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A dilation-driven vortex flow in sheared granular
materials explains a rheometric anomaly
K.P. Krishnaraj1 & Prabhu R. Nott1

Granular flows occur widely in nature and industry, yet a continuum description that captures

their important features is yet not at hand. Recent experiments on granular materials sheared

in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the

stress rise nearly exponentially with depth. Here we show, using particle dynamics

simulations and imaging experiments, that the stress anomaly arises from a remarkable

vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex

that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor

vortex in a fluid. We show that the vortex is driven by a combination of shear-induced

dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an

important feature of granular mechanics, but not adequately incorporated in existing models.
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F
lowing granular materials exhibit superficial similarities with
fluids, but the details of their mechanical response are
significantly different, as the micromechanics of grain

interactions is quite distinct from that of fluid molecules1,2. The
design of industrial processes and understanding of natural
phenomena involving granular flows call for the development of
reliable continuum models. Although several advances have
been made in this direction2–9, most models are confined to
narrow-flow regimes, or leave out key features. For critical
evaluation and refinement of available models, experimental
measurement of the rheology is indispensable, for which the
protocols of fluid rheometry may be usefully employed.

The rheological properties of fluids are most conveniently
measured using devices that generate a class of simple shear
flows10. The cylindrical Couette cell is such a device, but when it
is used for granular materials, unexpected behaviour emerges.
Recent studies that used this device for granular rheometry found
a striking anomaly in the stress11,12: the vertical shear stress
changes sign on shearing, and the magnitudes of all components
of the stress increase roughly exponentially with depth. This
behaviour is contrary to previous experiments13,14 and the
predictions of plasticity theories8,13, which yield a fluid-like stress.
After considering several plausible mechanisms, it was
speculated11,12 that an anisotropic microstructure15,16 is the
likely cause of the anomalous stress.

Here we show the cause to be one of the least-expected
mechanisms—a single vortex spanning the entire granular
column. Vortices arise in fluids too when the rotation rate of
the inner cylinder exceeds a critical value, due to the centrifugal
Taylor–Couette instability17; this instability has also been
observed in a fluidized granular bed sheared at high rates18. We
show that the vortex in a slowly sheared granular material is
fundamentally different in its origin and manifestation.

Results
DEM simulations and experiments. To understand the cause of
the anomalous stress, we conducted simulations using the discrete
element method (DEM)19,20 (see Methods). The simulations were
complemented by video imaging the free surface of an
experimental Couette device. In the simulations, the annular
gap of a cylindrical Couette cell (Fig. 1) with smooth or rough
walls is filled with spherical grains of density rp and mean
diameter dp to a fill height H by two methods, raining and dense
packing. The inner cylinder is then rotated at a constant angular
speed O until a state of steady shear is reached. We varied O over
a range that spans the quasistatic and lower end of the
intermediate regimes, which are delineated by the Savage
number Sa, defined as the ratio of the stress due to impulsive
grain collisions to the total stress (Supplementary Note 1). Unless
stated otherwise, the DEM results shown in the paper are for
smooth walls, filling by raining and Sa¼ 2� 10� 6; however, the
qualitative features of the kinematics and stress are independent
of the wall roughness, the Savage number, the parameters in the
grain contact model and the method of filling. In the experiments,
the steady-state velocity profile at the free surface is determined
by video imaging and particle image velocimetry (see Methods).

Validation of the DEM simulations. The results of our DEM
simulations are first validated by comparison with experimental
data. The kinematics of the azimuthal flow is compared with the
data obtained from video imaging (Fig. 2a). The simulations
reproduce the exponential decay of vy with distance from the
inner cylinder, a feature that is characteristic of slow granular
flows21–23. The mechanics is validated by comparing the stress at
the outer cylinder with the data of Gutam et al.12 (Fig. 2b,c). The
simulations reproduce qualitatively all the features of the
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Figure 1 | Schematic diagram of the cylindrical Couette cell. The granular material is placed in the annular gap between the two coaxial cylinders of radii

Ri and RiþW, and sheared by rotating the inner cylinder at constant angular speed O. The DEM simulations are for a Couette cell of dimensions

