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Implementation of quantum and classical discrete
fractional Fourier transforms
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Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and

applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a

continuous set of fractional Fourier domains, every property and application of the ordinary

Fourier transform becomes a special case of the fractional Fourier transform. Despite the

great practical importance of the discrete Fourier transform, implementation of fractional

orders of the corresponding discrete operation has been elusive. Here we report classical and

quantum optical realizations of the discrete fractional Fourier transform. In the context of

classical optics, we implement discrete fractional Fourier transforms of exemplary wave

functions and experimentally demonstrate the shift theorem. Moreover, we apply this

approach in the quantum realm to Fourier transform separable and path-entangled biphoton

wave functions. The proposed approach is versatile and could find applications in various

fields where Fourier transforms are essential tools.
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T
wo hundred years ago, Joseph Fourier introduced a major
concept in mathematics, the so-called Fourier transform
(FT). It was not until 1965, when Cooley and Tukey

developed the ‘fast Fourier transform’ algorithm, that Fourier
analysis became a standard tool in contemporary sciences1. Two
crucial requirements in this algorithm are the discretization and
truncation of the domain, where the signals to be transformed are
defined. These requirements are always satisfiable, since
observable quantities in physics must be well behaved and finite
in extension and magnitude.

In 1980, Namias made another significant leap with the
introduction of the fractional Fourier transform (FrFT), which
contains the FT as a special case2. Several investigations quickly
followed, leading to a more general theory of joint time-frequency
signal representations3 and fractional Fourier optics4. The vast
scope of the FrFT has been demonstrated in areas such as wave
propagation, signal processing and differential equations3,5–7.
So far, the FT of fractional order was realized only by single-lens
systems8,9, although other theoretical suggestions, including
multi-lens systems10 or graded index fibres exist11. The aim to
discretize this generalized FT led to the introduction of the
discrete fractional Fourier transform (DFrFT) operating on a
finite grid in a way similar to that of a discrete FT12. Along those
lines, several versions of the DFrFT have been introduced5,
however, without any experimental realization, so far. In this
work we focus on the optical implementation of the so-called
Fourier–Kravchuk transform12 that can be equally applied to the
classical and quantum states. Throughout our paper, we simply
refer to this transform as DFrFT whose application reaches from
the demonstration of the Fourier suppression law13, N00N-state
generation14,15 and qubit storage16 to the realization of perfect
discrete lenses for non-uniform input distributions.

In this work, we report on the realization of DFrFTs of
one-dimensional optical signals based on an integrated lattice of
evanescently coupled waveguides. In these photonic arrange-
ments, the inter-channel couplings are designed in such a way
that the system readily performs the DFrFT of any incoming
signal. The signal evolution is governed by the Schrödinger
equation and the associated Hamilton operator is known as the
Jx-operator in the quantum theory of angular momentum or
likewise as the Heisenberg XY model from the quantum theory of
ferromagnetism. We foresee that the inherent versatility of this
approach will make other realizations of the DFrFT, the FT and
the fast Fourier transform recognizably simple and thus may
open the door to many interesting applications in integrated
quantum computation17.

Results
Theoretical approach. Similarly to its continuous counterpart,
the DFrFT can be interpreted physically as a continuous rotation
of the associated wave functions through an angle Z in phase
space (see Fig. 1a)18. The idea is thus to construct finite circuits
that are capable of imprinting such rotations to any light field.
In quantum mechanics, three-dimensional spatial rotations of
complex state vectors are generated via operations of the angular
momentum operators Jk (k¼ x, y, z) on the Hilbert space of the
associated system19. In particular, the rotation imprinted by the
Jx-operator turns out to be an elaborated definition of the DFrFT
(see Methods section for discussion). These concepts can be
readily translated to the optical domain by mapping the
matrix elements of the Jx-operator over the inter-channel
couplings of engineered waveguide arrays (Fig. 1b–e)20. The
coupling matrix of such waveguide arrays is thus given by
Jxð Þm;n¼k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mð Þ jþmþ 1ð Þ

p
dmþ 1;n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþmð Þ j�mþ 1ð Þ

p
dm� 1;n

� �
=2

(ref. 19). Here, k0 is a scaling factor introduced for experimental
reasons. The indices m and n range from � j to j in unit steps.

Meanwhile, j represents an arbitrary positive integer or half-
integer that determines the total number of waveguides via
N¼ 2jþ 1 (Fig. 1b).

