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 Quantization of electrons in solids can typically be observed in microscopic samples if the mean 

free path of the electrons exceeds the dimensions of the sample. A special case is a quasi one-

dimensional metal, in which electrons condense into a collective state. This state, a charge-

density wave (CDW), is a periodic modulation of both the lattice and electron density. Here, we 

demonstrate that samples of K 0.3 MoO 3 , a typical CDW conductor, show jumps in conduction, 

regular in temperature. The jumps correspond to transitions between discrete states of the 

CDW and reveal the quantization of the wave vector of electrons near the Fermi vector. The 

effect involves both quantum and classical features of the CDW: the quantum condensate 

demonstrates modes, resembling those of a classical wave in a resonator. The analysis of the 

steps allows extremely precise studies of the CDW wave-vector variations and reveals new 

prospects for structural studies of electronic crystals and fi ne effects in their electronic states 

and lattice motions.         
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 T
he CDW 1 – 4  forms as a three-dimensionally (3D) ordered 
structure below the Peierls transition temperature,  T  P  . Many 
features peculiar to the CDW are rather vivid and could be 

illustrated with simple analogies. For example, elastic properties of 
the CDW can be understood if one conceives it as a three-dimen-
sional electronic crystal inside the host lattice. At the same time, the 
CDW is a fundamentally quantum object. Th e CDW wavelength, 
  λ  , is close to half the de Broglie wavelength of the Fermi-energy 
electrons,   λ      =      π   /  k  F  . On each conducting chain, the   π   /  k  F  distortion 
groups the electrons in pairs and results in an energy gap 2 Δ  in the 
electronic spectrum at the Fermi level. 

 Many CDW compounds show metastable states. Th is means 
that the CDW can deform; under the eff ects of an electric fi eld or 
a temperature change, the wave vector,  q  ≡ 2  π   /  λ , can vary in some 
allowed range for the given temperature around its equilibrium 
value,  q  eq . If the sample ends or the contacts impose tight bound-
ary conditions on the CDW phase, the number of wavelengths in 
a sample,  N , should be integer. So, one can expect  ‘ quantization ’  of 
the  q -vector in samples of such compounds; there should be a set 
of discrete states with diff erent integer values of  N  around  N  eq  at a 
given temperature,  T .  Figure 1  illustrates the  ‘ quantization ’ . Tran-
sitions between the states require local suppression of the CDW 
state — phase-slip (PS) events. For many CDW compounds,  q  eq  is 
temperature dependent; hence, an operative way to provoke PS 
process can be temperature change. 

 How does one detect such a PS? Conduction measurements give 
such a possibility. In fact, the conduction,   σ  , at an electric fi elds 
below the threshold value,  E  t , is provided by quasiparticles (elec-
trons  n  and holes  p ) excited across the gap. Th e concentrations  n  and 
 p  simply couple to  q  variations: a change in  q  is in a sense equivalent 
to a change of doping degree 5 . Th erefore, in small samples, one can 
try to resolve transitions between the  ‘ quantized ’  values of  q  as step-
like changes of the conductivity. In Borodin  et al.  6 , Zaitsev-Zotov 7 , 
Nad ’  8  a beautiful size eff ect, specifi c only to CDW compounds, has 
been reported. It has been found that in samples of orthorhombic 
TaS 3  (o-TaS 3 ), with typical dimensions of 10  ×  0.1  ×  0.1    μ m 3 , the 
temperature dependences of conduction have an unusual appearance: 
the   σ   –  T  hysteresis loops generated by cooling and then warming are 
jagged, exhibiting vertical steps directed towards the middle of the 
loop. Th e steps were attributed to single PS events between discrete 
states of the CDW. In fact, according to the estimates 6 , the steps 
height,  δ   σ  , corresponded, on average, with the creation or annihila-
tion of two electrons per conducting chain, as should be the case for 
a PS event. 

 Although the steps are likely to reveal PS events, no discrete 
conducting states that varied regularly with temperature were 
observed 6,7 . In addition, the steps varied in height. Th e tentative rea-
son given for this was absence of tight boundary conditions for the 
CDW 6,7,9 . Th e area perturbed by a PS event could spread beyond a 
contact 9 , and one would measure only a fraction of  δ   σ   associated 
with deformation between the contacts. Th e value of  δ   σ   could also 
decrease because of poor transverse coherence of the CDW in TaS 3 . 
In this case, a PS event could cover only a part of the sample cross-
section. Th e longitudinal coherence length of the CDW,  L  2  π   , is also 
important. It does not aff ect the value of  δ   σ  , if the perturbed area 
does not spread beyond the contacts; however, if  L  2  π    is less than the 
sample length, the jumps would be irregular in temperature, as the 
phase would slip independently in diff erent parts of the sample. 

