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Predicting and ranking potential invasive species present significant challenges to researchers 
and biosecurity agencies. Here we analyse a worldwide database of pest species assemblages 
to generate lists of the top 100 insect pests most likely to establish in the United States and 
each of its 48 contiguous states. For the United States as a whole, all of the top 100 pest species 
have already established. Individual states however tend to have many more ‘gaps’ with most 
states having at least 20 species absent from their top 100 list. For all but one state, every exotic 
pest species currently absent from a state’s top 100 can be found elsewhere in the contiguous 
United States. We conclude that the immediate threat from known invasive insect pests is 
greater from within the United States than without. Our findings have potentially significant 
implications for biosecurity policy, emphasizing the need to consider biosecurity measures 
beyond established national border interventions. 
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Invasive species cause immense environmental and economic 
damage worldwide1–5. In the United States, introduced species 
are estimated to cost the economy approximately US$120 billion 

per year6, whereas in Europe costs have been estimated at US$13 
billion per year3. Accordingly, predicting the identity and entry 
pathway of alien invasive species is of considerable importance for 
researchers and policy-makers and many countries maintain active 
biosecurity infrastructures, backed up by national and interna-
tional regulatory institutions and agreements7 aimed at preventing 
introductions of alien invasive pests, weeds and diseases (for exam-
ple, for the United States, see http://www.csrees.usda.gov/nea/ag_ 
biosecurity/ag_biosecurity.cfm). Given the increasingly global nature 
of transport and trade, together with the fact that there are hundreds 
or even thousands of potential invasive species in the global species 
pool, a major challenge for national biosecurity is predicting which  
invasive species are of greatest threat3,8,9 and from where those species 
are likely to come3,10. In addition, for large countries with multiple  
potential entry points, there is a need to consider not only pre-border 
incursions, but also post-border spread of exotic species that have 
already arrived3,11,12.

The current approach of biosecurity agencies to these issues often 
relies heavily on a consultative process in which scientific experts, 
policy officers and industry stakeholders are consulted for their 
opinion on which of the potential invasive species have the high-
est likelihood of invading.3,13. However, it is well known that such 
opinions are susceptible to context dependence and motivational 
bias, potentially resulting in misleading prioritization14 and making 
it difficult to rank and prioritize potentially hundreds of species for 
different biosecurity contexts (for example, pre- versus post-border, 
state or regional versus national, agricultural versus environmen-
tal). Alternately, there are numerous quantitative approaches to 
estimating a species likely exotic range,15–18 but these require exten-
sive and detailed data regarding a species and/or the environmental 
characteristics of its range, and are generally completed on a species 
by species basis (though there are some notable exceptions, which 
have assessed multiple species19,20). To rank and prioritize hundreds 
of species using any of these approaches would require significant 
time and cost. Here we apply a type of artificial neural network  
(a self organizing map or SOM), analysing presence/absence data to 
rank simultaneously, based on establishment likelihood, the threat 
of a globally distributed set of  > 800 known invasive insect pest spe-
cies to the United States21,22 (data extracted from the CABI Crop 
Protection Compendium23).

The SOM identifies similarities in species assemblages in differ-
ent regions and then ranks species according to their ‘likelihood’ 
of establishing in a particular region based on these species asso-
ciations. By considering that species groupings are non-random, 
any species commonly found with a particular set of other species 
is more likely to establish in a region where elements of that spe-
cies assemblage are found. This SOM approach therefore captures, 
phenomenologically, the anthropogenic, biotic and abiotic factors 
that determine the make up and distribution of species assem-
blages21,22,24,25 and presents an alternative to all other current species 
prioritization processes.

We used the SOM approach to analyse the CABI pest data set 
and generate top 100 ‘likelihood of establishment’ lists for the con-
tiguous USA and for the 48 contiguous states (that is, not includ-
ing geographically separated Hawaii or Alaska). For each state we 
then determined whether species absent in their top 100 potential 
invaders were absent from the United States overall, or could be 
found already in another US state. The aim was to determine where 
the greatest current threat from known invasive insect pests lies—
within the United States or without?

We found that for all but one US state, all absent species in a 
state’s top 100 can be found somewhere else in the contiguous USA, 
and often in a neighbouring state that shares a border. We conclude 

that for the United States, the greatest threat from known invasive 
species comes from within the United States itself rather than from 
outside.