Coupled mode theory states that the evolution of light in the
Jx-waveguide array is governed by the following set of equations20

i
d
dZ

Em Zð Þ ¼ 1
k0

Xj

n¼� j
Jxð Þm;nEn Zð Þ: ð1Þ

Here, En(Z) denotes the complex electric field amplitude at site n.
In the quantum optics regime, single photons traversing such
devices are governed by a set of Heisenberg equations that are
isomorphic to equation (1). The only difference is that in the
quantum case En(Z) must be replaced by the photon creation
operator awn Zð Þ. In a spintronic context, the evolution parameter
Z is associated with time, whereas in the framework of integrated
quantum optics, Z represents the propagation distance, see
Fig. 1b–e. A spectral decomposition of the Jx-matrix yields the

eigenvectors u mð Þ
n ¼2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ nð Þ ! j� nð Þ !
jþmð Þ ! j�mð Þ !

q
P m� n;�m� nð Þ
jþ n 0ð Þ14,19, which

in combination with the eigenvalues, bm¼� j; . . . ; j, render the
closed-form point-spread function

Gp;q Zð Þ ¼ ip� q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ pð Þ ! j� pð Þ !
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Figure 1 | Discretization of the FrFT. (a) Pictorial view of actual fractional

Fourier transforms exemplified as continuous rotations in phase space.

(b) Schematic representation of a pre-engineered Jx-array. (c–e) Top views

of continuous ‘rotations’ of a rectangular (c), displaced rectangular (d) and

Gaussian (e) optical wave functions in a Jx-array with N¼ 151. The bottom

and top plots show the intensities jEnj2 and phases fn of the ingoing and

outgoing wave packets, respectively. The green lines describe the

magnitude of phase distributions of the optical fields, that is, the phase

jumps of p due to a change of sign of the signal’s amplitude are not shown.
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Note that q and p represent the excited and observed sites,

respectively, and P A;Bð Þ
n xð Þ are the Jacobi polynomials of order n

(see Methods section for discussion). Using equation (2), we can
compute the response of the system to any input signal, which in
turn gives the DFrFT12. Accordingly, DFrFT of any particular
order arises at one specific propagation distance Z lying between

0 and p/2. In the limit N-N, the eigenvectors of Jx, u
mð Þ
x

ffiffiffiffiffiffi
2=N

p ,

become the continuous Hermite–Gauss polynomials Hm(x),
which are known to be the eigenfunctions of the fractional
Fourier operator12. As a result, in the continuous limit, the
DFrFT described by equation (2) converges to the continuous
FrFT5,12; and the standard FT is recovered at Z¼p/2 (Fig. 1c–e).
Note that in general, the DFrFT obtained in our devices and the
usual DFT become equal only in the continuous limit N-N and
at Z¼p/2.

Experiments with classical light. To experimentally demonstrate
the functionality of the suggested waveguide system, we use
N¼ 21 waveguides to perform FTs of simple wave packets.
We first consider a Gaussian wave packet with a full-width at
half-maximum (FWHM) covering the five central sites (Fig. 2a).
The input signal is prepared by focusing a Gaussian beam from a
HeNe laser onto the front facet of the sample. By exploiting the
fluorescence from colour centres within the waveguides21, we
monitor the full intensity evolution from the input to the output
plane. The fluorescence image, Fig. 2a, shows a gradual transition
from an initially narrow Gaussian distribution at the input to a
broader one at the Fourier plane (left and right panels Fig. 2a),
demonstrating that narrow signals in space correspond to broad

signals in Fourier space. For intermediate propagation
distances (ZA[0, p/2]) we extract other orders of the DFrFT,
simultaneously. For comparison, we plot the continuous FrFT
produced by the corresponding continuous Gaussian profile
(red curves Fig. 2a). The agreement between the computed FrFT
and the experimental DFrFT proves that for the considered
Gaussian input signal, N¼ 21 is sufficient to achieve the
continuous limit. We now shift the input Gaussian beam by six
channels towards the edge. Since the separations between
adjacent waveguides at the edges are bigger than the
separations between adjacent waveguides in the centre, the
discretization grid is not perfectly homogeneous. Strictly
speaking, the discretized shifted Gaussian just at the input
plane covers slightly less than five waveguides FWHM. We
observe that the well-approximated off-centre Gaussian travels to
the centre at Z¼p/2 (Fig. 2b), hereby showing the famous shift
theorem. In additional experiments, extended signals, for
example, a shifted top-hat function, are found to be well
transformed according to equation (2) as well. However, we
find that for this type of excitation N421 would be required to
discuss the continuous limit (see Supplementary Note 1 with
Supplementary Fig. 1).