 K 0.3 MoO 3 , the blue bronze (BB) 4 , resembles o-TaS 3  in structure. 
Above  T  P  , one can consider the conducting band to be approximately 
quarter-fi lled in both compounds. However, while in TaS 3 , the band 
carriers are electrons, in BB, conduction is provided by holes (the 
electronic band is  ¾  fi lled). Th erefore, the CDW in BB is formed 
of holes. As in o-TaS 3  (ref.   1), the  q -vector in BB decreases 4,10  with 
decreasing  T . Unlike fi brous o-TaS 3 , K 0.3 MoO 3  grows as high-quality, 
grain-boundary-free single crystals. Th erefore, one can expect 

higher transverse coherence of the CDW in this compound. Th is 
is justifi ed by relatively high-precision X-ray diff raction measure-
ments available for BB 10 , which resolve the  q  change down to  ~ 100   K. 
Tight boundary conditions for the CDW in thin samples might be 
achieved if the contacts are deposited with the laser ablation tech-
nique. Th is method provides deep (hundreds of  Å ) penetration 
of high-energy ions into the sample and creates radiation defects 
over an even larger depth. Th e resulting high value of  E  t  under the 
contacts would prevent spreading of the PS-induced deformation 
beyond the contact. 

 Here, we report studies of K 0.3 MoO 3  samples with submicron 
thickness and contact separation on the order of tens of microns. 
Th e conduction of such samples reveals the discrete states of the 
CDW. Switching between the states happens at regular temperature 
intervals and it results in nearly equal steps of conduction. Th e dis-
tribution of the jumps in temperature provides the  q ( T ) dependence 
corresponding with the X-ray results 10 , and this gives clear evidence 
that the steps reveal single PS events.  

 Results  
  Th e temperature-dependent conduction   .   Th e sample preparation 
process is described in the Methods section.  Figure 2  shows a fragment 
of   σ  ( T ) dependence for the representative sample — a rectangular 
crystal with contact separation  L     =    21    μ m ( Supplementary Fig. S1 ). 
As one can see, the dependence is hysteretic 4 . Both cooling and 
heating edges of the curve show steps in   σ  . Th e jumps are regular 
in temperature. At higher temperatures, the jumps occur more 
frequently. Th e height of the steps is approximately the same; more 
exactly, they are somewhat smaller on the heating curve. 

 Th e steps reveal transitions between discrete states of the CDW. 
Th is is clear from the   σ  ( T ) segments connecting the heating and the 
cooling edges of the loop. Over these segments,   σ  ( T ) is  reversible . 
Repeated thermal cycling (and even heating up to room tempera-
ture — see  Supplementary Fig. S2 ) shows that these curves form a 
 regular  structure, and  no  states can be achieved  between  them. At 
the same time, the temperature of switching can slightly fl uctuate 
from cycle to cycle, as should be the case for a thermally activated 
process 11 . 

 One can see correlation between the density of steps and the 
contact separation,  L .  Figure 2  shows fragments of   σ  ( T ) curves for 
two other samples, one a factor of 2 shorter (10    μ m) and the other 

�eq
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  Figure 1    |         Illustration of  ‘ quantization ’  in a sample with the CDW fi xed 
at the contacts. Suppose the black spring shows the equilibrium state: 

 N  eq     =    10,   λ   eq  ≡ 2  π   /  q  eq     =     L  /  N  eq , then the red spring corresponds to a strained 

CDW:  N     =    9,   λ   ≡ 2  π   /  q     =     L  / ( N  eq     −    1). Typical experimental values are as 

follows: at  T   ~ 100   K for a 30    μ m-long sample of K 0.3 MoO 3 ,  N  eq  is 10 4 , 

and it can vary by plus / minus several wavelengths.  
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2.5 times longer (50    μ m). Th e number of steps observed in a given 
temperature interval appears approximately inversely proportional 
to  L  (for the longer sample, the steps are not so regular in  T ). 

 Th e steps resemble those obtained for o-TaS 3  (ref.   6), although 
the dimensions of our samples are substantially larger. Moreover, 
the steps are regular in temperature, nearly equal in value and reveal 
a set of reproducible discrete states.   

