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Magnetic field controlled charge density wave
coupling in underdoped YBa2Cu3O6þ x

J. Chang1, E. Blackburn2, O. Ivashko1, A.T. Holmes3, N.B. Christensen4, M. Hücker5, Ruixing Liang6,7, D.A. Bonn6,7,

W.N. Hardy6,7, U. Rütt8, M.v. Zimmermann8, E.M. Forgan2 & S.M. Hayden9

The application of magnetic fields to layered cuprates suppresses their high-temperature

superconducting behaviour and reveals competing ground states. In widely studied

underdoped YBa2Cu3O6þ x (YBCO), the microscopic nature of field-induced electronic and

structural changes at low temperatures remains unclear. Here we report an X-ray study of the

high-field charge density wave (CDW) in YBCO. For hole dopings B0.123, we find that a field

(BB10 T) induces additional CDW correlations along the CuO chain (b-direction) only,

leading to a three-dimensional (3D) ordered state along this direction at BB15 T. The CDW

signal along the a-direction is also enhanced by field, but does not develop an additional

pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the

YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror

symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi

surface reconstruction, as recently suggested.
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1 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland. 2 School of Physics and Astronomy, University of Birmingham,
Birmingham B15 2TT, UK. 3 European Spallation Source ERIC, Box 176, Lund SE-221 00, Sweden. 4Department of Physics, Technical University of Denmark,
Kongens Lyngby DK-2800, Denmark. 5 Condensed Matter Physics & Materials Science Department, Brookhaven National Lab, Upton, New York 11973, USA.
6Department of Physics & Astronomy, University of British Columbia, Vancouver V6T-1Z1, Canada. 7 Canadian Institute for Advanced Research, Toronto
M5G-1Z8, Canada. 8Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany. 9 H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8
1TL, UK. Correspondence and requests for materials should be addressed to J.C. (email: johan.chang@physik.uzh.ch) or to S.M.H. (email:
s.hayden@bristol.ac.uk).

NATURE COMMUNICATIONS | 7:11494 |DOI: 10.1038/ncomms11494 | www.nature.com/naturecommunications 1

mailto:johan.chang@physik.uzh.ch
mailto:s.hayden@bristol.ac.uk
http://www.nature.com/naturecommunications


C
harge density wave (CDW) correlations1, that is, periodic
modulations of the electronic charge density accompanied
by a periodic distortion of the atomic lattice, have

long been known to exist in underdoped La-based cuprate
high-temperature superconductors2,3. More recently, it has
been found that charge order is a universal property of
underdoped high-temperature cuprate superconductors4–11.
CDW correlations appear typically at temperatures well above
the superconducting transition temperature Tc. Cooling through
Tc suppresses the CDW and leads to a state, in which the
superconducting and CDW order parameters are intertwined and
competing12–14.

The application of magnetic fields suppresses super-
conductivity. In the case of underdoped YBa2Cu3O6þ x (YBCO),
a number of changes in electronic properties have been reported
in the field range BE10–20 T. For example, new splittings occur
in NMR spectra11,15, ultrasound shows anomalies in the elastic
constants16 and the thermal Hall effect suggests that there is an
electronic reconstruction17. At larger fields, B\25 T a normal
state with quantum oscillations (QO)18 and coherent transport
along the c axis19 is observed. The existence of QO, combined
with a high-field negative Hall and Seebeck effect, is most easily
understood in terms of electron pockets9,20–23.

Fields BE10–20T also cause changes in the CDW order that
can be seen by X-ray measurements. Initial experiments5 showed
that a magnetic field causes an enhancement of the diffuse CDW
scattering5,8. A recent X-ray free-electron laser experiment24 has
shown that a magnetic field of B\15 T induces a new CDW
Bragg peak, with a propagation vector along the b axis,
corresponding to an extended range of ordering along the c
axis and an in-phase correlation of the CDWmodulation between
the neighbouring bilayers.