An unequivocal criterion, for the functionality of devices that
perform the DFrFT, equation (2), can be formulated by
evaluating Gp;q

p
2

� �
. At this particular distance, point-like excita-

tions will give rise to signal magnitudes that perfectly resemble
the magnitudes of one of the eigenstates of the transform. More
specifically, for transforms such as equation (2), one finds that an
excitation of the qth site excites the qth system eigenstate up to
local phases ðGp;q

p
2

� �
¼ip� qu qð Þ

p Þ (see the Methods section for
explanations). The experimental demonstration of this intriguing
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Figure 2 | DFrFT of classical light. (a) Transformation of a Gaussian input into a Gaussian profile of larger width along the evolution in the Jx-array.

The FT is obtained at Z¼p/2. The experimental data (blue crosses) is compared with the numeric FrFT (red curves). (b) A shifted input Gaussian

profile evolves towards the centre of the array and acquires the same width as in a.
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effect is shown in the subpanels of Fig. 3a–d along with the
theoretical predictions. It can be argued that for any point-like
excitation, the continuous limit cannot be met experimentally
(see the Methods for discussion). Instead, equation (2) creates a
non-uniform amplitude distribution with a phase difference of
p/2 between adjacent sites. Nevertheless, in the continuous limit,
Gp;q

p
2

� �
tends to the usual FT kernel12. At this point, it is worth

emphasizing the formal equivalence to the quantum Heisenberg
XY model in condensed matter physics22,23. In this respect, our
observations demonstrate the capability of the here-presented
systems to store quantum information in XY Hamiltonians by
converting specific inputs into eigenstates of the system16. To our
knowledge, this rather rare property has never been thoroughly
investigated before.

Quantum experiments. To demonstrate the applicability of our
approach in the quantum domain, we now analyse intensity

correlations of separable and path-entangled photon pairs
propagating through these Fourier transformers. To do so, we
fabricated Jx-arrays involving N¼ 8 channels. The importance of
exploring FTs of such states has been highlighted in several in-
vestigations, demonstrating interesting effects such as suppression
of states and portraying biphoton spatial correlations24–26.

In this discrete quantum optical context, pure separable
two-photon states are readily produced by coupling pairs of
indistinguishable photons into two distinct lattice sites (m, n), this
state is mathematically described by C 0ð Þj i¼awma

w
n 0j i. Conversely,

path-entangled two-photon states are created by simultaneously
launching both photons at either site m or n with exactly the same
probability, that is, C 0ð Þj i¼½ðawmÞ

2 þ awn
� �2� 0j i=2. Furthermore,

the probability of observing one of the photons at site k and its
twin at site l is given by the intensity correlation matrix
Gk;l Zð Þ¼hawka

w
l alaki (ref. 27). An intriguing and unique property

of the Jx-systems is that at Z¼p/2 the correlation matrices are
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Figure 3 | Experimental visualization of the discrete Hermite–Gauss polynomials. (a–d) Evolution of single-site inputs into the magnitudes of the

respective eigensolutions, as predicted theoretically (methods). The experimental data (blue crosses) is compared with the analytic DFrFT (red curves).
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given in terms of the eigenstates, as noticed above. Hence, for the
separable case, C 0ð Þj i¼awma

w
n 0j i, the correlation matrices are given

by Gk;l¼ju mð Þ
k u nð Þ

l þ u nð Þ
k u mð Þ

l j2, whereas for the path-entangled state,
C 0ð Þj i¼½ðawmÞ

2 þðawnÞ
2� 0j i=2, we have Gk;l¼jð� iÞ2mu mð Þ

k u mð Þ
l

þ � ið Þ2nu nð Þ
k u nð Þ

l j2. Of particular interest is the separable case,
where the photons are symmetrically coupled into the outermost
waveguides, C 0ð Þj i¼awj a

w
� j 0j i. In this scenario, only the correl-

ation matrix elements for which (kþ l)¼ odd are nonzero,
and are given by Gk;l¼ 4kþ lþ 1 jþ kð Þ ! j� kð Þ ! jþ lð Þ ! j� lð Þ !
ðP j� k;� j� kð Þ

jþ k 0ð ÞP � j� l;j� lð Þ
jþ l 0ð ÞÞ= N � 1ð Þ !½ �2. These effects are

demonstrated for the initial state C 0ð Þj i¼aw� 7
2
aw7
2
0j i in Fig. 4a,

where concentration and absence of probability in the
correlation matrix clearly show that some states are completely

suppressed—a hallmark of any Fourier unitary process13. An
estimation of the statistical significance of the data set, along with
a short discussion on incoherence effects can be found in the
Supplementary Note 2 involving Supplementary Figs 2 and 3.