  Th e step distribution in temperature and the  q -vector variation   . 
  We begin the analysis of the results from the positions of steps in 
temperature. If each step denotes a single PS event ( δ  q     =        ±     2  π   /  L ), 
they can together provide direct information about the wave-vector 
change without any model assumptions and approximations. In 
principle, the direction of the  q  change follows from the direction of 
the conductivity jumps 6 . Assuming, that  q  decreases 10  with decreas-
ing  T , each step of   σ   on the cooling curve corresponds to  δ  N    =         −    1 
and  δ  q    =         −    2  π   /  L . On the heating curve, the signs of  δ  N  and  δ  q  are 
positive. Th us, counting the number of steps over a temperature 
range one obtains the  q  variation over this range. 

 Th e stars in  Figure 3  show the number of steps  m  obtained from 
the cooling curve, counted from 69   K to 108   K. Five steps are added 

to  m  as a fi tting parameter (as discussed below). Multiplying  m  by 
2  π   /  L , we obtain the change of the  q -vector. 

  Figure 4a  shows the temperature variation of the normalized 
value of the  q -vector,  δ  q  /  q (0), where  q (0)    =    2  π   / [29.7    Å ] (ref.   4);  δ  q  
is reconstructed from counting the steps over a wide-range tem-
perature span ( Supplementary Fig. S3 ) and over the hysteresis loop 
shown in  Figure 2 . 

 Previous studies on BB and some other compounds have shown 
that  q ( T ) follows an activation law approaching its  T     =    0 value, with 
the activation energy close to  Δ  (ref.   5).  Figure 4b  shows the same 
data as an Arrhenius plot. With the single-fi tting parameter ( Fig. 3 ) 
 δ  q (T) represents  q ( T )    −     q (0). Th erefore, the fi ve steps that are added 
to  m  are the number of PSs, which would reduce  q  from its value 
at 69   K down to its zero temperature value. Th e activation energy, 
 ~ 500   K, is in good agreement with the known value of  Δ : optical 
refl ectivity and photoemission studies give values of  Δ  between 580 
and 870   K (ref.   4), and studies of Hall eff ect give  Δ     =    616   K (ref.   12). 
Th e results of diff raction studies 10  are also shown in  Figure 4b . One 
can see good agreement between  q  values obtained from conduc-
tivity and diff raction measurements. Surprisingly, the   σ  ( T ) mea-
surements give much higher resolution in  q  changes (for example, 
for a 30    μ m sample, one can resolve  δ  q  /  q     =    10     −    4  or  δ  q     =    2  ×  10     −    5     Å      −    1 ). 
Particularly, we resolve the  q  variation down to lower temperatures 
and even the  q ( T ) hysteresis. Note that this result is insensitive to 
inhomogeneous CDW deformations, whereas the latter inevitably 
broaden the diff raction peaks. 

 Here, we should emphasize that the resolution in  q  of the quoted 
diff raction results 10  collected on a rotating anode source is far from 
the resolution limit of the present synchrotron X-ray techniques. 
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          Figure 2    |         Fragments of the temperature dependences of conduction 
for different samples. The sample dimensions are: 21  ×  5  ×  0.3    μ m 3  (the 

representative one), 50  ×  7  ×  0.3    μ m 3  (  σ   is multiplied by 1.5) and 10  ×  2    μ m 2  

(  σ   is divided by 1.5). The arrows show the direction of temperature sweeps. 

The broken lines show the missed reversible fragments of the curves.  
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     Figure 3    |         The result of steps counting: illustration of the relation 
between the steps position and height ( equation (3) ). Stars: Number 

of steps,  m , counted from the lowest temperature (fi ve steps are added 

as a fi tting parameter). Circles:   σ   /  δ   σ  (1    −     E  *  /  Δ ). Both dependences are 

calculated from the same cooling   σ  ( T ) curve for the representative sample.  
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     Figure 4    |         The wave-vector variation in BB. ( a )  δ  q  /  q  change for the 

representative sample calculated from   σ  ( T ) on the assumption that at 

each step | δ  q |    =    2  π   /  L .  ‘    +    ’ , cooling in a wide temperature range,  ‘  ✳  ’  and  ‘ o ’ , 

cooling and heating in the narrow temperature range (see  Fig. 2 ). 