Ri¼ 37 dp, W¼ 16 dp, and H¼ 30, 60 and 90 dp. The experiments use glass beads of mean diameter dp¼0.83mm and a Couette cell of dimensions

Ri¼ 72 dp, W¼ 18 dp and H¼ 300 dp.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10630

2 NATURE COMMUNICATIONS | 7:10630 | DOI: 10.1038/ncomms10630 |www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


anomalous stress observed in the experiments: in a static column,
the shear stress srz is positive (that is, the vertical component on
the traction on the wall is downwards) and all components of the
stress saturate asymptotically with the depth z, in accord with the
classical Janssen solution24,25 (Supplementary Note 2); on
shearing, srz changes sign and the normal stress srr acquires a
positive curvature. The quantitative differences between the
simulation and experimental data may be partly due to the
Couette cell in the simulations being much smaller, for
computational tractability; moreover, we do not attempt to tune
the parameters of the contact model to achieve agreement, as our
primary aim is to gain a qualitative understanding of the cause of
the anomalous stress. Nevertheless, our qualitative validation is
useful because the features we verify are significant: the
exponential decay of vy(r), a characteristic feature of slow
granular flows, and the reversal in the sign of srz on shearing, a
key finding of our previous experimental studies.

Starting from an initial state generated by raining, shearing
results in overall compaction, as seen from the fall of the free
surface (Fig. 3a,b) and the profiles of the solids fraction (Fig. 3d),
because raining yields a loosely packed initial state. The
low-density layers adjacent to the two cylinders are due to the
wall-imposed constraints on packing. Nevertheless, significant
dilation in the shear layer is evident from the broadening of the
low-density layer near the inner cylinder, in accord with
numerous experimental observations2,26. The volume-fraction
distributions at steady state for the two filling methods are almost
identical (Fig. 3b–d), leading us to the conclusion that the initial
preparation of the granular bed has little bearing on the
properties at steady state.

The secondary vortex. Further examination of the kinematics
reveals a secondary flow in the r-z plane, superimposed over the
azimuthal flow. Although its velocity scale is small compared to
that of the azimuthal flow, the radial and vertical velocities vr and
vz are easily measurable, and show a systematic trend (Fig. 4a,b).
The shapes of the vr profiles at the free surface determined from
experiment and DEM simulations are in good agreement. When
the velocities at all the locations are combined to construct the
streamlines, a single vortex that extends over the entire width and
height of the Couette gap emerges (Fig. 4c; Supplementary Movie
1). Two aspects of the secondary flow are notable: The first is that
a thin layer adjacent to the free surface flows radially inwards
(Supplementary Movie 2). In contrast, the Taylor vortex in a fluid
causes an outward radial flow near the free surface, if the fluid
column is shallow enough to have only one vortex27. Second,
there is always a single vortex for the range of fill heights H we
have studied (Fig. 4c–e), whereas the size of Taylor vortices scales
with W, resulting in a vertical train of counter-rotating vortices.
The qualitative features of the vortex are independent of the
Savage number and the wall roughness (Fig. 4e; Supplementary
Fig. 1a–c).

We note that the free surface slopes downward from the outer
to inner cylinders (Fig. 3b,c), a feature that is also observed in the
experiments; while the time taken for the free surface slope and
the secondary flow to reach steady state roughly coincide, our
evidence is insufficient to infer whether the slope is caused by the
secondary flow, or another aspect of the mechanics (such as
normal stress differences10).

The vortex explains the anomalous stress. To show that the
vortex flow explains the anomalous stress, we consider the sim-
plest plasticity model for the stress tensor r28,29,

r ¼ pc fð Þ 1�mbr � v=_gð Þmd� 2mspc fð ÞD=_g ð1Þ

where v is the velocity vector, D the deviatoric part of the
deformation rate tensor (with scalar norm _g � 2D : D½ �1=2),
d the identity tensor, and pc(f) is the pressure at the critical
state2,5. The parameters in the model are the bulk and shear
plastic moduli, mb and ms, and the exponent m. The above is a
model for rate-independent plasticity if mb and ms are
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Figure 2 | Validation of the DEM simulations. (a) The azimuthal velocity

vy (scaled by Vw �RiO) at the free surface as a function of radial distance

from the inner cylinder; the inset shows the same plot in linear-log scale.