It is important to determine the nature of the CDW
correlations induced by the magnetic field in YBCO and their
relationship to the electronic properties. Of particular interest are
the high-field CDW phase diagram and whether a field also
induces new CDW order propagating along the a axis. We have
therefore used hard X-ray scattering measurements to determine
the evolution of the CDW correlations, with magnetic fields up
to 16.9 T for several doping levels. Here we investigate the CDW
for propagation vectors along the crystallographic a- and
b-directions, allowing us to extend the pulsed-field
measurements24 and identify new field-induced anisotropies in
the CDW. By measuring the profile of the diffuse CDW scattering
as a function of field, we show that the CDW inter-bilayer
coupling along the c axis is strongly field dependent. We also
show that field-induced changes in the CDW can be
associated with many of the anomalies11,15–17,25 observed in
electronic properties. In particular, the B�T phase diagram
has two boundary lines associated with the formation of
high-field CDW order. Our data also provides insight into
the likely high-field structure of the CDW (in the normal state)
that is relevant to describe the Fermi surface reconstruction
leading to QO.

Results
Charge density wave order in YBCO. The CDW correlations
in the cuprates have propagation vectors with the in-plane
components parallel to the Cu–O bonds and periodicities
of 3� 4a depending on the system2,3,5,8. YBCO shows a
superposition of modulations localized near the CuO2 bilayers,
with basal plane components of their propagation vectors along
both a and b: qa¼ (da,0,0) and qb¼ (0,db,0) with correlation
lengths up to xaE70ÅE20a. Both qa and qb CDWs have ionic
displacements perpendicular to the CuO2 bilayers combined with

displacements parallel to these planes, which are p/2 out of
phase26. These give rise to scattering along lines in reciprocal
space given by QCDW¼ na*þmb*þ cc*±qa,b, where n and m
are integers. The distribution of the scattered intensity along c
depends on the relative phase of the CDW modulations in the
bilayers stacked along the c-direction. In zero magnetic field,
there is weak correlation of phases in neighbouring bilayers
and we observe scattered intensity spread out along the c*
direction, peaked at cE0.5� 0.6. This is illustrated by our X-ray
measurements on YBCO6.67 (P¼ 0.123, Tc¼ 67K and ortho-VIII
CuO-chain ordering), shown in Fig. 1a,f. Note that the strong
scattering around QB(13/8,0,0) in Fig. 1a,b is due the CuO-chain
ordering, which does not change with field, and can be
subtracted, as in Fig. 1c,d. By taking cuts through the data, we
obtain the intensity of the CDW scattering versus c for the qa and
qb positions (Fig. 1e,j).

Field-induced anisotropic CDW correlations. Figure 1 shows
that the effect of applying a magnetic field is very different
for two components (qa and qb) of the CDW. For the qa
component of the correlations (Fig. 1b), the rod of scattering
becomes stronger with no discernible change in the c width or
position of the maximum, that is, the correlations simply
become stronger. In contrast, for the qb correlations, (Fig. 1i) we
see two qualitative changes. First, at BE10 T, the rod of
diffuse scattering becomes broader in c and its peak position
begins to move to larger c. Second, at BE15 T, a new peak
(shaded pink and first reported in ref. 24) appears centred on
c¼ 1, but only for the qb component. The new peak indicates that
the sample has regions, where the CDW modulation is in phase
in neighbouring bilayers and is coherent in three spatial
directions. These regions would have a typical length along the
c axis of xcE47Å.