( b ) The Arrhenius plot of the same data together with the diffraction 

results 10  (squares); the error-bars are also from Girault  et al.  10   
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As an example 13 , we can mention the studies of electric-fi eld-induced 
 q -vector variation in NbSe 3 , another typical CDW conductor. Th e 
error bar 13  varies between 10     −    4  and 10     −    5     Å      −    1 , ( δ  q  /  q     =    1.4  ×  10     −    3  to 
1.4  ×  10     −    4 ). Hence, we can state that the resolution in  q -change 
based on the steps counting is comparable with that of the up-to-
date diff raction methods. Here, we can add that our latest studies of 
NbSe 3  nanosamples (S.G.Z. and V.Ya.P., unpublished observation) 
showed that steps on the   σ (T)  dependence can be resolved for this 
compound as well. In this case, the resolution in  δ  q  /  q  is  ~ 3  ×  10     −    5 , 
and these steps reveal a weak variation of the  q -vector ( δ  q  /  q  on the 
order of 10     −    4  in the whole temperature range below the lower Peierls 
transition, that is, below 59   K), which has not yet been observed by 
the diff raction techniques.   

  Th e steps ’  height and the carriers ’  mobility   .   Interpretation of a 
step height,  δ   σ  , also gives an insight into the microscopic processes 
within the CDW, although it requires consideration of the low-fi eld 
conductivity of BB. Th e simplest approximation is unipolar conduc-
tivity ( n -type for the BB 12 ). Each PS event changes the quasiparticle 
concentration by (1 /   π  ) δ  q     =    2 /  L  per conducting chain 5 . Th en the 
specifi c conductivity step is  

δ δs p m ms = =( / ) / ( / ) / ,1 20 0e q s L e s

  where   μ   is the mobility of the electrons;  e , the elementary charge; and 
 s  0 , area per chain. At  ~ 90   K,   μ      =    13   cm 2    V     −    1 s     −    1  (see ref.   12),  s  0     =    15   A 2  
(see ref.   14). Th en  δ   σ   s     =    1.32 ( Ω    cm)     −    1 . Th e experimental value is 1 
( Ω    cm)     −    1 , in nice agreement with  equation (1) . Alternatively, from 
the steps ’  height, one can fi nd the carriers ’  mobility, 10   cm 2    V     −    1 s     −    1 , 
consistent with a value of   μ   obtained from the Hall eff ect 12 .   

  Relation between the step position and height   .   As both the height 
and the temperature position of each step couple with the  q  change, 
there should be a relation between the steps ’  position and  δ   σ  . One 
can recall the equation 6 :  

δ δ δq q q T/( ( )) ( / )coth ( / ) / .− = ≈0 2s s z s s

  Th e approximation corresponds to unipolar conduction, imply-
ing a chemical potential shift  from the gap middle,   ζ  , to be well 
above  T . Note that ( q     −     q (0)) /  δ  q  is just the number of steps,  m , 
counted from  T     =    0, so  

m T T( ) ( / )tanh ( / ) / ,= ≈s s z s sδ δ2

  Together with  m ,  Figure 3  shows temperature dependence of 
(  σ   /  δ   σ  )tanh 2 (  ζ   /  T ). Th e correcting factor has been calculated 6  as  

tanh ( / ) / ,*2 1z T E= − Δ

  where  E   *   is the activation energy between the steps ( q     =    const) and 
 Δ     =    500   K. One can see nice agreement between the two ways of 
steps processing (see Methods for more details).   

  Th e boundary conditions and CDW coherence   .   Th e discrete con-
ducting states and regular transitions between them argue that the 
contacts impose tight boundary conditions for the CDW phase, 
whereas it is nearly free between the contacts. Th e CDW coher-
ence length, or particularly, the length perturbed by a PS event, can 
be estimated 9  as 2 √ [  π  (d  ζ   / d q ) /  E  t ]. In the unipolar approximation 
d  ζ   / d q  ≈  T  / [ q     −     q (0)]. With  q     −     q  0  ~ 3  ×  10     −    3     q  ( Fig. 4 ) and  E  t     =    1.4   V   cm     −    1  
(for the representative sample), one obtains  L  2  π    ≈ 22    μ m. Th is is close 
to the separation of the contacts in the representative sample and 
confi rms the CDW coherence over the sample length. Note that the 
CDW is also coherent over the cross-section: each PS event involves 
all the chains, evidently through a dislocation climb. Of course, the 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

CDW coherence and the eff ects of contacts require a more detailed 
discussion. Here, we just note that the CDW coherence does not 
imply that the number of wavelengths between the contacts is the 
same for each chain to atomic-scale accuracy.    

