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Magnetic phases of spin-1 spin–orbit-coupled Bose
gases
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Phases of matter are characterized by order parameters describing the type and degree of

order in a system. Here we experimentally explore the magnetic phases present in a

near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase

transitions between these phases. We observe ferromagnetic and unpolarized phases, which

are stabilized by spin–orbit coupling’s explicit locking between spin and motion. These phases

are separated by a critical curve containing both first- and second-order transitions joined at a

tricritical point. The first-order transition, with observed width as small as h�4Hz, gives rise

to long-lived metastable states. These measurements are all in agreement with theory.
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M
ost magnetic systems are composed of localized
particles such as electrons1, atomic nuclei2 and
ultracold atoms in optical lattices3–6, each with a

magnetic moment m. By contrast, itinerant magnetism7,8

describes systems where the magnetic particles, here
ultracold neutral atoms, can themselves move freely, and for
which magnetism is generally weak. Our spin–orbit-coupled
Bose–Einstein condensates9–12 (BECs) constitute a magnetically
ordered itinerant system in which—unlike more conventional
spinor BECs13—the atoms’ kinetic energy explicitly drives a
phase transition between two different ordered phases10.
While the coupling between spin and momentum afforded by
spin–orbit coupling (SOC) is insufficient to stabilize
ferromagnetism in itinerant fermionic systems14, in bosonic
systems it leads to magnetic phases that are not present in spinor
BECs without SOC11,12.

Phase transitions can generally be described in terms of a free
energy G(Mz)—including the total internal energy along with
thermodynamic contributions that are negligible for our nearly
zero temperature T¼ 0 system—that is minimized for an
equilibrium system. Here the magnetization Mz¼ Ŝz

� �
=‘ is an

order parameter, associated with the spin Ŝ, which changes
abruptly as our system undergoes a phase transition. Figure 1c
shows typical T¼ 0 free energies: a first-order phase transition
(top panel) occurs when the number of local minima in G(Mz)
stays fixed, but the identity of the global minima changes; and a
second-order phase transition (bottom panel) occurs when
degenerate global minima merge or separate. These defining
features are true both for T40 thermal and T¼ 0 quantum phase
transitions.

For spin-1/2 systems (that is, total angular momentum, f¼ 1/2)
like electrons, ferromagnetic order can be represented in terms of
a magnetization vector M¼ Ŝ

� �
=‘ . This is rooted in the fact that

the three components of the spin operator Ŝ transform vectorially
under rotation. More specifically, any Hamiltonian describing a
two level system may be expressed as H¼‘O0 þX1 � Ŝ, the sum
of a scalar (rank-0 tensor) and a vector (rank-1 tensor)
contribution. The former, described by O0 gives an overall
energy shift, and the latter takes the form of the linear Zeeman
effect from an effective magnetic field proportional to X1.
Going beyond this, fully representing a spin-1 (total angular
momentum f¼ 1 with three mF sublevels: |� 1i, |0i, and |þ 1i)

Hamiltonian with angular momentum F̂ requires an additional
five-component rank-2 tensor operator—the quadrupole tensor—
and therefore there exist ‘magnetization’ order parameters that
are not simply associated with any spatial direction13,15,16.

Pioneering studies in GaAs quantum wells17,18 showed that
material systems with equal contributions of Rashba and
Dresselhaus SOC described by the term akxF̂z , subject to a
transverse magnetic field with Zeeman term O1F̂x, can
equivalently be described as a spatially periodic effective
magnetic field. Our experiments with spin-1 atomic systems
use ‘Raman’ lasers with wavelength l to induce SOC of
this form9,19–24 with strength a¼ 2:kR/m, where the
single-photon recoil energy and momentum are ER¼‘ 2k2R=2m
and :kR¼ 2p:/l. This atomic system can therefore be described
by the magnetic Hamiltonian