Structure of the three-dimensional CDW order. We measured
the intensity of the new three-dimensional (3D) CDW order in 14
different Brillouin zones. These data (Supplementary Note 3;
Supplementary Table 1 and 2) are consistent with the high-field
CDW structure of an individual bilayer being unchanged from
that determined at zero field26. Both low- and high-field
structures break the mirror symmetry of a bilayer, but in the
high-field structure (Fig. 2a,d), the atomic displacements in
adjacent bilayers are in phase. Thus, the high-field order has
qb¼ (0,db,0); however, its structure yields zero CDW intensity for
c¼ 0 and nonzero for c¼ 1 positions, as we observe
(Supplementary Fig. 4). The relationship between the CDW
structures at low and high field is to be expected, since the
coupling between the two CuO2 planes in a bilayer will be
stronger than coupling with another bilayer. For the other basal
plane direction, no CDW signal was found at q¼ (da,0,0) or
(da,0,1) for Br16.9 T (Fig. 3c).

The phase diagram and 3D CDW precursor correlations. The
c-dependent profiles in Fig. 1e,j contain information about the
correlation between the phases of the CDW modulation in the
bilayers stacked along the c axis. For B¼ 0, the broad cE0.5� 0.6
peaks in Fig. 1e,j for qa and qb indicate that the CDW phase
is weakly anti-correlated between neighbouring bilayers.
On increasing the field above BE10T, the c-profile of the qb
correlations evolves. The onset of this evolution can be seen as an
increase in the intensity of the scattering at (0,4-db,1), see Fig. 4c,
signalling the introduction of new c axis correlations. This change
is accompanied by a growth of correlations along the b axis, as
shown by the increase in the correlation length xb,c¼ 1 measured
by the peak width of scans parallel to b* through the (0,4-db,1)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11494

2 NATURE COMMUNICATIONS | 7:11494 |DOI: 10.1038/ncomms11494 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


position (Fig. 4e). We describe this state as 3D CDW precursor
correlations. The onset temperature TE65K of the precursor
correlations at high field (B¼ 16.5 T) may be determined from
the increase in xb,c¼ 1 and the scattering intensity at the (0,4-db,1)
position (Fig. 4c,e). This allows us to designate a region of the
B�T phase diagram (Fig. 5).

At higher fields, B\15 T, a peak (shaded pink in Fig. 1j)
develops abruptly in the c-profile at c¼ 1. The abrupt onset of
the peak signals a rapid growth of the c axis correlation length xc
(Fig. 4d,e). The growth of correlations in one spatial direction
followed by growth in a second direction is typical of systems,
with anisotropic coupling. Another CDW system that shows this
behaviour27 is NbSe3. Large correlated regions develop first in
planes, where the order parameter is most strongly coupled.
These act to amplify the coupling in the remaining direction. In
case of YBCO6.67, the in-plane correlation length continues to
grow down to low temperatures with xb,c¼ 1¼ 80b¼ 310Å
(at B10K and 16.5 T). The c axis correlation length, however,
saturates with xc,c¼ 1¼ 47Å at TE30K. All these changes
together signal the transition to a new phase (see Fig. 5 pink
region), which we label 3D CDW order identified with a phase
transition also seen in ultrasound16 and thermal Hall effect17

measurements. At the lowest temperatures, Tt25K, we observe
(Fig. 4a) a suppression of the 3D CDW peak intensity signalling a

competition between the superconducting and 3D CDW order
parameters.

Previous X-ray5,8 and NMR25 measurements on YBCO6.67

have shown that the weak anti-phase (c¼ 1/2) CDW correlations
appear at TE150K. Further NMR anomalies in the form of line
splittings11,15 are observed at TE65K for B¼ 28.5 T and at
BE10 T for T¼ 2K. These anomalies that are displayed on Fig. 5
appear to coincide with the onset of the 3D precursor correlations
reported here. The fact that NMR sees similar transitions shows
that the 3D CDW precursor correlations we observe are static on
timescales t\0.1ms. Correlations that are static25 and short
ranged are necessarily controlled by pinning with quenched
disorder playing a role.