 Discussion 
 We have demonstrated discrete states in small crystals of BB. Th e 
conductivity measurements allow the resolution of a very small rel-
ative change of  q ,  ~ 10     −    4 , at least. Th e temperature distribution of the 
jumps reveals the  q ( T ) dependence below 100   K and its hysteresis. 
Th e results clearly demonstrate  ‘ quantization ’  of CDW states corre-
sponding to the discrete values of electronic de Broglie wavelengths 
near  k  F . Th e  ‘ quantization ’  of the CDW wave vector opens new pros-
pects for structural studies of electronic crystals and fi ne eff ects in 
their electronic states and lattice motions, such as interference of 
two CDWs (as in NbSe 3 , NbS 3 ), incommensurate – commensurate 
transitions, wave-vector fl uctuations, including quantum ones and 
so on. As an example, we can mention the observation of the weak 
variation of the  q -vectors in NbSe 3  nanosamples (S.G.Z. and V.Ya.P., 
unpublished observation).   

 Methods  
  Sample preparation and measurement technique   .   Th e small samples were 
prepared manually: needle-like lamellas were selected from a high-quality batch 
synthesized by R.E. Th orne, Cornell University. A mask crossing the sample, usu-
ally a Bi 2 Sr 2 CaCu 2 0  x   whisker, was tightly glued to the sapphire substrate. Two gold 
contacts were deposited from laser plasma with ablation method over the ends of 
each sample, which had the form of a rectangular plate ( Supplementary Fig. S1 ). 
For deposition, we used laser YAG Nd 3    +      in the Q-switch mode. Th e pulse duration 
was 7   ns, the energy, 20 – 40   J   cm     −    2 . 

 Th e resistance was measured with the usual lock-in technique: small alternate 
current (AC) (typical frequency 3   Hz, amplitude within 5 %  of the threshold value) 
was passed through the sample, and the voltage across the sample was detected by 
a lock-in amplifi er 15 , whereas the AC was used as the reference signal. For measure-
ments of current dependences of the diff erential resistance (for example, see 
 Supplementary Fig. S4 ), the small AC was overlapped over a slowly varying 
direct current. Abrupt growth of conductivity above  E  t  ~ 1   V   cm     −    1  and complete 
synchronization of the sliding CDW under RF irradiation (the Shapiro steps) 
give evidence for exceptionally high coherence of the CDW in the samples 
(see  Supplementary Fig. S4 ).   

  Corrections for the unipolar approximation   .   Th e loop  σ ( T ) for the representative 
crystal ( Fig. 2 ) gives a vivid illustration of the electron-hole balance 5  in BB. Th e 
value of  ζ , that is, the degree of unipolarity, depends both on temperature and on 
the CDW deformation at fi xed temperature. Th e cooling curve ( Fig. 2 ) corresponds 
to the  q ( T ) decrease; hence,  q  exceeds the equilibrium values (falling behind it). 
Correspondingly,  n    −    p     =    [ q     −     q (0)] / (  π s  0 ) also exceeds the equilibrium value 5 , and the 
unipolar approximation should work better than that for the heating curve. In fact, 
  ζ   is larger in this case, and from the relation 6   δ   σ   s     =     e μ   δ  q tanh(  ζ   /  T ) / (  π s  0 ), one can see 
that steps should be higher at the cooling curve, in accordance with  Figure 2 . 

 Once the steps are higher over the cooling curve, the slopes of the curves at 
 q     =    const (the reversible lines in  Fig. 2 ) are closer to zero near it. Note, that zero 
slope ( E   *      =    0) would correspond to completely unipolar conductivity (  ζ      >     T ,  n  �  p ). 
Quantitatively, one can fi nd   ζ   (neglecting the temperature dependence of   μ  ) from 
the  equation (4)  (ref.   6). Th e decrease of the step height and growth of  E   *   near the 
heating curve are consistent with approaching the intrinsic conductivity ( n     =     p ). 
Within the cooling curve ( Fig. 2 ),   ζ   also changes, being grater at lower tempera-
tures than at higher. 

 As an illustration, the smallest  E   *   is  ~ 80   K, and with  Δ     =    500   K, it results in 
  ζ   /  T     =    1.6. At the other side of the hysteresis loop,   ζ   /  T    =     1.1. Th is result agrees with 
the loop width ( δ   σ   /   σ   ≈  δ   ζ   /  T ). Th e correcting factor, 1    −     E   *   /  Δ , used for the points in 
 Figure 3 , varies from 0.96 at 69   K to 0.5 at 108   K. 

 Th us, our measurements demonstrate  ‘ quantization ’  of the CDW also in 
conductivity. In contrast to the  q -value, this  ‘ quantization ’  is approximate, that is, it 
requires a correction, as the conductivity is not entirely unipolar.                                 
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