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Geometry-invariant resonant cavities
I. Liberal1,2, A.M. Mahmoud2 & N. Engheta2

Resonant cavities are one of the basic building blocks in various disciplines of science and

technology, with numerous applications ranging from abstract theoretical modelling to

everyday life devices. The eigenfrequencies of conventional cavities are a function of their

geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a

specific frequency. Here we demonstrate theoretically the existence of geometry-invariant

resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to

geometrical deformations of their external boundaries. This effect is obtained by exploiting

the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which

enable decoupling of the temporal and spatial field variations in the lossless limit. This new

class of resonators may inspire alternative design concepts, and it might lead to the first

generation of deformable resonant devices.
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T
he dynamics of many physical systems are usually
described in terms of wave equations subject to certain
boundary conditions. This is the case, for example, in

classical and quantum mechanics, electromagnetics, acoustics and
fluid dynamics. Specifically, when considering source-free
time-harmonic exp(� iot) fields, one finds that the solutions
to these equations, subject to specific boundary conditions,
often take place at specific discrete o-frequency values, usually
labelled as eigenfrequencies, or resonance frequencies1. In
general, wave equations interrelate both spatial and temporal
variations of the fields (for example, consider the vector wave
equation of the electric field in classical electromagnetics:
r�r�E r; tð Þþ c� 2@2

t E r; tð Þ ¼ 0 (ref. 2). Consequently, eigen-
frequencies are determined by the geometry at hand.

This fundamental principle shapes the way we address various
phenomena and develop technology. In fact, one of the main
conceptual challenges that researchers, engineers and designers
face across multiple disciplines is to come up with the appropriate
geometry to operate at a specific frequency. On the other hand,
fabrication imperfections degrade the performance of the devices,
as well as hinder the application of thrilling physical concepts that
may unfortunately require too stringent fabrication tolerances.
Therefore, we could wonder if, as it is symbolically sketched
in Fig. 1, it could be possible to find scenarios in which the
eigenfrequencies of a resonant cavity are invariant with respect to
geometrical transformations. If so, this would propose a complete
change in the mindset behind design processes, and in turn open
up the possibility for developing resonant devices that still be
functional even under severe geometrical deformations with
interesting applications, for example, in flexible photonics, as well
as in tailoring light–matter interaction and quantum emission in
such deformable structures.

Naturally, the idea of a geometry-invariant resonator chal-
lenges our intuition on how waves usually behave. However, the
fields of topological insulators3,4 and topological photonics5–10

have revealed that certain physical quantities are preserved under
continuous deformations. Moreover, during the past several years
metamaterials have demonstrated that waves can be manipulated
in unconventional manners11–20. For instance, metamaterials
featuring extreme parameters, such as epsilon-and-mu-near-zero
and zero refractive index structures, have been found to support
fields with static spatial distributions, while maintaining their

temporally dynamic properties21–26. This apparent decoupling
between spatial and temporal domains encouraged us to believe
that, indeed, resonators whose eigenfrequencies are invariant
under geometrical transformations could be possible.

In the following, we will concentrate on the classical source-
free time-harmonic wave equation for the electric field E in
nonmagnetic media: r�r�E� e o=cð Þ2E ¼ 0 (ref. 2), with c
being the speed of light in vacuum and e the relative permittivity
of the medium at hand. However, this must be considered only
as a specific example of a more general concept that, as many
other metamaterial paradigms, can be extrapolated to other
forms of waves such as acoustic, elastic, mechanical and matter
waves. Moreover, electromagnetic systems also represent an
excellent test bench for future experimental verifications of the
concepts introduced in this work. In fact, different experimental
realizations of zero-index electromagnetic metamaterials
have already been reported in the form of naturally available
materials27,28, dispersion engineering in waveguides29,30,
photonic crystals25 and artificial electromagnetic materials31,32.

In this work we analytically and numerically demonstrate that
there are at least three distinct physical mechanisms in which
zero-index metamaterials, and, in particular, epsilon-near-zero
(ENZ) media, enable the development of cavities supporting
eigenmodes whose eigenfrequency is invariant with respect to
geometrical deformations of their external boundary.

