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Functional profiles of orphan membrane
transporters in the life cycle of the malaria parasite
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Assigning function to orphan membrane transport proteins and prioritizing candidates for

detailed biochemical characterization remain fundamental challenges and are particularly

important for medically relevant pathogens, such as malaria parasites. Here we present a

comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during

its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate amino-

phospholipid transporters, are refractory to gene deletion, indicative of essential functions.

We generate and phenotypically characterize 29 mutant strains with deletions of individual

transporter genes. Whereas seven genes appear to be dispensable under the experimental

conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle

progression in vivo and/or host transition. Our study provides growing support for a potential

link between heavy metal homeostasis and host switching and reveals potential targets for

rational design of new intervention strategies against malaria.
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M
embrane transport proteins (MTP) transfer compounds
across biological membranes and encompass diverse
gene families, namely ion channels, ATP-dependent

pumps and secondary active porters including those of the major
facilitator superfamily. Together they play important physiologi-
cal roles in, for example, nutrient uptake, disposal of waste
products, shuttling of metabolites between organelles, and
generation and maintenance of the electrochemical gradient.
They critically determine safety and efficacy of drugs and are
attractive therapeutic targets1. Accordingly, MTPs rank amongst
the top five protein classes that are molecular targets of FDA-
approved drugs2. Prominent examples in the WHO model list of
essential medicines include ion channel blockers, for example,
verapamil, and serotonin transporter (5-HTT) inhibitors, for
example, fluoxetine3.

In contrast to bacteria, archaea and fungi, parasitic protozoa
such as Trypanosoma brucei and the malaria parasite Plasmodium
falciparum allocate only a small proportion of their genomes
(2–3%) to membrane transport (Supplementary Fig. 1)4.
P. falciparum encodes at least 122 MTPs5. Some MTPs play
central roles during the pathogenic blood-stage proliferation of
malaria parasites, for example, through the import of critical
nutrients such as pantothenic acid6,7 and isoleucine8, or mediate
drug resistance, most notably against chloroquine through the
chloroquine resistance transporter9,10. However, functions of the
vast majority of Plasmodium transport proteins are inferred from
homology to genes from model organisms11. For 39 gene
products, functional or subcellular localization predictions
remain elusive, rendering them orphan MTPs5. We reasoned
that due to their phylogenetic distance to host MTPs they
constitute particularly attractive targets for novel targeted malaria
intervention approaches.

A better and unbiased understanding of human and pathogen
MTP gene function is central to pharmacogenomics and drug
target validation12. Despite this research priority, few systematic
experimental genetics studies of MTPs have been reported for any
organism and merely in the context of genome-wide collections
of gene deletion mutants in model organisms, such as
Saccharomyces cerevisiae13,14. In the search for targets for novel
prophylactic, therapeutic and transmission-blocking intervention
strategies to fight malaria, we report here a broad characterization
of the importance of orphan MTP orthologues during the
complete life cycle of the murine malaria model parasite
Plasmodium berghei by relatively fast and efficient experimental
genetics approaches.

Results and Discussion
Enrichment of putative flippases in vital gene candidates. For
three of the 39 P. falciparum orphan MTPs there is no rodent
malaria parasite orthologue (Fig. 1a; Supplementary Table 1). In
addition, GAP40 encodes a member of the glideosome motor
complex15. As predicted, PbGAP40 is refractory to constitutive
gene deletion (Supplementary Fig. 2). Of the remaining 35
P. berghei orphan MTPs, only six (17%) were refractory to
repeated gene deletion attempts, using two complementary
strategies (Fig. 2a,b)16,17, strongly indicating essential
roles during asexual blood-stage growth (Figs 1b,c and 3).
Corresponding gene deletion lines (mtp� ) could not be
generated, but we readily selected endogenously labelled
mtp::tag lines (Fig. 1b). Live fluorescent imaging of intra-
erythrocytic parasites revealed localization at the parasite–host
interface (ATP2 and ATP8) or to intraparasitic structures
and the surrounding membranes (ABCI3, ATP7, GCa and
DMT2). Intriguingly, four essential genes encode signatures
of aminophospholipid-transporting P4-type ATPases. These

ATPases are restricted to eukaryotes and facilitate inward
translocation of aminophospholipids thereby maintaining their
asymmetrical enrichment at the membrane inner leaflet18. As
lipid asymmetry is critical to normal cell functions, our data are
consistent with a vital dependence of blood-stage malaria
parasites on maintenance of lipid asymmetry. This potential
vulnerability was previously unrecognized and might inform drug
discovery programs.