Doping dependence. We also studied other dopings of
YBCO6þ x. For YBCO6.60 with hole doping P¼ 0.11 and ortho-II
oxygen chain structure, a very similar onset field (Fig. 5) and c
axis correlation length xc were found. In YBCO6.51 and YBCO6.75,
no 3D order was observed for Br16.9 T (Fig. 3a). However, we
do observe the precursor movement of the CDW scattering to
higher c implying that this structure is likely to appear at higher
fields. Thus, the 3D order is most easily stabilized for doping
around p¼ 0.11–0.12 (Fig. 5b).
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Figure 1 | Charge density wave correlations induced by a magnetic field in YBa2Cu3O6.67. A magnetic field applied along the c axis introduces new CDW

correlations propagating along both CuO bond directions a and b in the CuO2 planes. (a,b,f–i) Raw X-ray scattering intensity data for the (h,0,c) (a,b) and
(0,k,c) (f–i) planes for magnetic fields 0rBr16.5 T. Strong features in (a,b) are due to CuO chain scattering. (c,d) Field-induced scattering for (h,0,c).
(e,j) CDW intensity along lines Q¼ na*þmb*±qa,bþ cc* isolated from data such as (a,b,f–i). The CDW intensity has been isolated by fitting peaks due to

the CDW and other structural features to a series of h- or k-cuts through data such as (a,b,f–i). CDWs propagating along the a axis (a–e) within individual

bilayers become stronger without changing phase relationship with neighbouring bilayers. Those propagating along b axis (f–j) become in phase with

neighbouring bilayers, which changes the profile in c. The shaded areas in (j) show: weakly anti-correlated CDW (grey); 3D CDW precursor correlations

(blue); and 3D CDWorder (red). Error bars are s.d.’s determined by counting statistics. We describe reciprocal space as Q¼ ha*þ kb*þ cc*, where Ideally
mod (a*)¼ 2p/a, a¼ 3.81 Å, b¼ 3.87Å and c¼ 11.72Å.
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Discussion
A feature of the present data is that the c-dependent profiles
measured along (0,db,c) and their field evolution (for example,
Figs 1j and 3a,b) cannot be understood as a superposition of
broadened peaks centred at c¼ 1/2 and c¼ 1. The change in the
c-dependence of the intensity represents a variation with field of
the stacking of the bilayer CDWs. To interpret these profiles, we
use a simple statistical approach based on a Markov chain
(Methods; Supplementary Note 2) to model possible CDW
stacking sequences along the c axis and compute the scattering
profile as a function of c. A good description of our data is
obtained if we assume that the CDW phase difference between
neighbouring bilayers is 0 or p (Supplementary Note 1 and 2;
Supplementary Fig. 2). The parameters in our model are the

nearest- and next-nearest-neighbour couplings b and g, where
positive values favour the coupled bilayers having the same phase.
At B¼ 0, the model shows that the broad cE0.5� 0.6 peaks in
Fig. 1e,j are due to weakly anti-correlated bilayers (Fig. 2b,e). The
field evolution of the c-dependent profiles for qb (Fig. 1j),
including the formation of the c¼ 1 peak, may be modelled by a
continuous variation of b and g from anti-phase coupling at low
field to same-phase coupling at high field (Fig. 2e). The sign of b
changes near the onset of the 3D order at BE15 T. Thus, we find
that a c axis magnetic field can control the coupling between the
CDWs in neighbouring bilayers. The field control of the coupling
most likely arises through the suppression of superconductivity
by field. Magnetic field strengthens the correlations along the a
axis (Fig. 1e); however, it does not increase correlation lengths.
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Possible explanations for this difference in behaviour include the
influence of the CuO chains promoting the b axis modulations or
the chains pinning the a axis CDW modulations.