Results
2D cavities invariant under equi-areal transformations. One
key property of ideal zero-index metamaterials is their ability to
‘stop’ the spatial variations of the phase, and for some cases also
the magnitude, of electromagnetic fields21–24. For instance, in
ENZ media—that is, media whose relative permittivity is
approximately zero, eE0—the magnetic field parallel with the
axis of a two-dimensional (2D) system must be uniform,
Hz qð Þ ¼ Hh

z , to avoid a singularity of the electric field E ¼
i=ðoeÞrHz qð Þ�ẑ (refs 22–24). One could anticipate that the
influence of geometry is lessened in the presence of spatially
uniform fields, since effectively the apparent wavelength in such
media is very large. This intuition is indeed correct, and we show
that uniform magnetic field distributions can be associated with
2D cavities whose eigenfrequency is invariant with respect to
equi-areal transformations.

To this end, let us consider, for example, a 2D cavity composed
of a 2D dielectric particle of relative permittivity ei, cross-sectional
area Ai and perimeter Li, immersed in a 2D ENZ host of arbitrary
cross-sectional shape but area Ah (Fig. 2a), bounded by perfectly
electric conducting (PEC) walls. As demonstrated in
Supplementary Note 1, the eigenfrequencies obtained as solutions
to the source-free electric field time-harmonic wave equation
subject to the boundary condition n̂�E ¼ 0 on the PEC wall are
determined by the solutions to the following characteristic
equation: o ¼ i

m0
Li
Ah
ZS, where ZS ¼

H
@Ai

E � dl=ðLiHh
z Þ is the

surface impedance of the particle embedded in ENZ. It is
thus clear that the existence of an eigenmode at the ENZ
frequency is completely determined by the overall cross-sectional
area of the ENZ host, Ah, and the properties of the internal 2D
particle, encapsulated in ZS. Therefore, if the internal particle is
designed so that the characteristic equation has a solution at the
plasma frequency of the host, then the cavity will have an
eigenmode at such eigenfrequency, independently of the shape of
its external boundary, as long as its cross-sectional area remains
the same. As if it were an incompressible fluid, the 2D cavity can
be exposed to any equi-areal geometrical deformation while
keeping the same eigenfrequency. Note that the set of allowed
geometrical deformations also includes piercing (making 2D
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Figure 1 | Geometry-invariant resonant cavities. Conceptual sketch of

resonant cavities that, despite their very distinct geometry (shape, size,

topology), support an eigenmode at the same resonance frequency.
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holes in) the cavity. For example, a simply connected cavity can
be transformed into a 2D annulus-like cavity. If the total area as
well as the geometry and the material of the internal 2D particle
are kept the same, the eigenfrequency will be immune even to
evident changes in the topology of the cavity.

To illustrate this fact, we can, for example, set the internal
particle as an infinitely long cylinder of relative permittivity ei and
radius ri. In such a case, the surface impedance of the particle can
be written in closed form: ZS ¼ � iZiJ

0
0
ð ffiffiffi

ei
p o

c riÞ
.
J0

ffiffiffi
ei

p o
c ri

� �
,

where Zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=ðe0eiÞ

p
is the intrinsic medium impedance in the

particle, J0(x) is the cylindrical Bessel function of the first
kind and order zero, and J 00 xð Þ ¼ @xJ0 xð Þ. Consequently, the
characteristic equation can be explicitly written as follows:
o ¼ c2pri

�
Ah

ffiffiffi
ei

p� �
J 00

ffiffiffi
ei

p o
c ri

� ��
J0

ffiffiffi
ei

p o
c ri

� �
, where it is again

evident that the existence of an eigenmode with uniform
magnetic field in the ENZ host medium only depends on the
characteristics of the internal particle (ei and ri), and the cross-
sectional area of the ENZ host Ah. Therefore, if the radius of the
cylinder is set so that the characteristic equation has a solution at
the plasma frequency of the host, then the cavity will have an
eigenmode whose eigenfrequency is independent with respect to
equi-areal transformations of the ENZ host.

To validate this property, we have numerically studied a few
examples of 2D cavities by carrying out an eigenfrequency
analysis with a full-wave electromagnetic solver (Fig. 2b). These
specific examples have been selected to illustrate the high degree
of arbitrariness in the geometry of the 2D cavities, including non-
canonical shapes (Fig. 2b, I), different topologies (Fig. 2b, II),
sharp corners (Fig. 2b, III) and high-aspect ratios (Fig. 2b, IV).
A more detailed description of the geometry of these cavities is
gathered in Supplementary Figs 1–4. Anticipating future experi-
mental verifications of the presented results, the ENZ host has
been modelled using silicon carbide (SiC)27, whereas the internal
dielectric cylinder is assumed to be silicon (Si), with relative
permittivity ei¼ 11.7 (ref. 33). In this manner, our analysis
includes the effect of the relatively high losses of SiC with relative
value of the imaginary part of its permittivity to be 0.1

(e00 � 0:1) in the vicinity of the SiC plasma frequency,
op¼2p�29:08�1012 rad s� 1 (corresponding to a free-space
wavelength of around 10.3 mm), where the real part of the
relative permittivity is near zero (e0 � 0)27. The radius of the
cylinder (ri¼ 1.165 mm) and the area of the host (Ah¼ 49p mm2)
have been selected such that the characteristic equation is
satisfied at the SiC plasma frequency using a cylinder that is
subwavelength in its cross-section.