Streamlined phenotyping of viable mtp� lines. For 29 target
genes (81%), transfection, selection and isolation of isogenic
mtp– lines were successful (Figs 1–3). We established a stream-
lined and standardized phenotypic screen (Fig. 2c), monitoring
life cycle progression at four clearly defined checkpoints in the
definitive host, female Anopheles mosquitoes, and the inter-
mediate murine host. Following intravenous infection of outbred
(NMRI) mice with 107 infected erythrocytes, parasitaemia (i) and
male gamete exflagellation (ii) were quantified three days later.
Anopheles stephensi mosquitoes were allowed to feed on these
mice and salivary gland-associated sporozoites (iii) were enum-
erated at least three weeks later. Natural transmission (iv) was
monitored after exposure of C57BL/6 mice to 25 mtp� -infected
mosquitoes.

This screen identified only seven gene deletions with no
apparent deficiency at any checkpoint, indicative of dispensable
and/or redundant roles for parasite propagation and host switch
(Figs 1c and 3; Supplementary Table 2). Ablation of nine MTP
genes resulted in defects at a single stage or at multiple
checkpoints. Despite the observed deficiencies, these mtp� lines
completed the life cycle, illustrating that life cycle bottlenecks can
be readily compensated by subsequent propagation phases in
partly attenuated parasites. A selection of seven mutants
exemplified how such an initial defect does not need to preclude
subsequent normal development. Sporozoite numbers for the
mfs6� and mfr2� strains are within the wild-type (WT) range
despite severely reduced exflagellation rates, while five mutant
lines that show reduced sporozoite numbers transmit normally.
The remaining thirteen mtp� lines (36%) demonstrated a
complete life cycle arrest abrogating transmission between mice.

Defects during asexual or sexual blood-stage development. We
next determined the parasite multiplication rates (PMR) of the
four parasite lines that showed the lowest mean parasitaemias in
the phenotyping screen (Fig. 4a). Thus, we could rule out a
growth defect for mfr2� but uncovered replication defects for
zip1� (68% PMR), mfs6� (55% PMR) and mfr5� (36% PMR)
parasites, resulting in swift out-competition by WT parasites.
Growing at a third of the rate of WT blood-stage parasites,
MFR5-deficient parasites are the slowest replicating mutants
isolated to date and we independently confirmed this outcome
(Supplementary Fig. 3).

We detected substantial reductions in male gamete exflagella-
tion and ookinete formation for pat� and cdf� (Fig. 4b,c). As
cdf� , but not pat� , parasites were capable of completing
transmission (Fig. 3; Supplementary Table 2) PAT likely exerts
additional roles following ookinete formation. Remarkably,
zip1� was the only mutant that completely failed to form flagella
and, thus, ookinetes and oocysts (Fig. 4b–d). In this mutant,
gametocyte numbers were reduced by 80% (Fig. 4e) but most
strikingly the male:female ratio was strongly skewed towards
female production (Fig. 4f). CDF and ZIP1 might participate in
the transport of heavy metal ions5,19. Our phenotyping, and the
known role of a copper-transporting P1B1-type ATPase (CuTP) in
gamete fertility20, underscore a possible central role for heavy
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metal homeostasis in malaria parasites fertility and, perhaps, the
germ line of other eukaryotes.