Results
Top 100 lists. Our initial analysis revealed a key finding: of the 
top 100 insect species predicted to have the highest chance of 
establishment in the United States as a whole (Supplementary 
Data 1), all are currently present somewhere within the contiguous 
United States (and 178 of the top 200 are present).

Using the top 100 likelihood lists for all 48 states (Supplementary 
Data 1), we determined how many of the top 100 are still absent 
from a particular state (Fig. 1a). In contrast to the national likeli-
hood list, we found that all states had species absent in their top 100 
list, with most states having at least 20 absent species in their top 100 
and one state (Vermont) having almost half of the 100 absent (48).

We then asked, of those absent species in a state’s top 100 list, how 
many are present in another state in the United States? In all but one 
of the 48 contiguous states of the United States, every absent species 
in the top 100 for a state could be found in at least one other state 
and on average will be found in 27 other states (Fig. 1b). Moreover, 
we found the majority of absent species in any state’s top 100 can 
be found in a neighbouring state that shares a border (Fig. 1c). On 
average, 84.3% of the absent species could be found in at least one 
neighbouring state, with 12 states having all absent species in their 
top 100 present in a neighbouring state (Fig. 1c). The only exception 
to this was Florida, for which 9 out of the 18 species absent in its 
top 100 are not found anywhere else in the contiguous USA, and a 
further three species are only found in one other state.

Factors related to top 100 lists. In determining what factors could 
predict whether a state has a large number of absent species in the 
top 100, it might be expected that larger states would accumulate 
more species than smaller states and therefore have fewer absent 
species. However, we found no relationship between the number of 
absent species in a state and state size (linear regression, F1,46 = 0.06, 
P = 0.800; asymptotic regression, F1,45 = 0.76, P = 0.476; data pre-
sented in Supplementary Fig. S1). Similarly, species diversity tends 
to decrease with latitude26 so it might be expected that southern 
states would have fewer absent species than northern states, but 
again there was no significant relationship between the number 
of absent species in a state’s top 100 and the state latitudinal mid-
point (linear regression, F1,46 = 2.50, P = 0.121; asymptotic regres-
sion, F1,45 = 1.42, P = 0.253; data presented in Supplementary Fig. 
S2). In contrast, there was a significant negative relationship with 
the number of inbound domestic air passengers (asymptotic regres-
sion–exponential curve, F2,45 = 12.46, P < 0.001, R2 = 0.328; Fig. 2a), 
and also gross state product (GSP) (asymptotic regression–expo-
nential curve, F2,45 = 43.45, P < 0.001, R2 = 0.644; Fig. 2b).

Discussion
The combined evidence that the United States as a whole has no 
species absent in its top 100 list and that most absent species in a 
state’s top 100 can be found in a neighbouring state leads to the con-
clusion that the immediate present-day threat from known invasive 
insect pests is greater from within the United States than without. 
Although the SOM analysis does not indicate the likelihood of a 
pest species actually arriving from a particular state, the fact that 
species absent from one state were frequently found in a neighbour-
ing state implies the ease at which that pest could arrive.

Interestingly, Florida was the only state with absent species in its 
top 100 that were not found in any other state. The immediate threat 
from outside the United States may be proportionately greater for 
Florida than any other contiguous US state. Of all inspection stations 
at US ports of entry (airports, maritime ports and land border sites), 
Miami had the greatest percentage (21.8%) of insect interceptions27  
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indicating that it receives a significant number of insect pests and 
may be a ‘doorway’ to insect pests entering the United States.

Inbound domestic passengers and GSP can be considered sur-
rogates for propagule pressure and ecological disturbance respec-
tively28, both of which have been identified as determinants of  
species invasion in other contexts28–31. In line with this, transport 
(‘propagule pressure’) and economic activity (‘disturbance’) appear 
to be factors in determining the likelihood of establishment of 
known invasive crop pests in the US states. That is, those states that 
have a small number of absent species in their top 100 (as deter-
mined by the SOM analysis) tend to have higher levels of incom-
ing air passengers (propagule pressure) and higher GSP (ecological 
disturbance). Another factor that could also determine likelihood 
of a species being present or absent in a given state is time since 

arrival and establishment in the United States. However, the reli-
ability of these type of data is notoriously poor (invaders can remain 
undetected for many years and reporting varies with commodity, 
surveillance systems, economic significance, feeding ecology, tax-
onomy and so on)32, making systematic analysis difficult.