As a second case, we consider a fully symmetric path-entangled
two-photon state of the form C 0ð Þj i¼½ðawj Þ

2 þðaw� jÞ
2� 0j i=2.

Physically, both photons are entering together into the array at
either site j or � j with equal probability28–30. The correlations

are determined by Gk;l¼ju jð Þ
k u jð Þ

l þ u � jð Þ
k u � jð Þ

l j2, from which we
infer that the probability of measuring photon coincidences at
coordinates (k, l) vanishes at sites where the sum (kþ l) is odd. In
contrast, at coordinates where (kþ l) is even, the correlation
function collapses to the expression Gk;l¼4kþ lþ 1 jþ kð Þ ! j� kð Þ !
jþ lð Þ ! j� lð Þ ! ðP j� k;� j� kð Þ

jþ k 0ð ÞP � j� l;j� lð Þ
jþ l 0ð ÞÞ2= N � 1ð Þ !½ �2. This

indicates that in this path-entangled case the correlation map
appears rotated by 90� with respect to the matrix obtained with
separable two-photon states. We performed an experiment to
demonstrate these predictions using states of the type
C 0ð Þj i¼½ðaw� 7

2
Þ2 þðaw7

2
Þ2� 0j i=2, which were prepared using a

50:50 directional coupler acting as a beam splitter29. The whole
experiment is achieved using a single chip containing both the
state preparation stage followed by a Jx-system, yielding high
interferometric control over the field dynamics (Fig. 5). The
experimental measurements are presented in Fig. 4b. Similarly,
suppression of states occurs as a result of destructive quantum
interference. As predicted, a closer look into the correlation
pattern reveals that indeed the correlation map appears rotated
by 90� with respect to the matrix obtained with separable
two-photon states.

Discussion
We emphasize that our quantum measurements feature inter-
ference fringes akin to the ones observed in quantum Young’s
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Figure 4 | DFrFTof quantum light. Correlation maps Gk,l of a two-photon state either prepared (a) in a product state or (b) in a path-entangled state after

propagating through a Jx-array. The photon density Ik at the output is shown on the right side of each map. The evaluation of the s.d. of the coincidence

rates is presented in the Supplementary Note 2.
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two-slit experiments of biphoton wave functions in free space as
demonstrated in ref. 24. In such free-space experiments, however,
far-field observations were carried out using lenses and the two
slits were emulated by optical fibres24. Along those lines, we have
created a fully integrated quantum interferometer to observe
fundamental quantum mechanical features25. This additionally
suggests an effective way to generate quantum states containing
only even (odd) non-vanishing inter-particle distance
probabilities for the separable input state (symmetric path-
entangled state). In addition, the eigenfunctions associated with
the Hamiltonian system explored in our work are specific Jacobi
polynomials, which are well known as the optimal basis for
quantum phase-retrieval algorithms31 and these eigenstates can
be retrieved by limited phase operations. Knowing a quantum
wavefunction and its FT, a phase-retrieval algorithm for signals
that are a superposition of a finite number of Hermite–Gauss
polynomials has been introduced32. This phase-retrieval
algorithm might be implemented employing our system, since
its discrete character automatically possesses a finite number of
polynomials that are closely connected to the Hermite–Gauss
polynomials. Another potential application is the realization of
the Radon–Wigner transform given by the squared modulus of
the FrFT6,33. The Radon–Wigner function is a basic tool for the
reconstruction of Wigner quasi-probability distributions in
quantum optics34,35. Also, FrFTs appear naturally in optics as
free-space propagation between two spherical reference planes in
general4. Like in our system, the order of the FrFT is proportional
to the propagation distance. On that basis, complex spatial
filtering involving several fractional Fourier planes was
suggested36. In this description, the optical signal is discretized
and thus described by a vector of field amplitudes at certain sites.
In our approach this is inherently realized.