Ĥ ¼ ‘ 2k2

2m
þX1 xð Þ � F̂þO2F̂

2ð Þ
zz ; ð1Þ

describing atoms with mass m and momentum :k
interacting with an effective Zeeman magnetic field
X1(x)/O1¼ cos(2kRx)ex� sin(2kRx)ey helically precessing in the
ex� ey; and an additional Zeeman-like tensor coupling with
strength O2. Here, F̂ 2ð Þ

zz =‘¼F̂
2
z=‘

2 � 2=3 is an element of the
quadrupole tensor operator. The competing contributions
between kinetic and magnetic ordering energies (interactions
select between different nearly degenerate ground states, but only
weakly perturb the location of the phase transitions, see Methods)
make ours an archetype system for studying exotic magnetic
order and understanding the associated quantum phase
transitions, of which both first and second order are present in
our experiments (Fig. 1b).

We can easily understand the first-order transition in the limit
of infinitesimal O1 where the tensor field favours either: a
polar BEC for O240 (mF¼ 0: unmagnetized, Mz¼ 0), or a
ferromagnetic BEC for O2o0 (mF¼ þ 1 or � 1: magnetized,
|Mz|¼ 1). As with spinor BECs25, these phases are separated by a
first-order phase transition at O2¼ 0. The ferromagnetic phase
spontaneously breaks the Z2 symmetry associated with the
Hamiltonian’s invariance under the exchange |� 1i2|þ 1i.
The second-order transition can be intuitively understood by
considering the large O1 limit where the system forms a
spin–helix BEC (with local magnetization antiparallel to X1:
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Figure 1 | Experimental system. (a) Schematic and level diagram. The |� 1i2|0i and |0i2|þ 1i transitions of the f¼ 1 ground state manifold of 87Rb

were independently Raman coupled, giving experimental control of O1 and O2. (b) Phase diagram. The ferromagnetic order parameter |Mz| is plotted

against O2 and O1. The solid (dashed) red curve denotes the first-order (second-order) transition from the magnetized phase. (c) Free energies. Top: near

the first-order phase transition at O1/ER¼ 1 for O2/ER¼ �0.35, �0.1 and 0.15 for the black, blue and red traces respectively, as marked by the red flags in

b. Bottom: near the second-order phase transition at O2/ER¼ � 2.5 for O1/ER¼4.5, 5.5, and 6.5 for the black, blue and red traces, respectively.
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unmagnetized, Mz¼ 0). This order increases the system’s kinetic
energy, leading to the second-order phase transition into the
ferromagnetic phase shown in Fig. 1b as O1 decreases. Analogues
to this second-order phase transition are present in other systems
with effective spin degrees of freedom such as double-leg
ladders26 or engineered optical lattices27,28.

These two extreme limits continuously connect at the point
O�

1;O
�
2

� �
, the green star in Fig. 1b, where the small-O1 first-order

phase transition gives way to the large-O1 second-order
transition, and together these regions constitute a curve of
critical points OC

1 ;O
C
2

� �� �
. Here we realized spin-1 spin–

orbit-coupled BECs and varied the magnetic coupling fields
using externally applied fields. By directly measuring the system’s
magnetization, we studied the associated quantum phase
transitions present in the phase diagram, all in quantitative
agreement with theory.

Results
Experimental set-up. As shown in Fig. 1a, we realized this
magnetic system by illuminating 87Rb BECs in the f¼ 1 ground
state manifold with a pair of counter propagating and
orthogonally polarized Raman lasers that coherently coupled
the manifold’s mF states. Physically, the spatial interference of the
orthogonally polarized laser beams give rise to the helical effective
magnetic field (see Methods) with period l/2. As we first showed9

using effective f¼ 1/2 systems, this introduces both a spin–orbit
and a Zeeman term into the BEC’s Hamiltonian, equivalent to
equation (1). Here the quadratic Zeeman shift from a large bias
magnetic field B0ez split the low-field degeneracy of the
|� 1i2|0i and |0i2|þ 1i transitions, and we independently
Raman coupled these state pairs with equal strength O1. We
dynamically tuned the quadrupole tensor field strength O2 by
simultaneously adjusting the Raman frequency differences; as
shown in Fig. 1 we selected frequencies differences where the
detuning from the |þ 1i to |0i and |� 1i to |0i were both equal
to O2 (see Methods). Without this technique, only the upper half
plane of the phase diagram (Fig. 1b) would be accessible:
containing only an unmagnetized phase, therefore lacking any
phase transitions.