The eigenfrequencies of these 2D resonators were computed
numerically and are depicted in Fig. 2c. It is apparent from
the figure that despite their very distinct geometry, and despite
the fact that realistic losses have been taken into account, the
eigenfrequencies of these resonators deviate by o1.5% from the
plasma frequency of SiC. These small disagreements are mainly
caused by the losses of SiC, which slightly deviate the response of
the host from that of a pure ENZ medium. As a matter of fact, the
eigenfrequencies converge even more closely to the SiC plasma
frequency as losses decrease (Supplementary Fig. 5).

It is worth remarking that, unlike its eigenfrequency, not
all properties of the resonator are invariant with respect
to geometrical deformations. For example, the quality factor
Q—i.e., the ratio between the stored and dissipated energies per
cycle—strongly depends on the field intensity distributions in the
resonator2. Subsequently, as it is illustrated in Fig. 2c, deforming
the cavities results in changes in the quality factor in an excess
of 10%, while their resonance frequencies stay effectively
unchanged. This exotic feature could be potentially exploited,
for instance, in designing flexible resonators in which the strength
of the coupling with a quantum emitter embedded in them can be
modified by deforming their external boundary, while keeping a
constant resonance frequency, hence enabling a fine tuning of the
decay dynamics of the quantum emitter. This is the subject of our
ongoing study and will be reported in a future publication.

Moreover, Fig. 2c and Supplementary Fig. 5 also serve to
illustrate a unique property of the proposed geometry-invariant
resonators that, to the best of our knowledge, has no counterpart
in conventional resonators. Specifically, in a conventional
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Figure 2 | Two-dimensional (2D) cavities with eigenfrequencies invariant under equi-areal geometry deformations. (a) Sketch of a generic 2D cavity

composed of a 2D ENZ host of cross-sectional area Ah containing a 2D dielectric (nonmagnetic) particle of cross-sectional area Ai, perimeter Li and relative

permittivity ei. The entire 2D cavity is bounded by a PEC wall on which the tangential component of E field must vanish. (b) Colourmaps of the electric field

magnitude distributions of resonant eigenmodes, obtained using numerical simulation, in four cavities consisting of a Si (ei¼11:7) cylinder of radius

ri¼ 1.165mm, immersed in a 2D SiC host of different shapes but equal cross-sectional area Ai þAh¼49p mm2. (c) Linear graph portraying the resonance

frequency (normalized to the SiC plasma frequency) and the quality factor Q as a function of cavity number. Here the imaginary part of relative permittivity

of SiC is assumed to be 0.1 at the SiC plasma frequency. In Supplementary Fig. 5, we show how these quantities vary with different level of loss (as

represented by the different value of the imaginary part of permittivity of SiC).
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resonator, the quality factor increases as losses decrease, and the
eigenfrequency becomes more sensitive to geometrical deforma-
tions. On the contrary, in our proposed geometry-invariant
resonators, the smaller the losses the larger the quality factor, but
also the more robust the eigenfrequency is towards geometrical
deformations (Supplementary Fig. 5). In this manner, the
proposed idea in principle enables the development of high
Q resonators whose eigenfrequencies are immune to geometrical
deformations.

To finalize the discussion for this set of modes, we emphasize
that the choice of a 2D cylindrical internal particle with circular
cross-section was made for the sake of simplicity, and to have an
analytical solution to the characteristic equation, hence facilitat-
ing the comparison between theory and numerical simulations.
However, in principle any other 2D particle could be utilized to
induce an eigenmode in the 2D ENZ host. For example, an
analogous analysis by using a 2D particle with square cross-
section is reported in Supplementary Figs 6 and 7, leading to the
same conclusions.