In conclusion, we have successfully demonstrated a universal
discrete optical device capable of performing classical and
quantum DFrFTs. Our studies might find applications in
developing a more general quantum suppression law13 and
perhaps in the development of new quantum algorithms.

Methods
The fractional Fourier transform in quantum harmonic oscillations. In this
section, we briefly describe the relation between the continuous FrFT operator and
the Hamiltonian of the quantum harmonic oscillator2.

The FrFT operator F̂Z is defined by the following eigenvalue equation involving
the Hermite–Gauss polynomials of order n and the eigenvalues ln¼ exp(inZ)

F̂Z exp � x2=2
� �

Hn xð Þ
	 


¼ exp inZð Þexp � x2=2
� �

Hn xð Þ; ð3Þ

where Z 2 R. Concurrently, one can interpret equation (3) as quantum time
evolution from time t¼ 0 to t¼Z. We write F̂Z as exp iZÂ

� �
.

exp iZÂ
� �

exp � x2=2
� �

Hn xð Þ
	 


¼ exp inZð Þexp � x2=2
� �

Hn xð Þ: ð4Þ

To show that Â is the Hamilton operator of the harmonic oscillator, we
differentiate both sides of equation (4) with respect to Z and evaluate the result at
Z¼ 0. We obtain

Âexp � x2=2
� �

Hn xð Þ ¼ n exp � x2=2
� �

Hn xð Þ: ð5Þ

To find the spatial representation of Â, consider the differential equation

� 1
2
d2

dx2
þ x

d
dx

� �
Hn xð Þ ¼ nHn xð Þ; ð6Þ

for the Hermite polynomials Hn(x) of order n. Using the identities
1¼ exp(x2/2)exp(� x2/2) and exp xx2=2ð Þ dn

dxn
� �

exp � xx2=2ð Þ¼ d
dx � xx
� �n

,
one can show that equation (6) can be written as

� 1
2
d2

dx2
þ 1

2
x2 � 1

2

� �
exp � x2=2

� �
Hn xð Þ ¼ nexp � x2=2

� �
Hn xð Þ; ð7Þ

where we have used the commutator x; d
dx

� �
¼� 1. Comparing equation (5) and

equation (7), one can see that Â becomes

Â ¼ � 1
2
d2

dx2
þ 1

2
x2 � 1

2

� �
: ð8Þ

In summary, the FrFT operator F̂z can be written as

F̂z ¼ exp
iz
2

� d2

dx2
þ x2 � 1

� �� �
: ð9Þ

Because of this one-to-one correspondence between the dynamics of the quantum
harmonic oscillator and the fractional Fourier operator, the implementation of
such transform is immediate using harmonic oscillator systems37.

Jx-photonic lattices as discrete harmonic oscillators. Our aim in this section is
to show that in the continuous limit N-N, the eigenvalue equation for Jx-arrays
becomes the eigenvalue equation of the quantum harmonic oscillator. Consider the
matrix representation of the Jx-operator again. For convenience we take, in this
section only, k0¼ 1.

Jxð Þm;n ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mð Þ jþmþ 1ð Þ

p
dn;mþ 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþmð Þ j�mþ 1ð Þ

p
dn;m� 1

� �
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j jþ 1ð Þ�m mþ 1ð Þ

p
dn;mþ 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j jþ 1ð Þ�m m� 1ð Þ

p
dn;m� 1

� �
:

ð10Þ
The indices m and n range from � j to j in unit steps and j is an arbitrary positive
integer or half-integer. The dimension of the Jx-matrix is N¼ 2jþ 1. We now
introduce the variable g¼ j(jþ 1)¼ (N2� 1)/4, which implies that (Jx)m,n can be
written as

Jxð Þm;n¼
ffiffiffi
g

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

g
m mþ 1ð Þ

r
dn;mþ 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

g
m m� 1ð Þ

r
dn;m� 1

� �
: ð11Þ

Let us consider the eigenvalue equation for this matrixffiffiffi
g

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

g
m mþ 1ð Þ

r
cmþ 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

g
m m� 1ð Þ

r
cm� 1

� �
¼ bmcm: ð12Þ

Considering the region m � j, since gpN2, in the limit N-N, the terms
m m � 1ð Þ=g � 1. Hence, in the domain far from the edge of the array a Taylor
expansion yields