In each experiment, we first prepared BECs at a desired point
in the phase diagram, possibly having crossed the phase transition
during preparation. A combination of trap dynamics29,30,
collisions and evaporation31 kept the system in or near (local)
thermal equilibrium. We then made magnetization
measurements directly from the Bose-condensed atoms
measured in the spin resolved momentum distribution obtained
using the time-of-flight (TOF) techniques described in ref. 30.

Critical line of phase transitions. Our experiment first focused on
thermodynamic phase transitions. We made vertical (horizontal)
scans through the phase diagram by initializing the system in the
unmagnetized phase at a desired value of O1 (O2) with O2\0
(O1t10ER), and then ramping O2 (O1) through the transition
region. (As discussed in the methods our nominally horizontal
scans of O1 followed slightly curved trajectories through the phase
diagram, such as the red dashed curve in Fig. 2c). Following such
ramps, domains with both ±Mz can rapidly form, and we there-

fore focus on the tensor magnetization Mzz¼ F̂
2ð Þ
zz

D E
=‘ þ 2=3,

which is sensitive to this local magnetic order.
Using horizontal scans, we crossed through the second-order

phase transition O2oO�
2

� �
where the free energy evolves

continuously from having one minimum (with Mzz¼ 0, for
large O1) to having two degenerate minima (with Mzz40,
for smaller O1). As shown in Fig. 2a, Mzz continuously increases

with decreasing O1, reaching its saturation value as O1-0.
Repeating these processes for O�

2oO2o0, we found a sharp first-
order transition. In each case, data are plotted along with theory
with no adjustable parameters. Using data of this type for a range
of O2 and fitting to numeric solutions of equation (1), we
obtained the critical points plotted in Fig. 2c. Because horizontal
cuts through the phase diagram are nearly tangent to the
transition curve for small O2, this produced large uncertainties in
OC

1 for the first-order phase transition.
We studied the first-order phase transition with greater

precision by ramping O2 through the transition at fixed O1

(Fig. 2b) and found near perfect agreement with theory. For all the
experimentally measured critical points, see Fig. 2c top, separating
the unmagnetized and ferromagnetic phase, we also measured the
corresponding transition width defined as the required interval for
the curve to fall from 50 to 20% of its full range. This width D
decreases sharply at O�

1, marking the crossover between second-
and first-order phase transitions (see Fig. 2c bottom). In these data,
the width of the first-order transition becomes astonishingly
narrow: as small as 0.0011(3)ER¼ h� 4(1)Hz at O1¼ 0.41(1).
This narrowness results from the energetic penalty associated with
condensation into multiple modes for repulsively interacting
bosons. In addition we find that ramps through the first-order
transition are hysteretic, and very slow ramps (see Methods) for
the system to equilibrate.

During the long equilibration times required to study this
transition, spin-domains formed in our system, shown in Fig. 2e.
For Bose-condensed atoms, our TOF procedure expanded the
initial spin-distribution allowing us to reconstruct any in situ spin
structure. Figure 2e shows that domains form as the systems
enters into the magnetized phase; these domains mark the role of
interactions in spontaneously breaking the Hamiltonian’s Z2
symmetry (see Methods for a comparison with sodium where the
sign of the spin-dependent interactions is reversed, and the Z2
symmetry remains unbroken for a wide range of parameters).
Figure 2b shows that additional tripartite spin structure is present
very near the first-order phase transition, which was not
anticipated in our initial single-particle description. This tripartite
mixture, predicted in ref. 32 is an in-plane ferromagnetic phase
with no analogue in spinor BECs or effective spin-1/2 SOC BECs.