3D cavities supporting spatially ‘electrostatic’ eigenmodes.
Next, even a more general invariance with respect to geometrical
deformations may be found by noting that, as demonstrated in
Supplementary Note 2, ENZ media may also support other modes
as exp(� iot) time-varying spatially ‘electrostatic’ fields, which
are different from what we discussed above. In other words, as the
medium relative permittivity goes to zero, the Maxwell curl
equation r�H ¼ � ioe0eE may also support solutions with zero
magnetic field H¼ 0, but a non-zero and time-varying electric
field, ioE 6¼ 0. Naturally, the other Maxwell curl equation
imposes that the associated electric field is irrotational
r�E ¼ iom0H ¼ 0, since for this mode H is zero in the ENZ
region. Thus, interestingly, ENZ media may support solutions to
the wave equation in the form of spatially ‘electrostatic’ dis-
tributions that are dynamically varying in time. We note that the
existence of time-varying electrostatic field distributions had
already been discovered in the field of plasma physics, mostly in
the form of longitudinal waves34. Here we remark that ENZ
media support generic electrostatic field distributions, which can
be excited in a wide set of cavities.

The field distributions of these spatially electrostatic
eigenmodes correspond to the solution of Laplace’s
equation (r2j rð Þ ¼ 0; E ¼ �rj rð Þ) in the ENZ host, subject
to the appropriate boundary conditions. Interestingly, the
solution to the Dirichlet problem of Laplace’s equation is known
to exist and be unique if the boundary is sufficiently smooth and
the potential prescribed at the boundary is continuous35.
Therefore, if the boundary conditions on the ENZ host enable
the existence of spatially electrostatic modes, then such a cavity
has an eigenfrequency at the ENZ frequency, no matter what its
geometry is.

To illustrate this phenomenon with a specific example, let us
consider a three-dimensional (3D) scenario in which a resonator
is composed by a 3D dielectric particle immersed in a 3D ENZ
host. A detailed theoretical derivation of the conditions under
which this composite cavity supports an eigenmode is included in
Supplementary Note 3 and Supplementary Fig. 8. However, it is
actually sufficient to simply note that to excite a spatially
‘electrostatic’ eigenmode with zero magnetic field in the ENZ
region, the continuity of the fields imposes that the magnetic field
(normal and tangential) at the boundary of the dielectric particle
must be zero. In addition, at this boundary the normal
component of the electric field inside the dielectric particle must
also be zero to preserve the continuity of the normal displacement
vector. (Note that the electric field inside the ENZ host might

have a normal component to this boundary of dielectric particle,
still satisfying the continuity of the normal displacement vector.)
If we find a particle satisfying these conditions, then the
composite cavity particle plus ENZ host will support an
eigenmode at the plasma frequency, no matter what the geometry
of the ENZ host is.

For example, if the internal particle is a dielectric sphere of
radius ri and relative permittivity ei, then these conditions are met
at the solutions of the following characteristic equation:
Ĵn

ffiffiffi
ei

p o
c ri

� �
¼ 0 for n ¼ 1; 2; . . . (see also Supplementary Notes

3 and 4, as well as Supplementary Fig. 9 for the analysis of a
canonical core-shell cavity). That is to say, the eigenfrequencies of
the resonator correspond to the zeros of the functions
Ĵn xð Þ �

ffiffiffiffipx
2

p
Jnþ 1

2
xð Þ, representing the Schelkunoff form of

the spherical Bessel functions of the first kind and order n,
where Jn(x) is the cylindrical Bessel function of the first kind and
order n (ref. 2). Note that in this case there is not only one, but an
infinite number of possible eigenmodes n¼ 1, 2, 3y with
geometry-invariant properties. Moreover, due to the spherical
symmetry of the internal particle, there are 2nþ 1 degenerate
modes for each n-th eigenmode. We emphasize that the solutions
to this characteristic equation only depend on the properties on
the internal particle ei and rið Þ, and are independent of the
geometry of the main cavity. Therefore, once the internal particle
has been correctly designed, then the ideal ENZ host, and hence
the external boundaries of the cavity, can in principle be of any
size and shape. What is more, the cavity could even be ‘polluted’
with other particles made of different dielectric materials sharing
the same ENZ host medium. In all these cases, the cavity will
support an eigenmode at the ENZ frequency. As shown in
Supplementary Note 5 and Supplementary Fig. 10, the invariance
of the eigenfrequency in the presence of time-harmonic spatially
electrostatic fields can also be justified by using perturbational
techniques. These modes can be excited in both 2D and 3D
systems.