We conclude that the appearance of 3D CDW order
corresponds to the onset of new c axis electronic coherence and
hence electronic reconstruction. This is supported by thermal

0.9
1.5 1.5

1.0 1.0

0.5 0.5

0.0 0.0
500 500

300 300

100 100

50 50

10 10

0 0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

�b,� = 0.5

�b,� = 0.5

�b,� = 1 �b,� = 1

�c,� = 1

�c,� = 1

� 
(Å

)

� 
(Å

)

20 20 5 10 1540 4060 60 80

T (K) T (K) B (T) 

15.0 T 

16.0 T 

16.9 T 

16.5 T 

16.9 T 

3D - Peak 

Total

Q = (0,4-�b,1)
Q = (0,4-�b,1) Q = (0,4-�b,1)

B = 16.5 T T = 22K

T = 22 K

3D
 C

D
W

 o
rd

er

3D
 p

re
cu

rs
or

 c
or

re
la

tio
ns

In
te

ns
ity

 (
co

un
ts

 p
er

 m
s)

In
te

ns
ity

 (
co

un
ts

 p
er

 m
s)

In
te

ns
ity

 (
co

un
ts

 p
er

 m
s)

a b c

ed

Figure 4 | Evolution of charge density wave correlation lengths and intensities with magnetic field and temperature in YBa2Cu3O6.67. (a) Intensity of

the 3D CDW peak extracted from c-scans through Q¼ (0,4-db,c) versus temperature at fields as indicated. (b,c) Total CDW intensity determined from

k-scans (open circles) and 3D CDW peak intensity determined from c-scans (closed squares) through the (0,4-db,1) position. (d,e) Correlation lengths

xb,c¼ 1, xc,c¼ 1, xb,c¼ 1/2 determined from the resolution-corrected peak widths (s¼ x� 1) of scans through (0,4-db,1), (0,4-db,1) and (0,4-db,1/2) positions,
respectively. The saturation of xc,c¼ 1¼47Å and xb,c¼ 1/2B100Å is likely related to disorder even though it has been shown that xb,c¼ 1/2 is insensitive to

oxygen disorder34. Error bars are s.d.’s of the fit parameters described in the Methods.

Temperature (K)

Superconductivity

Anti−Phase CDW
Correlations

3D CDW order

3D precursor
correlations 

YBCO−6.67

M
ag

ne
tic

 fi
el

d 
(T

)

0 50 100 150
0

5

10

15

20

25

30

35

a b

Doping (p)

3D precursor
correlations

Anti−Phase CDW correlations
+

Superconductivity

3D CDW order
Thermal Hall

Ultra−sound

X−ray
scattering

NMR

0.1 0.11 0.12 0.13

Figure 5 | Phase diagram of YBa2Cu3O6þ x. The pink shaded areas represent the regions where short-range 3D CDWorder exists. Grey bands indicate the

regions where growing 3D CDW precursor correlations are observed. (a) Temperature-magnetic field phase diagram. (b) Doping-magnetic field phase

diagram. Solid red square points indicate the onset of a 3D CDWorder with qb¼ (0,db,0) determined from the variation of the xc,c¼ 1 correlation length and

the intensity of the 3D peak (Fig. 4). Triangles are the Fermi surface reconstruction onset determined from thermal Hall coefficient17. Solid black squares

indicate the onset of growing in-plane CDWcorrelation lengths (3D precursor correlations) determined from the variation of xb,c¼ 1 (Fig. 4d,e). Dashed blue

lines in (a,b) indicate Bc2 line
35. Solid black circles in (a,b) are derived from NMR11,15. The vertical black dashed line is the onset of weakly anti-phase CDW

correlations (refs 4, 5 and 8). Red circular and triangular points originate from ultrasound16 and thermal Hall effect17 experiments, whereas the red squares

are the field onset of qb¼ (0,db,0) found by X-ray diffraction.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11494 ARTICLE

NATURE COMMUNICATIONS | 7:11494 |DOI: 10.1038/ncomms11494 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


Hall conductivity measurements17 that demonstrate Fermi
surface reconstruction at the same field (Fig. 5a). At highest
fields investigated, B¼ 16.9 T, the structure of the CDW within
individual bilayers involves the same breaking of mirror
symmetry observed at zero field26, which has been posited to
lead to Fermi surface reconstruction28,29.