Metastable states. We observed that scans crossing the
second-order transition typically required 50ms to equilibrate,
while for scans crossing the first-order transitions we allowed as
long as 1.5 s for equilibration. Systems taken through a first-order
phase transition can remain in long-lived metastable states. Here
a metastable state with Mz¼ 0 persists in the ferromagnetic
phase, and a pair of metastable states with Mza0 persists in the
unmagnetized phase. We began our study of this metastability by
quenching through the first-order transition at O1¼ 0.74(8)ER
with differing rates from � 0.5 to � 0.2 ER s� 1, as shown in
Fig. 3. We observed the transition width continuously decreases
with decreasing absolute value ramp rate (inset to Fig. 3),
consistent with slow relaxation from a metastable initial state.

We explored the full regime of metastability by initializing
BECs in each of the mF states, at fixed O2, then rapidly ramping
O1(t) from zero to its final value fast enough that the system did
not adiabatically follow into the true ground state, yet slow
enough that the quasi-equilibrium metastable state was left near
its local equilibrium. We found that the rate t200ER s� 1 was a
good compromise between these two requirements. For points
near the first-order phase transition three metastable states exist
(Fig. 4); near the second-order transition this count decreases,
giving two local minima which merge to a single minimum
beyond the second-order transition.
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We experimentally identified the number of metastable states by
using Mz and its higher moments, having started in each of the
three mF initial states. A small variance inMz,o0.25, indicates the
final states are clustered together—associated with a single global
minimum in the free energy G(Mz)—and it increases when
metastable or degenerate ground states are present. We distin-
guished systems with two degenerate magnetization states
(MzE±1) from those with three states by the same method,
since whenMzE±1, the variance of |Mz| is smaller than 0.25, and
it distinguishably increases beyond 0.25 as a third metastable state
appears with Mz¼ 0. In this way we fully mapped the system’s
metastable states in agreement with theory, as shown in Fig. 4

Discussion
We accurately measured the two-parameter phase diagram of a
spin-1 BEC, containing a ferromagnetic phase and an unmagne-
tized phase, continuously connecting a polar spinor BEC to a spin–
helix BEC. The ferromagnetic phase in this itinerant system is
stabilized by SOC, and vanishes as the SOC strength :kR goes to
zero. Our observation of controlled quench dynamics through a
first-order phase transition opens the door for realizing Kibble–
Zurek physics33,34 in this system, where the relevant parameters
can be controlled at the individual Hz level. The quadrupole tensor
field 0 / F̂

2ð Þ
zz studied here is the q¼ 0 component of the rank-2

spherical tensor operator F̂
2ð Þ
q , with qA{±2, ±1, 0}. The physics

of this system would be further enriched by the addition of the
remaining four tensor fields. The q¼ 0 term we included is the
most simple of the tensor fields to deploy, as it only required
control over frequencies. The q¼±1 components are relatively
simple to incorporate by radio frequency (RF)-coupling the
|mF¼ � 1i to |mF¼ 0i and |mF¼ þ 1i to |mF¼ 0i transitions
with different phases. The q¼±2 components require direct
coupling between |mF¼ þ 1i and |mF¼ � 1i, which is
straightforward using two-photon microwave transitions, but is
challenging to include with significant strength.

Methods
System preparation. We created NE4� 105 atoms 87Rb BECs in the ground
electronic state |f¼ 1i manifold35, confined in the locally harmonic trapping
potential formed at the intersection of two 1,064-nm laser beams propagating along
ex and ey giving trap frequencies of (ox, oy, oz)/2p¼ (33(2), 33(2), 145(5))Hz. The
quadratic contribution to the B0¼ 35.468(1) G magnetic field’s Eh� 25MHz
Zeeman shift lifts the degeneracy between the |f¼ 1, mF¼ � 1i2|f¼ 1, mF¼ 0i
and |f¼ 1,mF¼ 0i2|f¼ 1,mF¼ 1i transitions, by E¼h�90:417 1ð Þ kHz. We denote
the energy differences between these states as :do� 1,0, :do0,þ 1 and :do� 1,þ 1.