Beyond enabling us to generate likelihood lists for each of the US 
states, as mentioned in the methods, those regions that are closest 
together in a SOM, and in particular that share the same neuron, 
are most similar to one another21,22,24,33. Examining which states have 
been assigned to the same neuron in the current analysis, therefore, 
reveals which states have the most similar insect pest assemblages 
(Fig. 3). The insect pest assemblage of a state captures a significant 
proportion of biological, ecological and abiotic factors that cannot be 
measured, and states with similar assemblages therefore share these  

50

40

30

20

10

0

N
um

be
r 

of
 a

bs
en

t s
pe

ci
es

in
 to

p 
10

0

30

25

35

20

10

5

15

0

M
ea

n 
nu

m
be

r 
of

 s
ta

te
s

90

80

100

70

60

30

40

20

50

10

0

%
 o

f a
bs

en
t s

pe
ci

es
 fo

un
d

in
 a

 n
ei

gh
bo

ur
in

g 
st

at
e

V
T

N
V R
I

N
H

W
Y

N
D

S
D A
Z

O
K

M
T

W
V

A
R

D
E IA N
E

M
E

M
N ID U
T

LA O
R A
L

T
N

K
S

M
S

C
O

W
A

C
T

M
O F
L IN M
A W
I IL S

C N
J

M
I

T
X

N
C V
A

M
D

O
H PA N
Y

G
A

C
A

N
M K
Y

W
V

K
T

T
N

M
O W
I

G
A IL M
I

N
C V
A

O
H PA IN N
V

A
R

S
C IO N
J

S
D A
L

M
S

C
T

D
E

N
E

M
A

M
D LA K
S

W
Y

N
D

N
Y

M
T ID A
Z

O
R V
T R
I

U
T

T
X

C
A

N
H

W
A

M
E F
L

N
M M

I

O
K

C
O

A
L

LA G
A

T
X

N
Y

M
S

C
A

A
R ID A
Z

W
A

U
T

W
V

M
E M
I

T
N

M
T

O
K

C
T

W
Y

N
H

S
C

M
A R
I

K
S

K
Y IA N
V

D
E W
I

O
H

C
O

M
O

N
E

N
C

N
D V
A

M
N V
T IL

M
D PA S
D F
L

N
J INO
R

N
M

Figure 1 | Characteristics of each US state’s top 100 list. (a) Number of absent species in the top 100 likelihood list for each state of the contiguous USA. 
(b) Mean number of other states in the contiguous USA an absent species in the top 100 likelihood list is found (e.g. for Alabama, the 23 absent species in 
its top 100 likelihood list are found, on average, in 31 other states). (c) Percentage of absent species in a state’s top 100 likelihood list found in at least one 
neighbouring state.
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characteristics. Species that are subsequently found in one state 
would have a high likelihood of establishing in a SOM identified 
closely clustered state21,22. The analysis identifies several clusters 
of states that do show some similarities with regional ecosystem 
divisions (http://www.fs.fed.us/land/ecosysmgmt/colorimagemap/
ecoreg1_divisions.html). However, the clusters do not simply follow 
regional groupings of contiguous states, with some states cluster-
ing across very broad regions and others clustering with just one, 
or even no other states. In terms of invasive species risk and pos-
sible biosecurity responses, states within the same cluster are the 
most likely potential sources of high-establishment pests for one 
another (a conclusion that should apply to plant pest species in 
general, not only those species contained within the current pest 
database)21,22. This does not mean that states outside an immediate 
cluster cannot act as sources for insect pest species, but does provide 
some insights for informing potential biosecurity/phytosanitary 
measures between states. Whether addition of further invasive 
species would help provide greater resolution within and between 
clusters is unclear. However, adding other plant ‘pests’, such as 
fungal pathogens, would integrate the influence of other taxa and 
could be valuable to biosecurity agencies that need to consider all  

potential threats to crops. However, the addition of non-plant pests 
that occupy fundamentally different niches (for example, pests of 
native systems) could weaken the inferences with respect to agri-
culture (although it would be interesting to conduct separate SOM 
analyses to explore emergent patterns and resultant biosecurity 
implications for different classes of invasive species in natural and 
managed environments).