ffiffiffi
g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

g
m � 1ð Þ

r
� ffiffiffi

g
p

1� m
2g

m � 1ð Þ� m2

8g2
m � 1ð Þ2

� �
: ð13Þ

By defining m¼ xg1/4 (or x¼m/g1/4) , we obtain

ffiffiffi
g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

g
m � 1ð Þ

r
� g1=2 � x2

2
� x

2g1=4
� x4

8g1=2
ð14Þ

Plugging this expression into equation (12)

g1=2 � x2

2
� x

2g1=4
� x4

8g1=2

� �
cmþ 1 þ g1=2 � x2

2
þ x

2g1=4
� x4

8g1=2

� �
cm� 1

� 2bmcm

ð15Þ
We redefine the functions cm¼c xð Þ¼cð m

g1=4Þ and cmþ 1¼cðxþ 1
g1=4Þ¼cð m

g1=4 þ
1

g1=4Þ
such that we can introduce the Taylor series

cm� 1 ¼ c x � 1
g1=4

� �
¼ c xð Þ � 1

g1=4
c0 xð Þþ 1

2g1=2
c00 xð Þ; ð16Þ

where, again, we have kept only terms up to second order in 1/g1/4. Substituting
equation (16) into equation (15), and using the limit

lim
N!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
N2

� �
1

1� 1
N2

� �
4

s
¼ 0:

We obtain the time-independent Schrödinger equation for the harmonic oscillator

� 1
2
d2

dx2
þ 1

2
x2

� �
c xð Þ ¼ ffiffiffi

g
p � bð Þc xð Þ: ð17Þ

Therefore, in the continuous limit N-N, the difference equation describing
Jx-photonic lattices becomes the time-independent Schrödinger equation for the
quantum harmonic oscillator. Note, however, that due to the importance of the
condition m � j in this derivation, this statement is only valid when dealing with
signals that are square integrable in the continuous limit. Thus, the operator
equation (11) can be used to define the discrete version of the quantum harmonic
oscillator and thus the DFrFT.

The point-spread function for Jx-photonic lattices. In this section, it is shown
that at Z¼ p/2, the green function of Jx-systems becomes proportional to the
amplitude of one of the eigenstates. The evolution of light in Jx-arrays is governed
by the set of N coupled differential equations (equation (1)).

The normalized propagation coordinate Z is given by Z¼k0z, where z is the
actual propagation distance and k0 is an arbitrary scale factor. The quantity En(Z)
denotes the mode field amplitude at site n. A spectral decomposition of the
Jx-matrix yields the eigensolutions

u mð Þ
n ¼ 2ð Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ nð Þ ! j� nð Þ !
jþmð Þ ! j�mð Þ !

s
P m� n;�m� nð Þ
jþ n 0ð Þ: ð18Þ
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P A;Bð Þ
n xð Þ are the Jacobi polynomials of order n. And the corresponding eigenvalues

are integers or half-integers, bm¼ � j, y, j, depending on the parity of N14,19.
Using the eigenvectors and eigenvalues we obtain the point-spread function

Gp;q Zð Þ ¼
Xj

r¼� j
u rð Þ
q u rð Þ

p exp irZð Þ: ð19Þ

Gp,q(Z) represents the amplitude at site p after an excitation of site q. Using
equation (18) and the properties of the Jacobi polynomials one can show that
equation (19) reduces to the closed-form expression

Gp;q Zð Þ ¼ � ið Þq� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ pð Þ ! j� pð Þ !
jþ qð Þ ! j� qð Þ !

s
sin

Z
2

� �� �q� p

cos
Z
2

� �� �� q� p

P q� p;� q� pð Þ
jþ p cos Zð Þð Þ:

ð20Þ

Evaluation of equation (20) at Z¼ p/2 yields

Gp;q
p
2

 �
¼ � ið Þq� p 2ð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ pð Þ ! j� pð Þ !
jþ qð Þ ! j� qð Þ !

s
P q� p;� q� pð Þ
jþ p 0ð Þ

¼ � ið Þq� pu qð Þ
p : ð21Þ

Equation (21) shows that at Z¼p/2 the point-spread function becomes
proportional to the amplitude of the corresponding eigenstates depending on
the excited site. In other words, there is a one-to-one correspondence between the
excited site number and the eigenstates of the system: excitation of the qth site
excites the qth eigenstate up to well-defined local phases.