Frequency selective Raman coupling. We Raman-coupled the three mF states
using a pair of l¼ 790.024(5) nm laser beams counter-propagating along ex. The
beam travelling along þ ex had frequency components oþ

� 1 and oþ
þ 1, while the

beam travelling along � ex contained the single frequency o� . These beams were
linearly polarized along ez and ey, respectively. The frequencies were chosen such
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Figure 2 | Measured phase transition. (a) Tensor magnetization Mzz measured as a function of O1, showing both second-order [O2(O1¼0)

¼ � 3.7500(3)ER] and first-order [O2(O1¼0)¼ � 1.0ER] phase transitions in comparison with theory. These curves followed the nominally horizontal

trajectories (see Methods) marked by red dashed curves in c. (b) Tensor magnetization measured as a function of O2 at O1/ER¼ 1.86(6), 1.48(4), 1.01(3),

0.74(2), and 0.41(1), plotted along with the predicted critical O2. In a,b the light-coloured region reflects the uncertainty in theory resulting from our E5%

systematic uncertainty in O1. (c,d) Phase transition. Black (red) symbols depict data obtained using vertical (nominally horizontal) cuts through the phase

diagram. (c) measured phase transitions plotted along with theory: solid (phase transition), and green vertical line (tricritical point, O�
1 ) Horizontal error

bars correspond to one s.d. on O1 and vertical error bars are the 95% confidence intervals from the fitting function that determines the critical point. (d) 20

to 50% transition width showing the clear shift from first- to second-order with increasing O1. (e) Domain formation for O1¼0.74(2) showing interaction-

driven spin structure near the first-order phase transition. In all images, red corresponds to spatial regions with localMzE� 1, the green regions correspond

to MzE0 and the blue regions correspond to MzEþ 1. In the polar regime at Mzz¼0.12 only the mF¼0 cloud is visible; near the first-order phase

transition at Mzz¼0.75 all three mF¼0 clouds are visible and have partially phase separated; and in the ferromagnetic regime at Mzz¼0.95 only mF±1

clouds are visible and they have completely phase separated.
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that the differences do� 1;0 � o� �oþ
� 1 and do0;þ 1 � o� �oþ

þ 1
independently Raman coupled the |mF¼ � 1, 0i and |mF¼ 0, þ 1i state-pairs,
respectively. Furthermore we selected 2o� � oþ

� 1 þoþ
þ 1

� �
¼do� 1;þ 1 such that,

after making the rotating wave approximation (RWA) the |mF¼±1i states were
energetically shifted by the same O 0ð Þ

2 ¼ do� 1;0 � do0;þ 1
� �

þ oþ
� 1 �oþ

þ 1

� �� 	
=2

energy from |mF¼ 0i, thereby yielding the frequency-tuned tensor energy shift
depicted in Fig. 1a. In addition, O2 in equation (1) differs from O 0ð Þ

2 by a small shift
/ O2

1=E resulting from off-resonant coupling to transitions detuned by 2E, which
we computed directly using Floquet theory (see equation (6) in Methods). This
tensor contribution O2F̂

2ð Þ
zz to the Hamiltonian might equivalently be introduced by

a quadratic Zeeman shift alone, giving O20240.

The physical basis for SOC using Raman lasers. As explained in ref. 36, the
spin-dependent (vector) part of the light–matter interaction can be written in terms
of an effective Zeeman field

X ¼ iuv E��Eð Þ ð2Þ
with overall strength given by uv as defined in ref. 36, where E is the total optical
electric field from the Raman lasers. This field then enters into the Hamiltonian as
an effective magnetic field

Hv ¼ X � F̂: ð3Þ
The electric field for the laser geometry depicted in Fig. 1a is
E¼Eþ ez exp i kRx�oþ

� 1tð Þ½ � þ Eþ ez exp i kRx�oþ
þ 1t

� �� 	
þ iE�ey exp

[i(� kRx�o� t)], giving rise to the time-dependent effective Zeeman coupling
term

O ¼ uvE
þ E� ex e2ikRx e� ido� 1 t þ e� idoþ 1 t

� 	
þ c:c

� �
ð4Þ

¼ 2O1 cos 2kRx� do� 1tð Þþ cos 2kRx� do� 2tð Þ½ �ex ð5Þ
where we defined do� 1¼o� �oþ