The green filled circles are for rough walls, and the red open circles are for

smooth walls. The lines are exponential fits vy¼ v0 exp[� (r� Ri)/b] of the
data, with b¼ 2.5 dp (experiment), 2 dp (DEM, rough walls) and 1.5 dp
(DEM, smooth walls). The error bars, indicating one standard deviation

about the mean, are obtained from eight independent measurements; error

bars for the DEM simulations are smaller than the size of the symbols.

(b,c) Variation with depth of the normal stress and the vertical shear stress

on the outer cylinder for static and sheared columns with rough walls; here

r is the average bulk density in the Couette cell. The lines are cubic spline

fits of the data, and the experimental data are from ref. 12. In all the panels,

the DEM results are for H¼90 dp.
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independent of _g, and rate-dependent plasticity otherwise9,30.
Applying the model to the problem at hand, at the two cylinders
impenetrability requires vr¼ 0, whence Drz¼ qvz/qr. From the
radial variation of vz, we see that qvz/qr40 at the outer cylinder
(inset of Fig. 4b). Equation (1) then implies that srzo0, which is
in accord with experimental observations11,12 (Fig. 2c).
Thus, the vortex explains the reversal in the sign of srz
when the granular column is sheared. This result, in
conjunction with Coulomb friction at the boundaries, explains
the sharp rise of all components of the stress with z11,12

(Supplementary Note 2; Supplementary Fig. 2), and thereby all
aspects of the anomalous stress. Although we have used a simple
plasticity model to illustrate the link between the vortex and the
anomalous stress, more elaborate models2,29 lead to the same
conclusion.

Mechanism for the secondary vortex. We now address the cause
of the secondary flow. The sense of the vortex indicates that it is
not centrifugal in origin, but for a definitive confirmation, we
conduct a simulation of shear between two plane vertical walls
(Fig. 5a). Figure 5b shows the secondary flow that results—two
counter-rotating vortices placed symmetrically about the
mid-plane of the Couette gap (see also Supplementary Movie 3).
Symmetry arises here because the two walls are indistinguishable,
unlike in cylindrical Couette flow. Thus, the vortices closely
resembling those in Fig. 4c–e, arise in the complete absence of the
centrifugal force.

What then drives the vortex? This question is answered by
considering the transient evolution of the secondary flow soon
after initiation of shear. The streamlines in Fig. 5c–e show that
the flow is initially radially outwards and upwards, and
concurrently, there is downward flow close to the inner cylinder.

These two flows combine to curl the streamlines towards the
inner cylinder at later time, eventually establishing a steady vortex
(Fig. 4c) within a 90� rotation of the inner cylinder. When gravity
is turned off and a frictionless wall used to confine the material
from the top, we find no secondary vortex. It is now clear that the
vortex is driven by the combination of shear-induced dilation and
gravity flow—dilation causes the material to flow away from the
shear layer and ultimately to the free surface, and the downward
flow of grains near the inner cylinder sustains the vortex. The
sense of the vortex is determined by the asymmetry in dilation
between the inner and outer cylinders (Fig. 3), as a result of the
shear rate of the primary flow decaying exponentially with radial
distance from the inner cylinder (Fig. 2a).

We have used the transient evolution of the vortex to elucidate
the mechanism, but it applies equally well at steady state. In the
absence of gravity flow, dilation would cease after the initial
transient, and a steady state would be reached wherein the flow is
purely azimuthal and there is a radial density gradient. While
gravity flow is essential to sustain the vortex, we surmise that it is
initiated by dilation, as we cannot think of another physical
mechanism that would cause a radial flow.