The SOM is essentially a statistical approach for predicting like-
lihood of establishment and identifying the most suitable ‘source’ 
locations for pests, but it does not consider the likelihood of a spe-
cies actually arriving in a state. Therefore, if the SOM model pre-
dicts a high likelihood of establishment for a species that is currently 
absent from a state, it is not possible to determine if the species is 
absent because it has failed to arrive, or if the SOM prediction is 
simply inaccurate. However, examining the distribution of absent 
species across likelihood levels reveals that most absent species 
from a region occur with the lowest likelihood values, and of those 
species with high likelihood values, most have already established 
(see Supplementary Figs S3–S10 for examples). For example, Sup-
plementary Figure S4 shows the distribution of absent species for 
Alabama. Approximately 97% of the species in the highest likeli-
hood category (0.9–1.0) are present (3% are absent). In the next 
category (0.8–0.89), approximately 82% of species are present. This 
trend continues down until the lowest category (0–0.09), where all 
the species are absent and none are present. This pattern repeats 
itself in the other examples given in Supplementary Figures S3–S10 
and is evidence that the SOM is making appropriate predictions. 
If species that are present in a state were consistently assigned low 
likelihood values, this would cast serious doubt over the values gen-
erated for absent species.

Further validation of the SOM technique can be obtained by 
comparing our predictions with independent pest distribution data 
for the United States. The NAPIS pest tracker website (http://pest.
ceris.purdue.edu/pestlist.php) publishes maps for pests of agricul-
tural and forest commodities based on survey data collected by 
Cooperative Agricultural Pest Survey and Plant Protection and 
Quarantine(USDA). These survey maps show, on a county by county 
basis, where a pest species has or has not been found. We identi-
fied 59 insect pest species present in this online database that were  
also present in the CABI database and compared their observed  
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distributions with the predicted likelihood of establishment from 
the SOM. Although not a categorical threshold, assuming a likeli-
hood value of 0.5 indicates that the SOM model predicts a species 
is more likely to be present than absent, we found 86% agreement 
between observed (from the NAPIS website) and predicted (from 
the SOM model) species distribution (Supplementary Data 1).

These validation results, together with analyses demonstrating 
that the method is resilient to realistic reporting errors in the species 
presence/absence21, suggest the SOM approach provides a robust 
method for identifying the invasive species most likely to establish, 
and the possible source sites based on pest assemblage similarity. 
The results of our study reveal that, based on a known global list 
of insect pests, the greatest immediate threats (in terms of estab-
lishment likelihood) to the United States come from within, as the 
majority of pest species most capable of establishing have already 
established. This is reflected at the state level where, for the majority 
of states, those species of highest likelihood of establishing can be 
found in another state, and often a neighbouring state. Although 
this does not mean that the United States could not be invaded 
by other recognized pest species, or that new exotic insects can-
not arrive and attain pest status, in terms of invasive species policy 
the results suggest the need for increased awareness of state-level 
post-border biosecurity3,34 (http://www.cdfa.ca.gov/phpps/ar/pe_
exterior.html), especially among clustered states, and the possible 
development of area-wide control strategies to attenuate potential  
pest spread35.

Methods
Data. Data were extracted with permission from the CABI Crop Protection Com-
pendium23. This data set is the presence/absence data of 844 insect pests within 459 
geographical regions. These regions are political countries with many of the larger 
countries, such as the USA, further subdivided into their states or provinces. This 
compendium database is a global compilation of information on all aspects of plant 
health and the distributional data are sourced from available literature records 
(http://www.cabi.org/compendia/cpc/). The result was a 459 × 844 matrix compris-
ing 459 vectors each with 844 elements, where each element of a vector represented 
the presence (1) or absence (0) of an insect species in a region.