� 1. This gives the Hamiltonian term

Hv ¼ 2O1 cos 2kRx� do� 1tð Þþ cos 2kRx� do� 2tð Þ½ �F̂x : ð6Þ
In our experiment the oZ/2pE25MHz linear Zeeman shift is large compared with
all other energy scales, so we make the RWA to arrive at the low-frequency
Hamiltonian

HRWA ¼ O1 cos 2kRx� do� 1 �oZð Þt½ � þ cos 2kRx� do� 2 �oZð Þt½ �f gF̂x
�O1 sin 2kRx� do� 1 �oZð Þt½ � þ sin 2kRx� do� 2 �oZð Þt½ �f gF̂y :

ð7Þ
We selected our frequencies to be in four-photon resonance with the |� 1i to |þ 1i
transition, giving (do� 1�oZ)¼ � (doþ 1�oZ), in which case the Hamiltonian
is time-periodic. Equation (1) in the manuscript is obtained by making

independent RWAs on the |� 1i-|0i and |0i-|þ 1i transitions separately,
giving the helically precessing coupling described in the manuscript.

Floquet and polynomial shift. The frequency differences do� 1;0 � o� �oþ
� 1

and do0;þ 1 � o� �oþ
þ 1 nominally Raman dress both |� 1, 0i and |0, þ 1i state

pairs independently. In practice, the cross coupling may be substantial and the
adjusted eigenenergies may be computed exactly from Floquet theory. For our
EþO0

2¼ do� 1;0 � do0;þ 1
� �

=2 separation between Floquet bands (in our
experiment E¼h�90:417 1ð Þ kHz) we find the relationship between O1, O2 and O0

2
is well described by the polynomial

O2

ER
¼ O0

2

ER
þ O1

ER


 �2

� 4:90�10� 2 þ 1:56�10� 2 O1

ER


 �
� 4:41�10� 3 O1

ER


 �2
"

þ 5:80�10� 4 O1

ER


 �3

� 2:76�10� 5 O1

ER


 �4
#
:

ð8Þ

Measurement details. In the horizontal scans in Fig. 1 of the manuscript, we
ramped O1 at a rate of E� 40ER/s, allowing the system to adiabatically track the
ground state, and allowed 50ms for equilibration before the measurement process.
In contrast, for our vertical scans we found the system required between 0.2ms and
2 s to equilibrate.

We studied the metastable states by performing three separate experiments for
each raw data point: one each for a system initially prepared in mF¼ 0, ±1 state at
the desired value of O2. We then adiabatically ramped O1 from zero to its final
value. For each resulting (O1, O2) pair, we obtained the magnetization Mz for each
initial state. In all of the described procedures O1 was turned off immediately, at the
start of our 28ms time-of-flight imaging process, which included a Stern–Gerlach
gradient to separate the spin components.
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Figure 4 | Metastable states. Top, Measured magnetization plotted along

with theory. The system was prepared at the desired O2¼ � 2ER; O1(t) was

then increased to its displayed final value; during this ramp O2 also

changed, and the system followed the curved trajectory in the bottom

panel. Each displayed data point is an average of up to 10 measurements,

and the coloured region reflects the uncertainty in theory resulting from our

E5% systematic uncertainty in O1. Circles/crosses/stars represent data

starting in mF¼ þ 1, 0, and � 1 respectively. Bottom, state diagram: theory

and experiment. Blue: two states; black: three states; white: one state.

