequence prepares the emitter in an initial state, then homodyne detection is used to record

the emitted radiation. Following a variable period of time, further rotations are applied to the emitter before state readout to perform quantum state

tomography. To enhance the readout contrast, a pulse is applied to transfer the excited state population to a higher state of the system. (b) The level

structure of the system and frequencies of the three microwave drives. The emitter is given by the lowest two energy levels. (c) We average the state

tomography to determine x � sxh i �Vj , and z � szh i �Vj conditioned on the outcome of the homodyne measurement. These correlated tomography results are

displayed on the X–Z plane of the Bloch sphere for three different initial states: � z (d) þ x (e) and þ y (f). The colour scale indicates the relative

occurrence of each measurement value. Note the different back-action dynamics between e and f, a result of phase-sensitive amplification.
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Figure 3 | Back-action vector maps. (a) An arbitrary initial state in the

X–Z plane of the Bloch sphere is prepared by heralding on the average

homodyne signal �V. After heralding, we digitize the signal for an additional

40 ns to obtain dV. Finally, we use quantum state tomography to examine

the conditional back-action based on the value of dV. (b) Histogram of the

signals dV which we separate into positive or negative dV. The back-action

imparted on the emitter for negative (c) or positive (d) values of dV is

depicted by an arrow at different locations in the X–Z plane of the Bloch
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nearly arbitrary mixed state through heralding. After selecting a
decay time and a specific initial state (xi, zi), based on an average
signal �V , we digitize the homodyne signal for an additional time
dt¼ 40 ns to obtain dV. We then use quantum state tomography
to determine the final state (xf, zf), conditioned on the detection of
dV within a specified range. The back-action at a specific location
in state space, associated with the detection of a given value of dV,
is provided by the vector connecting (xi, zi) and (xf, zf). The
back-action vector maps demonstrate how positive (negative)
measurement results push the state towards þ x (� x).
Furthermore, the maps show that the back-action is stronger
near the state � z, indicating that the measurement strength is
proportional to the emitter’s excitation.

Quantum trajectories. The back-action maps that we present in
Fig. 3 allow us to calculate the evolution of the emitter’s state
conditioned on a sequence of homodyne measurement results.
Formally, this evolution is described by the stochastic master
equation5,

dr ¼ gD s�½ �rdtþ ffiffiffiffiffi
Zg

p H s� dWt½ �r: ð1Þ
Where D s�½ �r¼s� rsþ � 1

2 sþ s� rþrsþ s�ð Þ and H O½ �r¼
Orþ rOw � tr½ðOþOwÞr�r are the dissipation and jump
superoperators, respectively. When we ignore the results of
homodyne monitoring (for example by setting Z¼ 0), the state
follows deterministic evolution from an initial state to the ground
state, as described by the first term of equation (1). The second
term accounts for information conveyed by the homodyne
measurement through stochastic noise increments dWt. We can
recast this stochastic master equation in terms of the Bloch vector
components x, z, y,

dx ¼ � g
2
xdtþ ffiffiffi

Z
p

1� z� x2
� �

dVt � g
ffiffiffi
Z

p
xdt

� �
; ð2Þ

dz ¼ g 1� zð Þdtþ ffiffiffi
Z

p
x 1� zð Þ dVt � g

ffiffiffi
Z

p
xdt

� �
; ð3Þ

dy ¼ � g
2
ydt� ffiffiffi

Z
p

xy dVt � g
ffiffiffi
Z

p
xdt

� �
: ð4Þ

We now turn to calculating individual quantum trajectories for
the emitter’s state. In Fig. 4, we prepare the emitter in the excited

state and then digitize the detected homodyne signal for 2 ms.
Based on this signal, we use equations (2–4) to calculate the
emitter’s trajectory using time steps of dt¼ 20 ns. Instead of
taking a straight path to the ground state, the trajectory diffuses
through the Bloch sphere, subject to back-action from the
measured quantum fluctuations of the emission field.