Importantly, we find the secondary vortex to be present even
when the upper surface is not traction-free. Supplementary
Figure 3 shows the streamlines at steady state for plane Couette
flow when the material is confined at the top by a horizontal rigid
plate of fixed weight, which is allowed to move vertically. The
presence of two counter-rotating vortices is evident, as in the case
of a traction-free surface (Fig. 5b), though their strength and
symmetry decrease as the weight of the confining plate increases.
We find the vortex to persist in cylindrical Couette flow too when
confined at the top, and its basic structure is largely independent
of the confinement condition and plate roughness (K.P.K., P. V.
Dsouza, T. Murthy and P.R.N., manuscript in preparation).
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Thus, a traction-free surface is not essential for the form-
ation of the vortex—the combined effects of dilation and gravity
break the up–down symmetry, and determine the sense of the
vortex.

Discussion
The dilation-driven secondary flow that we report is a novel
phenomenon that has no analogue in fluids. Although the scale of
the secondary flow is smaller than the primary azimuthal flow, its
rheological signature is large, owing to the dependence of the
shear stresses on the pressure (equation (1)). Evidence of a
secondary flow was provided by two previous studies31,32, the
former hypothesizing dilatancy as a possible cause and the latter
finding convection to vanish under microgravity conditions;
however, they could not discern the detailed form of the
secondary flow and its origin. Our results establish that there is
a single vortex (for the range of fill heights we have explored),
resulting from the combined effects of dilatancy and gravity flow.

It has been known for long that dilation accompanies
deformation in dense granular materials, and, conversely,
compaction when the material is loose2,33. This key feature
distinguishes plastic deformation of granular materials from that
of metals, and of course fluids. Existing rheological models for
granular flows are inadequate for capturing compressibility; while
density change along a streamline is predicted (such as in flow
through a hopper), to our knowledge no model captures the
shear-induced density gradient across streamlines8. It is usually
assumed that the effect of dilatancy is confined to the (typically)
narrow shear layer, but our study establishes that it can act as a
driving force for a large-scale flow. Thus, despite some advances,
much remains to be done towards formulating a robust and
effective rheological model for granular materials—we expect that
our study will provide a useful impetus in this direction.

The Taylor vortex in fluids arises from an instability of the base
state of azimuthal flow, due to an imbalance between the
centrifugal force and the radial pressure gradient17. It is quite
possible that the granular vortex arises from a similar
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Figure 4 | The form of the secondary flow. (a,b) The velocities in the radial and vertical directions as a function of r at different z. The open symbols are
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(c–e) Streamlines of the secondary flow at steady state for fill heights H¼ 30 dp (c), 60 dp (d) and 90 dp (e). The background colour indicates the value of

log10 s, where s � v2r þ v2z
� �1=2

=Vw is the magnitude of the secondary flow.
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hydrodynamic instability, with dilation as the driving force.
However, a stability analysis must await the formulation of a
rheological model that captures cross-streamline dilation. We
finally note that the anomalous stress reported by our group11,12

was then ascribed to microstructural anisotropy; while we now
offer a more compelling explanation, there is sufficient evidence
in the literature to motivate the incorporation of an anisotropic
fabric in a comprehensive rheological model.

Methods
DEM simulations. DEM is a widely used computational tool for granular
mechanics, where the positions and interactions of all the particles are tracked in

time using simple models for grain interactions. We used the soft-particle contact
model19,20, wherein the grains are treated as deformable spheres, but rather than
calculate their deformation in detail, they are allowed to overlap. The interaction
forces are written in terms of the overlap and its time rate of change. The normal
and tangential forces have elastic and viscous components, and the tangential force
incorporates an additional Coulomb slider to capture rate-independent friction
(Supplementary Fig. 4a). Considering the contact of grains i and j centred at
position vectors ri and rj, the normal and tangential forces on particle i are34

FðiÞn ¼ kndn�meff gnvn; ð2Þ

FðiÞt ¼ � ktDs�meff gtvt if FðiÞt =FðiÞn

��� ���om

�m FðiÞn
�� ��vt= vtj j otherwise
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respectively. Here d�RiþRj� |ri� rj| is the overlap, n is the unit normal at the
point of contact pointing towards the centre of i, vn and vt are the relative velocities
at the point of contact in the normal and tangential directions, respectively, Ds is
the tangential displacement and meff �(1/miþ 1/mj)� 1 is the effective mass that
determines the damping force. The spring stiffness constants kn, kt, the damping
constants gn, gt and the Coulomb friction coefficient m are the parameters that
define the interaction. The motion of each particle is determined by integrating
Newton’s second law, assuming pairwise additivity of the interaction forces. The
computationally intensive simulations, involving the tracking of B5� 105 particles
for durations corresponding to several rotations of the inner cylinder, were
conducted using the LAMMPS package35.