Coloured areas denote calculated regions where the colour-coded number

of stable/metastable states are expected. Symbols are the outcome of

experiment. Each displayed data point is an average of up to 20

measurements.
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Operators. The total angular momentum f¼ 1 spin operators in equation (1) of
the main manuscript take the explicit form

F̂x ¼ ‘ffiffi
2

p
0 1 0
1 0 1
0 1 0

0
@

1
A; F̂y ¼ ‘ffiffi

2
p

0 � i 0
i 0 � i
0 i 0

0
@

1
A; and F̂z ¼ ‘

1 0 0
0 0 0
0 0 � 1

0
@

1
A ð9Þ

in the basis of the magnetic sublevels |� 1i, |0i, and |þ 1i; together these comprise
the vector operator F̂¼F̂xex þ F̂yey þ F̂zez . Likewise the quadrupole tensor
operator is expressed as

F̂zz ¼ ‘
1=3 0 0
0 � 2=3 0
0 0 1=3

0
@

1
A: ð10Þ

In terms of these operators it is clear than any Hamiltonian involving only 1̂, F̂x , F̂y

and F̂zz is invariant under the transformation that swaps |þ 1i and |� 1i: a dis-
crete Z2 symmetry.

Wavefunctions. The wavefunctions in the polarized and unpolarized regimes are
qualitatively different. In the unpolarized regime the wavefunction takes the
general form cj i¼A exp 2ikRxð Þ þ 1j i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2A2

p
0j i þA exp � 2ikRxð Þ � 1j i.

The value of A depends in detail on O1 and O2, but two limits are clear. First, when
O1¼ 0 and O240 the system forms a spinor BEC in the polar phase, with A¼ 0: a
BEC in mF¼ 0. Second, for O1-N the local spin follows O giving A ¼

ffiffiffiffiffiffiffi
2=5

p
.

In the polarized regime, the wavefunction has the general form
cj i¼Aþ 1 exp i k0 þ 2kRð Þx½ � þ 1j i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A2

þ 1 �A2
� 1

p
exp ik0x½ � 0j i

þA� 1 exp i k0 � 2kRð Þx½ � � 1j i, but with constraints: first, Mz¼A2
þ 1 �A2

� 1
(the definition of magnetization); and second, Mz¼ � k0/2kR (ensuring zero
center-of-mass motion, see ref. 30). In our experiment mF¼±1 are coupled at
second order in O1, and for Mzj jt1, these states are E16ER detuned. Thus, for
Mztþ 1, we have A� 1E0 with corrections at order O2

1, giving the wavefunction
cj i � exp � i2kRMzx½ �

ffiffiffiffiffiffiffi
Mz

p
exp i2kRx½ � þ 1j i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Mz

p
0j i

� �
in terms of the

magnetization.

Free energy and phase diagram. We obtained the free energy G(Mz) as a
function of the magnetization Mz by first numerically solving the system’s
Hamiltonian given by equation (1), obtaining the eigenenergies Es(k) and state
cs kð Þ, each identified by a momentum :k and a ‘band’ index sA{� 1, 0, þ 1}. We
then computed Mz for each of these states (dependent on kx, but independent of ky
and kz), thereby obtaining the internal energy E(Mz) in the lowest band (s¼ � 1).

As our BEC is very near the ground state the free energy G(Mz)¼E(Mz)�TS,
where T is the temperature and S is the entropy is well approximated by
G(Mz)EE(Mz), and it is this free energy, which is plotted in Fig. 1c. We then

obtained the phase diagram in Fig. 1b by numerically computing the free energy for
each pair O1, O2 and identifying its equilibrium magnetization.

For non-interacting systems, we found that the curves defining the phase
transitions and also those bounding the region containing metastable states could
all be computed in closed form. First, the critical point at which the first- and
second-order phase transitions meet is at

O�
1

ER
¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

ffiffiffi
5

p
� 22

p
; and O�

2
ER

¼ 52� 24
ffiffiffi
5

p
: ð11Þ

The curve defining the first-order phase transition (for 0 	 O2 	 O�
2) is given by

OC
1 O2ð Þ
ER

¼ 2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ 10

O2

ER
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

ER
þ 36


 �2 O2

ER
þ 4


 �svuut
; ð12Þ

and the curve defining the second-order phase transition (for O�
2 	 O2) is given by

OC
1 O2ð Þ
ER

¼ 1

2
ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 16� O2

ER


 �2

� 72
O2

ER
� O2

ER
� 12


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

ER

O2

ER
� 88


 �
� 112

svuut : ð13Þ

The upper boundary of the metastable regime (in the unmagnetized phase) is given by