We also study quantum trajectories originating from the state
þ x. In this case, the stochastic back-action causes some of the
trajectories to become more excited as they decay under
homodyne detection. In Fig. 4f, we quantify this feature by
extracting the probability of excitation above a certain threshold
at different times. By examining the measurement term in
equation (3), proportional to

ffiffiffi
Z

p
, we see that the state at þ x will

be stochastically excited if the Weiner increment dWt, obtained
from the detected signal dVt, is less than �

ffiffiffiffiffiffiffi
g=Z

p
dt, predicting

that B35% of the trajectories should be excited in the first
time step.

Discussion
In recent years, several experiments have demonstrated control
over the emission process by either altering vacuum fluctuations16

or engineering the electromagnetic environment17,18, allowing
spontaneous emission to be used as a resource for quantum
information19,20. In addition, the entanglement between a
quantum emitter and its spontaneous emission field has been
studied in experiments using natural atoms1 and solid state
systems2, and can be used to herald entanglement between spatially
separated systems21. Our work highlights how spontaneous
emission can also be used as a resource for quantum
measurement, where the emission field serves as a pointer
system for indirect measurements of the emitter state.
Contemporary experiments7–10,22–26 that harness Bayesian
statistics or use quantum optics to track the evolution of
quantum states have yielded a deeper understanding of quantum
measurement evolution. Here, we have shown how specific
quadrature measurements of the fluorescence from a quantum
emitter result in a rich conditional evolution of the state. We have
harnessed this evolution to map out the back-action associated
with such measurements, and we have tracked the individual
quantum trajectories an emitter takes when decaying through
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fluorescence. In contrast to the instantaneous dynamics of
emission due to measurements of quanta, here we show that
spontaneous emission may also occur over finite timescales.

Measurements, and more broadly, control over a quantum
environment, can in principle be used to steer quantum
evolution27,28. Though the physical mechanism of energy
decay remains constant between homodyne detection and
photodetection, by changing the basis for the measurement of
the emission field, we have significantly altered the emitter state’s
dynamics. In this work, quantum noise of the pointer state drives
the evolution of the emitter, demonstrated clearly by our use of a
phase-sensitive amplifier. By squeezing the pointer state, we
change the nature of its quantum fluctuations, and therefore
cause selective measurement back-action on the emitter. Such
control over the quantum light–matter interaction has the
potential to advance techniques in fluorescence based imaging,
and will be essential in quantum feedback control3,9,29 of
quantum systems.

Methods
Device fabrication and parameters. The emitter system consists of a transmon
circuit characterized by charging energy EC/h¼ 270MHz and Josephson energy
EJ/h¼ 24.6 GHz. The circuit was fabricated by double-angle evaporation of
aluminium on a high resistivity silicon substrate. The circuit was then placed at the
centre of a waveguide cavity (dimensions 34.15� 27.9� 5.25mm) machined from
6061 aluminium. The cavity geometry was chosen to be resonant with the lowest
energy transition of the transmon circuit. The resonant interaction between the
circuit and the cavity (characterized by coupling rate g/2p¼ 136MHz) results in
hybrid states, as described by the Jaynes–Cummings Hamiltonian. The cavity is
deliberately coupled to two 50O cables: one weakly coupled port, characterized by
coupling quality factor QcC105, is used to drive the system, while a more strongly
coupled port QcC104 sets the total radiative decay time of the system. This con-
figuration results in an effectively ‘one dimensional atom’, where all of the radiative
decay is captured by the strongly coupled cable16. Spontaneous emission from this
‘artificial atom’ is amplified by a near-quantum-limited Josephson parametric
amplifier, consisting of a 1.5 pF capacitor, shunted by a superconducting quantum
interference device (SQUID) composed of two I0¼ 1 mA Josephson junctions.
The amplifier is operated with negligible flux threading the SQUID loop and
produces 20 dB of gain with an instantaneous 3-dB-bandwidth of 20MHz.

We used standard techniques to measure the energy decay time T1¼ 430 ns and
Ramsey decay time T�

2¼830 ns, indicating that the emitter experiences a negligibly
small amount of pure dephasing. We also examined the equilibrium state
populations of the emitter using a Rabi driving technique30, and found the excited
state population to be less than 3%.