SOM model. A SOM is an artificial neural network capable of converting high-
dimensional data into a two-dimensional map in which data points that are found 
close together on the map are more similar than those that are further away36.  
The SOM therefore is a clustering method in which similar data points (in multi
dimensional space) are clustered together in the resultant two-dimensional map. 
Full details describing a SOM analysis can be obtained from refs 22, 36, but essen-
tially, each of the 459 regions occupy a particular point in space of 844 dimensions. 
Each region’s position in this space is determined by the 844-element vector that 
describes the presence or absence of all 844 insect pests in that region. The SOM 
projects its 108 neurons into this space through neuron weight vectors. As with 
the region vectors, these neuron weight vectors are composed of 844 elements. In 
effect, each SOM neuron occupies a point in the same multidimensional space as 
the regions, thereby allowing them to ‘interact’ with the region vectors (see below 
for further explanation).

When the analysis is initiated, each raw data point is assessed and the neuron 
that is closest to this data point in this multidimensional space is deemed to be the 
best matching unit (BMU). The neuron weight vector of the BMU is adjusted so 
that it moves closer to the data point. Because all neurons are connected together 
similar to a large ‘elastic net’, the process of one neuron moving exerts a gravita-
tional force that drags other neurons in the SOM with it.

With each iteration, the neurons spread out to eventually occupy approximately 
the same area that the data points occupy in the multidimensional space. When 
the analysis is complete each data point or region vector will have a BMU that is 
its closest neuron. Regions that have very similar pest assemblages will be located 
close together in the multidimensional space and will have the same BMU. Each 
neuron therefore occupies a point in the multidimensional space that is described 
by its neuron weight vector.

In this study, the neuron weight vector comprises 844 elements with each 
element having a value between 0 and 1. Each element corresponds to one of 
the 844 insect species and can be interpreted as a likelihood index or an index 
of how strongly that species is associated with other species in that neuron 
and hence the species assemblage of any region associated with that neuron 
(BMU)25. The SOM analysis therefore generates likelihood indices for all species 
regardless of whether they are present or absent from a particular region and, 
not surprisingly, those species that are already present in a region will receive a 
high likelihood index. For the USA, the likelihood list generated is the neuron 

weight of its BMU. The analysis was performed using Matlab37 and the SOM 
Toolbox (version 2.0) developed by the Laboratory of Information and  
Computer Science Helsinki University of Technology (http://www.cis.hut.
fi/projects/somtoolbox/)38. Further details of the model are reported in  
Supplementary Methods.

A top 100 likelihood list was generated for the United States as a whole and all 
48 contiguous US states (see Supplementary Data 1).

Regression analyses. We obtained state size data (km2) from the US Census  
Bureau (http://www.census.gov/population/www/censusdata/density.html) and 
used linear regression to determine if there was a significant relationship between 
the size of the state and the number of absent species in a state’s top 100 list.

We obtained state latitudinal range from Wikipedia’s web page for each indi-
vidual state and confirmed these values using an atlas39. We then took the midpoint 
in a state’s latitudinal range and used linear regression to determine if there was a 
significant relationship between a state’s latitude and the number of absent species 
in a state’s top 100 list.

We obtained domestic passenger data from the US Bureau of Transportation 
Statistics (http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=258), T-100 
Domestic Market (US Carriers) database (2007 data). We then used asymptotic 
regression (exponential curve) to determine if there was a significant relationship 
between the numbers of passengers arriving into a state and the number of absent 
species in a state’s top 100 list.

We obtained GSP from the US Department of Commerce, Bureau of Economic 
Analysis (http://www.bea.gov/regional/gsp/action.cfm) and used asymptotic 
regression (exponential curve) to determine if there was a significant relationship 
between a state’s GSP and the number of absent species in a state’s top 100 list.

All regression analyses were performed using Genstat40 and for all tests we 
used a linear and a non-linear regression (an exponential curve). For significant 
relationships we took the regression that accounted for the largest percentage of 
variation. For all regressions, standardized residuals were plotted against fitted val-
ues to test for homoscedasticity and a histogram of these residuals was generated to 
determine normality.

Determining host availability. To ensure that the reason a species was absent 
from a state was not because of the absence of an available host plant for that spe-
cies, we counted only those absent species for which a host plant was present in 
that state. We obtained plant host lists for every pest species absent from a state and 
in that state’s top 100 list from the CABI Crop Protection Compendium23. For each 
pest species we then determined, from the USDA Plants Database (http://plants.
usda.gov/index.html), if at least one of these host plants was present in the state in 
which the pest species was absent from. This would determine if a pest species was 
able to establish in principle in a state. 
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