Defects during mosquito-stage development. Over one third of
the targeted MTP genes displayed a first defect in sporozoite
colonization of the salivary glands (Figs 1c and 3, and
Supplementary Table 2). These included four of six predicted
channels (CTR1, MIT1, MIT2 and MSCS), highlighting their
importance for the extracellular growth stage of the parasite. Five
mtp� lines did not produce any salivary gland-associated
sporozoites and two mutants failed to transmit following strongly
reduced sporozoite production. In-depth phenotyping of three
representative mutants (ctr1� , nt4� and mfr4� ) showed normal
midgut colonization but attenuation of oocyst development,
resulting in either no sporozoites (mfr4� ) or severely
reduced sporozoite colonization of salivary glands (ctr1� and
nt4� ; Fig. 5).

Defects during liver-stage development. Only two mutants with
normal sporozoite production, ctr2� and mfs6� , had a distinct
defect during natural transmission (Figs 3 and 5b; Supplementary
Table 2). The observed defect in natural transmission of
ctr2� parasites (Fig. 6a) was alleviated by intravenous, but not
subcutaneous, syringe delivery of sporozoites (Fig. 6b), and was
largely independent of gliding motility (Fig. 6c) or liver-stage

maturation (Fig. 6d,g). These findings indicate an important role
for CTR2 in sporozoite transmission in vivo. The critical roles of
an alternative zinc–iron permease (ZIPCO) during liver-stage
development21, and of CTR1 and CTR2 described herein, support
a link between heavy metal homeostasis and parasite–host switch.
Furthermore, iron deprivation via hepcidin inhibits liver-stage
growth22. Taken together, the growing evidence indicates that
heavy metal homeostasis might become a useful molecular target
for causal prophylactic strategies.

Genetically modified Plasmodium parasites that are unable
to undergo liver-to-blood-stage conversion can be used to
experimentally immunize mice resulting in sterile protection
against future sporozoite challenge infections23. Broadly, these
genetically arrested parasites fall into two distinct classes: (1) early
arrested liver stages that fail to grow in cultured hepatoma cells
and show a reduced liver load in vivo, and (2) late arrested
parasites that initially grow normally but have a defect in liver-
stage merozoite formation, correlating with a high liver load in
infected mice. Only one of the mutant strains, mfs6� , fulfilled
criteria for testing in a preclinical immunization/challenge
protocol as a genetically arrested parasite vaccine. Fine analysis
of the observed defect of mfs6� parasites in natural transmission
revealed occasional (2 out of 9) delayed breakthrough blood
infections only after high-dose inoculations with 10,000 mfs6�

sporozoites (Fig. 6a). Numbers and sizes of liver-stage parasites in
cultured hepatoma cells were not different from WT parasites
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Figure 1 | Experimental genetics screen of malaria parasite orphan membrane transport proteins. (a) Schematic overview of the 35 conserved, P. berghei

orphan MTPs targeted in this study. (b) Endogenous fluorescent tagging of six MTPs refractory to targeted gene deletion to validate accessibility of gene

loci. Diagnostic PCRs of the parental parasite populations (left, WT; centre, 50 integration; right, 30 integration; see Supplementary Fig. 5 for full gel pictures)

and representative live fluorescent micrographs of blood-stage parasites are shown. Scale bars, 5 mm. (c) Sankey diagram for parasite development at four

life cycle checkpoints. Parasite lines are enumerated and coloured according to complete arrest (red), slow development (o10% percentile; yellow), and

normal growth (green). The Sankey diagram was created with the package riverplot (v. 0.5) available from CRAN (https://cran.r-project.org/web/

packages/riverplot/).
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(Fig. 6d,e), though a trend towards slightly reduced sizes in
maturing stages was observed. Furthermore, we did not detect
liver-stage merozoites in mfs6� -infected cell cultures. In contrast
with late arresting liver-stage mutants, mfs6� liver load was
largely reduced in vivo (Fig. 6f). Intriguingly, DNA staining
revealed distorted nuclei displaying weak signals only (Fig. 6g;
Supplementary Fig. 4), lending support to an apparent replication
deficit. Therefore, infections with mfs6� parasites display
defining signatures of late arrest (numbers and morphology)
and early arrest (DNA content).