State tracking. We use a master equation (equivalent to equations (2–4)) to
propagate the density matrix for the emitter’s state conditioned on the detected
homodyne signal. The signal is digitized in 20 ns steps, and scaled such that its
variance is gdt. At each time step, we update the density matrix components r11[i]
and r01[i] based on the detected measurement signal dV[i], where z�1–2r11 and

x�2Re[r01]. Our state update is consistent with the Itô formulation of stochastic
calculus.

r11 iþ 1½ � ¼ r11 i½ � � gr11 i½ �dt
� ffiffiffi

Z
p

dV i½ � � ffiffiffi
Z

p
g2r01 i½ �dt

� �
� 2r01 i½ �r11 i½ �ð Þ

ð5Þ

r01 iþ 1½ � ¼ r01 i½ � � gr01 i½ �=2dt
þ ffiffiffi

Z
p

dV i½ � � ffiffiffi
Z

p
g2r01 i½ �dt

� �
� r11 i½ � � 2r01 i½ �r01 i½ �ð Þ

ð6Þ

Ensemble dynamics. Based on 9� 105 repetitions of the experiment and
associated quantum trajectories, we can examine ensemble dynamics of the
paths on the Bloch sphere taken by our decaying emitter. The behaviour of single
trajectories characterizes the dynamics of spontaneous decay subject to homodyne
detection, and is distinctly different than the full ensemble behaviour that decays
deterministically towards the ground state.

Figure 5 displays greyscale histograms of the state at different points in time for
two different initial conditions. For trajectories initialized in � z (Fig. 5a), these
histograms demonstrate how the decay paths are restricted to a deterministic arc in
the Bloch sphere. Curiously enough, a state prepared in a traditional eigenstate of
spontaneous emission will develop some quantum coherence when monitored
under homodyne detection. The x-components of such trajectories may be pinned
to the edges of this arc on the X-axis, or instead may oscillate about the central
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value of x¼ 0. We note that though the trajectories exhibit an immediate diffusive
behaviour for short timescales, the decay of coherence takes over at longer
timescales, indicated by a decreasing upper bound on the stochastically acquired
coherence. Examining behaviour along the Z-axis, we see that though some
trajectories may decay by more quickly approaching the ground state, no trajectory
may decay more slowly in z than a specific lower bound at each time step.

On the other hand, when the emitter is initialized along þ x in a superposition
of its excited and ground states, the histograms of the Bloch sphere coordinates
show different behaviour (Fig. 5b). The x-component of the trajectory encounters a
decreasing upper bound on its maximum value, once more illustrating motion
along a shrinking deterministic arc. The z-component, however, can exhibit
extremely varied behaviour. In addition to following the average decay path, the
state may also stochastically excite, or it may rapidly decay in z while approaching
the surface of the Bloch sphere. Currently, it is these states that rapidly decay that
have the highest purity on average, retaining the most information about the state.
In comparison, due to our limited measurement efficiency, stochastically excited
trajectories become more mixed as they diffuse towards the excited state. We note
that for Z¼ 1, all of our trajectories, regardless of dynamics, would describe pure
states confined to move only on the surface on the Bloch sphere.

In fact, we expect the ensemble ratio of stochastically excited trajectories to
increase with increasing Z. As mentioned in the main text, trajectories experience
dzo0 when the Weiner increment obtained from the measurement record satisfies
dWto� ffiffiffi

g
p

dt=
ffiffiffi
Z

p
x. Recall that dWt is a zero-mean random variable distributed

with variance dt, and consider the back-action experienced by trajectories
initialized with x¼ 1. Naively, the probability of stochastic excitation is then
given by the integral,

Z �
ffiffiffiffiffi
g=Z

p
dt

�1
dWt 2pdtð Þ� 1=2e� dW2

t =2dt : ð7Þ

As Z increases, so does the value of this integral. For Z¼ 1 and a time step
dt¼ 20 ns, the probability for stochastic excitation for our system reaches a
maximum value of B41.5%. For our measured quantum efficiency of Z¼ 0.3,
we expect B35% of trajectories to excite in the first time step.