Devices fabrication and specifications. Our devices are fabricated in bulk-fused
silica samples (Corning 7980, ArF grade) using the femtosecond laser direct-write
approach21. The transparent material is modified within the focal region due to
nonlinear absorption resulting in a local increase of the refractive index. Effectively,
the waveguides possess only the fundamental mode. The coupling between
neighbouring waveguides depends on their separation within the glass chip.
Regarding the theoretical description of the waveguide array, the validity of
equation (1) is only given if the fundamental modes of neighbouring waveguides
have a negligible overlap. For a given N and a maximum length of the glass wafers
of Z/k0, this can only be ensured for a certain range of k0. Outside this range of k0,
coupled mode theory will break down and errors are introduced to the
implementation of the DFrFT. In our experiments these errors are kept small but
impossibly perfectly zero.

For the fabrication of the devices used to transform classical light, we employed
an Yb-doped fibre laser (Amplitude Systèmes) operating at a wavelength of
532 nm, a repetition rate of 200 kHz and a pulse length of 300 fs. Waveguides were
written with 300 nJ pulses focused by a 20x objective. The sample was moved at a
velocity of 200mmmin� 1 by high-precision positioning stages (ALS 130, Aerotech
Inc.) with a positioning error of ±0.1 mm. From this random positioning error, the
realized inter-channel couplings inherit a relative error of 2%. The mode field
diameters of the guided mode were 4 mm� 7 mm at 632 nm. In the classical
experiments, the Fourier plane lies at Z/k0¼ 7.48 cm, that is, k0¼ 0.21 cm� 1.
The desired nearest-neighbor couplings Jxð Þn� 1;ndetermine the separations of the
waveguides n and n±1. The largest separation of 22.8 mm between adjacent
waveguides occurs at the edges. In the centre, the separation is 17.6 mm.

For the samples illuminated with single-photon states of light, we used a RegA
9,000 seeded by a Mira Ti:Sa femtosecond laser oscillator. The amplifier produced
150 fs pulses centred at 800 nm at a repetition rate of 100 kHz, with energy of
450 nJ. The structures were permanently inscribed with a 20x objective while
moving the sample at a constant speed of 60mmmin� 1, using the positioning
system described above. The mode field diameters of the guided mode were
18mm� 20mm at 815 nm. All structures were designed with fan-in and fan-out
sections arranged in a three-dimensional geometry, and located prior and after the
Jx-lattice, as illustrated in Fig. 5. This effectively suppresses any unwanted crosstalk
between the guides and permits easy coupling to fibre arrays with a standard
spacing of 127 mm. In the presented device used to transform quantum states, we
have k0¼ 0.6 cm� 1, that is, the Fourier plane is located 2.62 cm after the beginning
of the Jx-array.

Experiment on the characterization of two-photon correlations. A BiB3O6

nonlinear crystal was pumped with a 70mW continuous wave pump laser emitting
at 407.5 nm, which provided pairs of indistinguishable photons due to type-I
spontaneous parametric down-conversion, see Fig. 5. Photon pairs with a central
wavelength of 815 nm were filtered by 3 nm (FWHM) interference filters. They
were further coupled to the chip via fibre arrays through polarization maintaining
fibres, and subsequently fed into single-photon detectors (avalanche photodiodes).
The two-photon correlation function was determined by analysing the twofold
coincidences recorded between all output channels with the help of an electronic
correlator card (Becker & Hickl: DPC230). The spatial correlation results presented
in Fig. 4 were extracted from a data set with total integration time of 5min. The
coincidences were then analysed with a time window set at 5 ns and are corrected
for detector efficiencies. To assess the statistical consistency of the results in Fig. 4,
we discuss in the Supplementary Note 2 the data set presented in terms of

correlation event numbers before normalization. For both measurements, the
detector clicks data set initially consisted of B1.5� 106 events in total, which after
post selection was reduced to a set of B5� 104 coincidence events in total, for both
input states. Accidental coincidences due to simultaneous detection of two photons
not coming from the same pair are estimated to occur with a negligible rate of
o2� 10� 6s� 1. Non-deterministic number-resolved photon detection was achieved
using fibre beam splitters. This set-up thus allows the determination of all 36
two-photon coincidence events occurring in photonic lattices consisting of eight
channels. Furthermore, at the wavelength of interest, propagation losses and
birefringence are estimated to be 0.3 dB cm� 1 and in the order of 10� 7, respectively.
Additional discrepancies in between the measured correlation matrices and the
theoretical ones may appear due to imperfect excitations, asymmetric output coupling
losses (or detector efficiencies) or limited indistinguishability of the photons.
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