Methods
Experimental details. Our experiments used 98.5 keV hard X-ray synchrotron
radiation from the PETRA III storage ring at DESY, Hamburg, Germany. A 17T
horizontal cryomagnet30 was installed at the P07 beamline. Access to the (h,0,c)
and (0,k,c) scattering planes was obtained by aligning either the a–c axes or the b–c
axes horizontally, with the c axis approximately along the magnetic field and beam
direction. The samples were glued to a pure aluminium plate on which was
mounted a Cernox thermometer for measurement and control of temperature.
With the high intensities of PETRA III, a small amount of beam heating of the
sample was observed. By observing the effect of changes in beam heating
(controlled by known attenuation) on the measured temperature of the 3D phase
transition, we determined the effect of the beam on the sample temperature near
40K. The sample heating at other temperatures was determined using the Cernox
thermometer and a model of the heat flow from the sample to the aluminium plate.
We estimate that there is an absolute uncertainty in our temperature determination
of ±2K. The relative temperature uncertainty is smaller than this.

Four YBCO crystals with different in-planar doping and different oxygen chain
structure were studied (Table 1). Except for the YBCO6.60 sample, detailed
descriptions of these crystals are found in refs 5,31,32. The YBCO6.60 sample was
studied with the scattering plane defined by (k,k,0) and (0,0,c). This configuration
has the advantage that CDW modulations along both a and b axis directions could
be accessed without reorienting the sample. The absence of c¼ 0,1 CDW order
along the a axis direction was checked using the (h,0,c) scattering plane.

Data analysis. h- and k-scans, as shown in Fig. 3c,d, are fitted with a single
Gaussian function on a weakly sloping background. c-scans with a well-defined
peak at c¼ 1 (Figs 1j and 3a,b) are fitted using a two Gaussian functions. Corre-
lation lengths x¼ 1/s are defined by the inverse Gaussian s.d. s¼ s2meas �s2R

� �0:5
.

The instrumental resolution sR—for a CDW reflection—was estimated at Bragg
reflections near to the measured CDW reflections. Resolution-corrected correlation
lengths are given in Table 1.

Simulation of scattering profiles. We use a simple Markov chain model33 of
order m¼ 2 to interpret the diffuse and c¼ 1 scattering profiles, for example, in
Fig. 1j. A Markov chain is a stochastic series. Here we generate a series of two types
of bilayer (A and B) corresponding to the phase of the displacement of the CDW in
a given bilayer. We represent the bilayer type at position index i along the
c-direction by a stochastic variable xi. This can take either the value xi¼ 1, denoting
bilayer type A, or xi¼ 0 for type B. We create a series of bilayers starting, for
instance, with an A bilayer, followed by a B. The probability P(xi¼ 1) of adding an
A bilayer at position i, preceded by xi� 1 and xi� 2 , in the series is given by:

P xi ¼ 1 j xi� 1; xi� 2ð Þ ¼ aþbxi� 1 þ gxi� 2: ð1Þ
Clearly, P(xi¼ 0)¼ 1� P(xi¼ 1). Equation (1) is a recipe, using random numbers
to represent the probabilities, to create a series of bilayers with a given amount of
correlation built in. Let mA (mB¼ 1�mA) be the fraction of A-type (B-type)
bilayers in the series and PAA

1 the proportion of AA bilayer pairs separated by one
lattice spacing. We choose a¼ 1

2 1�b� gð Þ so that macroscopically mA¼mB¼ 1
2.

A number (NB500) of stochastic series xi (Nsite¼ 100) subject to a given a, b and g
are generated. The corresponding scattered intensity (assuming the single-unit cell
structure from ref. 26) for each series is calculated and averaged. b and g are
adjusted to give the best fit to the data and PAA

1 is calculated.
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