Tomography and readout calibration. All tomography results are corrected for
imperfect state preparation and readout fidelities. We perform state readout by first
applying a resonant pulse at 6.73GHz to transfer the excited state population to a
higher excited state, and then proceed to drive the bare cavity resonance at
6.95 GHz at high power to conduct the Jaynes–Cummings high-power readout
technique31. Tomography for y and x is achieved by first applying a 40 ns p/2
rotation about the X or Y axes. The combined state preparation and readout fidelity
(80%) was determined from the contrast of resonant Rabi oscillations. Each
experimental sequence includes separate calibration measurements used to
determine the readout level of the ground state and the prepared excited state.
These levels are used to scale the tomography results. Figure 6a,b shows the
ensemble decay curves for the state preparations � z and þ x.

The emitter’s state is characterized by expectation values (x, z). To characterize
accuracy of the state tracking, we compare the expectation values that are
calculated for a single iteration of the experiment to the values obtained from an
ensemble of projective measurements. In Fig. 4 we show this comparison to
reconstruct an individual trajectory. To accomplish this, we denote an individual
trajectory ~x tð Þ;~y tð Þ;~z tð Þð Þ (Note that ~y tð Þ¼0). At each time point, we perform
several experiments of total duration t0 , followed by one of three tomography and
readout sequences. For each of these experiments, we calculate (x(t0), z(t0)); if x(t0)
and z(t0) are within ±0.12 of ~x t0ð Þ and ~z t0ð Þ, then the subsequent tomography
result is included in the tomographic validation at t0 . We follow this process for
each t0 along the trajectory, resulting in a tomographic reconstruction of the
trajectory.

We can further test the predictions given by the individual trajectories for all
runs of the experiment at all times. Figure 6c displays the average projective
measurement outcomes conditioned on the values of ~x t0ð Þ or ~z t0ð Þ compared with
the values ~x t0ð Þ or ~z t0ð Þ showing good agreement between the individual
trajectories and the projective measurements.

Phase-sensitive back-action. When the emitter is initialized in þ y the state
dynamics are not confined to the X–Z plane. Figure 7 displays the state conditioned
on the integrated homodyne signal and shows how the y-component does not
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acquire a correlation with the measurement signal. This may be understood
as a result of phase-sensitive amplification with f¼ 0. When we perform our
homodyne measurement of the real part of s� , we de-amplify the quadrature
containing information on the imaginary part of s� , corresponding to sy on
the Bloch sphere. The de-amplification of this orthogonal signal suppresses the
magnitude of its quantum fluctuations, effectively eliminating the information
associated with the sy quadrature of the emitter’s dipole. Therefore we do not
perform weak measurements of sy, and we do not observe quantum dynamics
such as stochastic excitation.

We may also understand this phenomenon by examining the dz and dy
segments of the stochastic master equation provided in the main text. The presence
of an xy coefficient on the measurement term in equation (4), means the stochastic
back-action has no effect on the state when it is in an eigenstate of sx or sy, limiting
dynamics to a deterministic reduction in y. Meanwhile, if we examine equation (3)
after factoring out a common factor of (1� z), which serves to push the trajectory
towards the ground state, we see the measurement term is proportional only to x.
Therefore, for a state prepared with y¼±1, there will be no initial stochastic
excitation, and the state will begin its decay by deterministically approaching the
ground state. However, once fluctuations in the measurement signal cause the state
to acquire a nonzero x value, the trajectory’s dynamics will cease to be trivial.

Experimental set-up. Figure 8 displays a simplified schematic of the experimental
set-up. A single generator is used for qubit rotations, the amplifier pump, and
demodulation of the amplified signal. The parametric amplifier is pumped by two
sidebands that are equally separated from the carrier by 550MHz, allowing for
phase-sensitive amplification without leakage at the emitter’s transition frequency.
The experimental repetition rate is 8 kHz.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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