Oþ
1 O2ð Þ
ER

¼ 2
3


 �3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�O2=ERð Þ3

4þO2=ER

s
: ð14Þ

and the lower boundary of the metastable regime (in the ferromagnetic phase) is
given by

O�
1 O2ð Þ
ER

¼ 1

2
ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 16� O2

ER


 �2

� 72
O2

ER
� O2

ER
� 12


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

ER

O2

ER
� 88


 �
� 112

svuut : ð15Þ

This is the same equation defining the second-order phase transition with an added
±, the full curve defining the boundary of the metastable regime crosses over
between the þ and � solutions at O2=ER¼4 11� 8

ffiffiffi
2

p� �
.

Magnetic fields. Because the free energy G(Mz) is sensitive to unwanted detuning
d from the four-photon resonance near the phase transitions, which contributes an
added symmetry breaking field dF̂z to the Hamiltonian, controlling the bias
magnetic field and nulling its gradients is critical. A pair of flux-gate sensors
measuring the ambient magnetic field along ez, allowed us to compensate for long-
term field drifts. We compensated any field gradients using four pairs of anti-
Helmholtz coils in a clover leaf configuration37, and a conventional anti-Helmholtz
pair, all aligned along ez.
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Figure 5 | Mean field phase diagram. (a–c) Rubidium. (d–f) Sodium. In each panel, the red curve marks the location of the phase transition as computed

excluding interactions. (b,c,e,f) Expanded views of the region around the critical curve. a,b,d and e plot the |Mz| order parameter: the plot is dark blue when

|Mz|¼ 1 and there is a continuous gradation to white when |Mz|¼0. c and f plot the fraction of the wavefunction in mF¼0: similarly, black colour indicates

when all the atoms are in mF¼0 and white when none of the atoms are in mF¼0.
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Interactions. We studied the impact of interactions at the level of mean field
theory using a variational approach, assuming an infinite homogenous system.
For each point in the phase diagram labelled by (O1, O2), we first located the local
minima in the single-particle free energy described by the Hamiltonian Ĥ of
equation (1) in the manuscript. The free energy had from one to three minima,
with energies Ej and eigenstates cj

 E
.

We then considered an infinite system and minimized the mean field energy
density

E ¼ 1
V

Z
d3xcy xð ÞĤ xð Þc xð Þþ 1

2V

Z
d3x c0 þ c2ð Þn2T � c2n

2
0 � 4c2nþ 1n� 1

� 	
ð16Þ

for an arbitrary linear combination of these single particle states with amplitudes aj,
where ns(x) is the local density in a given spin state s; nT(x) is the total local
density; and c0 and c2 are the spin-independent and spin-dependent interactions,
respectively. For 87Rb87 these have the ratio c2/c0E� 0.005 and for 23Na they
are c2/c0Eþ 0.05. In our minimization, we modelled our systems with a typical
mean-field energy of (c0þ c2)nTE1 kHz per particle.

Figure 5 shows the result of this calculation both for rubidium and sodium.
In both cases the overall phase diagram (Fig. 5a,d) is shaped by the single-particle
Hamiltonian; at this coarse level the rubidium phase diagram is hardly different from
that predicted from single particle physics, but in the case of sodium a large swath of
the expected ferromagnetic phase remains symmetry unbroken. This phase
continuously connects to an equal superposition of |� 1i and |þ 1i as O1-0.

The situation becomes more complex as we focus on Mz near the curve defining
the first-order phase transition (Fig. 5b,e), for the case of rubidium a new mixed
phase appears at low O1 analogous to the striped phase in spin� 1/2 systems, but
nothing new is apparent for sodium.

Last, we consider the same region, but looking at the fraction of the variational
wavefunction in the mF¼ 0 spin state. For rubidium, this allows us to identify a
new state which is a three-way mixture of all three components considered in the
variational calculation (with no analogue in the O1¼ 0 spinor limit), and we can
see the abrupt transition in sodium from a state connecting to the polar phase
(O240) and to the uniaxial nematic phase (O2o0). Each of these phases are as
described in ref. 32.
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