To avoid crystalline order, a mixture of grains of diameter 0.9 dp, dp and 1.1 dp
(of mass fractions 0.3, 0.4 and 0.3, respectively) was used. Simulations were
conducted for two types of boundaries (cylinders and bottom wall): the surfaces
were either smooth, or coated with a rigid, close-packed triangular lattice of grains
of diameter 0.9 dp; the two cases are referred to as smooth and rough walls,
respectively. For both types of walls, the grain–wall interactions were computed by
treating the walls as bodies of infinite mass, but with the same stiffness, damping
and friction constants as for grain–grain interactions.

For values of the spring constants kn and kt that are appropriate for hard
particles like sand and glass beads, accurately resolving each contact requires so
small a time step of integration that the computation time becomes prohibitively
high. It is therefore standard practice to optimize their values such that they are low
enough for the computations to be tractable, but high enough that the macroscopic
behaviour mimics that of hard particles. The values chosen for the simulations are
kn¼ 106mpg/dp, kt¼ 2/7kn, as per previous studies that have modelled hard
grains16,34. Here mp is the mass of the particle of diameter dp and g is the
gravitational acceleration. The damping coefficients were set to
gn ¼ 317mp

ffiffiffiffiffiffiffiffiffiffi
g=dp

p
, gt¼ 1/2gn and the friction coefficient to m¼ 0.5. The chosen

value of gn yields a normal coefficient of restitution for a collision of 0.7 (ref. 16).
To verify that the results do not depend qualitatively on the parameter values36,
simulations were conducted for three values of kn varying over two decades. The
profiles of the normal and vertical shear stress at the outer cylinder are shown in
Supplementary Fig. 4b,c. Increasing kn results in larger magnitudes of the stress
components, but the qualitative features that characterize the stress anomaly
remain independent of kn.

The Couette cell was filled by two methods, raining and dense packing. In the
former, the mixture of grains (of sizes mentioned above) was poured uniformly
over the annular gap from a reservoir at the top of the Couette cell, until the fill
height H was reached. In the latter, grains of uniform size 1.1 dp were placed in a
body-centred cubic lattice within the Couette cell up to a fill height H, in the
absence of gravity; the grains were then randomly shrunk to achieve the required
size distribution, after which gravity was turned on. The two methods gave an
initial average volume fraction of hfi¼ 0.576 and 0.602, respectively.

The continuum variables were obtained by averaging over space and time. The
velocity and volume fraction at coordinates (r, z) were obtained by averaging over
all the particles in an annular cylinder of thickness Dr¼ dp (centred at r) and depth
Dz¼ 3 dp (centred at z); the wall stresses were obtained by averaging over all
particle–wall contacts in such a cylinder adjacent to the outer cylinder. The
steady-state variables (Figs 2–4 and 5b) were time-averaged for half a period of
rotation of the inner cylinder, but the transient velocity fields were averaged over
much shorter durations (see caption of Fig. 5).

Experiments. The experiments used spherical beads of soda-lime glass of density
rp¼ 2,500 kgm� 3 and a narrow size distribution with mean diameter dp¼ 0.83
mm. The Couette apparatus (dimensions in caption of Fig. 1) was filled with
the glass beads, and the inner cylinder rotated at 2 revolutions per minute
(corresponding to a Savage number Sa¼ 3.3� 10� 6) for a period of about 30min
to reach steady state. Video images of the free surface were then acquired using a
digital video camera (Prosilica GE680) at a rate of 200 frames per second and
resolution 640� 480 pixels (scale factor 0.112mm per pixel). The instantaneous
velocity field was determined by cross-correlation of the intensity maps (averaged
over bins of 12� 12 pixels) in successive frames using the PIVlab37 toolbox in
MATLAB. The steady-state velocity profile was determined by time-averaging the
instantaneous velocity field for 30 s.
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