The geometry-invariant properties of these eigenmodes are
numerically validated in Fig. 3a, which shows four cavities with
very distinct geometries, but that nevertheless support eigen-
modes at the same eigenfrequency. Again, these specific cavities
have been chosen to illustrate the high degree of arbitrariness in
the geometry of the cavities (shape, topology and in this case also
size). A more detailed description of their geometry can be found
in Supplementary Figs 11–14. All cavities are composed of a SiC
host containing a Si particle. In this case, a spherical particle of
radius ri¼2:155 mm has been selected to satisfy the characteristic
equation, Ĵ1

ffiffiffi
ei

p o
c ri

� �
¼0 (that is, n¼1), at the SiC plasma

frequency. For the sake of brevity, Fig. 3a only depicts the
electric field magnitude distribution of one of the three
degenerate modes that can be excited in the vicinity of the SiC
plasma frequency (each eigenmode corresponding to a different
orientation of the electric dipolar mode within the Si spherical
particle). The electric and magnetic field magnitude distributions
of all degenerate modes are depicted in Supplementary
Figs 15–18. The fact that the magnetic field vanishes in the
ENZ host can also be more clearly appreciated in those figures.
The resonance frequencies and quality factors of these modes
have been numerically computed and are depicted in Fig. 3b.
Despite the use of the realistic losses of SiC e00 � 0:1ð Þ, the
numerical computation of the resonance frequencies reveals that
all degenerate modes in all four cavities deviate o0.3% from the
SiC plasma frequency. Furthermore, the fact that degenerate
modes exhibit different quality factors allows us to envision the
design of a new class of resonators, in which the fields excited by
quantum emitters immersed within them exhibit a different
Purcell factor and decay dynamics as a function of their
polarization, while maintaining the same resonance frequency.
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Again, we remark that while the internal particle must be
designed to enable the excitation of an eigemode at the ENZ
frequency, this particle must not necessarily be the sphere used in
the current example. In essence, any particle supporting a
solution to the wave equation in which the magnetic field and the
normal electric field are zero at its boundary can trigger the
excitation of a spatially ‘electrostatic’ mode in an arbitrarily
shaped ENZ region. For instance, Supplementary Figs 19–23
present an equivalent analysis for the case in which the cavities
contain a cylindrical dielectric particle whose top and bottom
walls have been covered by perfect magnetic conductor layers.
The results are very similar to those obtained in Fig. 3.

Surface-avoiding modes. To finalize, there is at least a third set of
modes present in ENZ media that are invariant under certain
(but not completely arbitrary) geometrical transformations. These
modes correspond to the cases where both electric and magnetic
fields are neither constant nor zero in the ENZ region. Note that,
even if not constant, the magnetic field must always be irrota-
tionalr�H ¼ � ioe0eE � 0, and thus it features a ‘quasi-static’
spatial distribution while it is temporally dynamic. However, in
this case, the electric field cannot be curl free,r�E ¼ iom0H, and
it indeed takes the form of a solenoidal field forming closed loops
in the cavity. The geometry-invariant properties of this set of
modes arise from the fact that the modes can concentrate the
fields on the vicinity of the internal dielectric particle, resulting in
a negligible field at the outer boundaries of the cavity, which
naturally satisfies the n̂�E¼0 boundary condition. In essence, the
ENZ properties of the medium ensure that the propagation
constant vanishes, k¼o

ffiffiffiffiffiffiffi
m0e

p � 0, and, hence, the fields cannot
propagate as in a conventional dielectric through the ENZ host
towards the external surface of the cavity.

For instance, let us consider a spherical cavity with two
concentric layers, as schematically depicted in Fig. 4a. In
particular, we assume that the inner layer (the internal particle)
is made of Si, whereas the external layer (the background host) is
filled with SiC. In this manner, when the radius of the internal
particle, ri, is much smaller than the external radius of the
cavity, rout, that is, ri � rout, the field on the surface of the

cavity is negligible, and the eigenfrequency becomes approxi-
mately independent of the volume and shape of the resonator.
Specifically, and as shown in Supplementary Note 4, the
characteristic equation determining the eigenfrequencies of this
set of modes in our spherical example can be asymptotically
written as follows: Ĵnð

ffiffiffi
ei

p o
c riÞ ¼ � ð ffiffiffi

ei
p o

c riÞ̂J
0
nð

ffiffiffi
ei

p o
c riÞ=n, for

ri=rout ! 0, n ¼ 1; 2; . . . . Fig. 4 gathers a set of examples
illustrating how, as the volume of the cavity increases, the
eigenfrequencies converge towards the value prescribed by the
characteristic equation. It also exemplifies that once the cavity is
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Figure 4 | Three-dimensional (3D) cavities supporting surface-avoiding

modes. (a) Sketches of two cavities consisting of a Si sphere (shown as a red
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Figure 3 | Three-dimensional (3D) cavities supporting spatially ‘electrostatic’ modes with the same resonance eigenfrequency. (a) Four 3D cavities

with different geometries supporting the same resonance eigenfrequency. Each cavity consists of a Si sphere (ei¼11:7) (shown as a red sphere) of radius

ri¼2:155mm immersed in a 3D SiC host (shown as grey background), bounded by a PEC wall. Cavity III also contains several additional cubic dielectric

particles (shown in blue) with permittivity ep ¼ 2, and side lp¼1mm inserted in the ENZ host. Next to each we show the colourmaps of the electric field

magnitude distributions obtained using numerical simulation of one of the three supported degenerate eigenmodes (the other eigenmodes can be found in

Supplementary Figs 15–18). (b) Linear graph portraying the resonance frequency (normalized to the SiC plasma frequency) and quality factors for these

four cavities, demonstrating that the resonance eigenfrequencies are the same, while the quality factors of these eigenmodes are different. Here the

imaginary part of relative permittivity of SiC is assumed to be 0.1 at the SiC plasma frequency.
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sufficiently large, the eigenfrequency becomes independent of the
shape of the external surface of the cavity. The examples have
been chosen to illustrate the impact of progressively increasing
the size, and the geometry of the cavities is detailed in
Supplementary Figs 24 and 25. In this case, the radius of
the internal particle (ri¼1:507 mm) is selected so that the
eigenfrequency satisfying the characteristic equation for n¼ 1
equals the SiC plasma frequency.

Discussion
In summary, our theoretical study demonstrates that in the
context of ENZ and zero-index metamaterials there are multiple
solutions to the wave equation whose eigenfrequency is invariant
under geometrical transformations. It was demonstrated that
these solutions enable the design of resonant cavities whose
eigenfrequencies are invariant with respect to geometrical
transformations of their external boundary, and, hence, they
inspire new design philosophies in which the geometry of a device
is not determined by, and locked to, its frequency of operation.
While our analytical and numerical analyses have been focused
on closed cavities bounded by PEC walls, we expect that
analogous phenomena could be observed in open resonators. A
set of preliminary simulations is included in Supplementary
Figs 26–31. We believe that these unconventional resonators
could give rise to a new generation of deformable resonant
devices. Among other applications, the proposed resonators
appear to be particularly well suited for flexible photonics and
cavity quantum electrodynamics. For instance, the proposed
cavities can be locked with their resonances overlapping the
atomic transitions of quantum emitters embedded within them,
while different aspects of the emitter-cavity interaction can be
dynamically tuned by means of deforming the cavity.

Methods
Numerical simulations. The commercially available full-wave electromagnetic
simulator software COMSOL Multiphysics, version 5.0, was used to generate all 2D
and 3D numerical simulations presented in the figures of the main text and the
Supplementary Material. Specifically, we carried out eigenfrequency analyses in
which the software makes use of the finite element method to determine the
eigenmodes and eigenfrequencies of the wave equation: r�r�E� e o=cð Þ2E ¼ 0,
subject to be PEC boundary condition, that is, the tangential electric field vanishes
on the external surface of the cavity, n̂�E¼0, where n̂ stands for the outward
normal vector to the surface of the cavity. The solver was requested to search for
eigenfrequencies around the frequency where the real part of the permittivity is
near zero e0 op

� �
¼0

� �
, and the eigenmodes with the closest eigenfrequencies to

such a frequency were selected. The ENZ host was modelled as SiC in accordance
with ref. 27. Thus, the plasma frequency, at which the real part of the permittivity
vanishes, e0 op

� �
¼0, takes place at op¼ 2p� 29.08 1012 rad s� 1, with losses

represented by e00 op
� �

¼ 0:1 unless otherwise stated. The numerical solver
provided the field distributions of the eigenmodes and their associated
eigenfrequencies. These data were also used to calculate the quality factor Q as the
ratio of the energies stored and dissipated per unit cycle: Q¼oWstored=Ploss, where
Ploss¼ o

2

R
e0 e00 Ej j2dV and Wstored¼ 1

4

R
e0 @o oe0f g Ej j2 þ m0 Hj j2dV were computed

via integration of the electric and magnetic field intensities. In Supplementary Figs
26–31 the analysis was carried out without any PEC boundary and using the
frequency domain solver. The simulation set-up is described in Supplementary
Figs 26 and 29.
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