Immunizations with late arrested parasites elicit particularly
potent and lasting protection24,25. To test the vaccine potential of
mfs6� parasites, we immunized C57BL/6 mice with two low
doses of 1,000mfs6� sporozoites. The immunized mice displayed
an average delay to blood infection of 1–2 days upon high-dose
sporozoite challenge and one mouse was sterily protected
from re-infection (Fig. 6h). Despite this promising result,
additional bioengineering efforts, including generation of
multiple gene deletions, are required before a late arresting
genetically attenuated whole-parasite vaccine can be translated to
P. falciparum parasites and potential clinical trials.

Concluding remarks. Classical reverse genetics and post-
genomic approaches continue to provide increasing insights in
the functioning of membrane transport proteins in the model
yeast S. cerevisiae26. In the present study, we have presented a
relatively rapid experimental system to uncover phenotypes and
assign in vivo functions to a significant proportion (30%) of the
Plasmodium transporters, which could not be inferred on the
basis of motifs and sequence similarities with established
unicellular model organisms. Such insights contribute to a
better understanding of Plasmodium metabolism and host cell
adaptation, which forms the basis for the rational development of
innovative malaria intervention strategies. Our data show that
MTPs, with the notable exception of ATP-dependent pumps, play
a less prominent role than anticipated. Systematic target
validation is a critical component of the anti-malarial drug and
vaccine discovery process. This is exemplified herein by the
prophylactic and transmission-blocking potential of targeting an
MTP putatively involved in heavy metal homeostasis during
malaria parasite–host switches; the vaccine potential of
genetically arrested parasites that lack a parasite-specific MTP
of the major facilitator superfamily; and the possibility for
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Figure 2 | Experimental genetics approaches employed to study 35 MTP. (a) Schematic representation of the generation of mtp� and mtp::tag parasites.

The 50 and 30 flanking regions of the target genes were cloned adjacent to the selection cassette resulting in the gene deletion transfection vector

(pMTP-KO). For endogenous tagging, the carboxy terminus was cloned in frame with an mCherry-3xMyc tag and the 30FR was cloned distal of the selection

cassette, resulting in the endogenous tagging vector (pMTP-tag). By double crossover homologous recombination the targeted MTP was predicted

to be either replaced or endogenously tagged with the fluorescent tag, respectively. (b) Schematic representation of the P. berghei transfection protocol

adapted from Matz and Kooij37. Cultured and synchronized schizonts are transfected and successfully modified parasites are selected in vivo using

pyrimethamine. When the parasitaemia is 0.1–1.0%, 50 isogenic mutant parasites are isolated by flow cytometry. (c) Schematic overview of the

standardized phenotypic profiling protocol of four life cycle checkpoints looking at (1) blood-stage growth in the mouse, (2) exflagellation rates as a

measure of mouse-to-mosquito transmission, (3) salivary gland sporozoite numbers, and (4) prepatency following infections by natural bites to follow

mosquito-to-mouse transition and ability to complete the full life cycle.
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(b) diagnostic PCR before transfection on DNA of WTparasites specific for 50 and 30 WT, 50 and 30 integration (note that for WT CTR2 a single overarching PCR

from 50 to 30 was performed; see Supplementary Fig. 5 for full gel pictures); (c) diagnostic PCR after transfection on DNA of parental transfected populations (6
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pure populations (see Supplementary Fig. 5 for full gel pictures); (d–k) alternating graphic representations of the phenotypes and transcription levels derived from

refs 38–40, colour coded as indicated in the legend; (d) blood-stage growth measured as pparasitaemia 3 days after infection of NMRI mice with 107 parasites;

(e) transcription percentiles of P. berghei ring stages 4 hours post infection (h.p.i.; 2� ), trophozoites 16 h.p.i. (2� ), schizonts 22 h.p.i. (2� ), P. yoelii schizonts

(2� ), and mixed blood stages (2� ); (f) male gamete exflagellation levels three days after infection of NMRI mice with 107 parasites; (g) transcription

percentiles of P. berghei gametocytes (2� ) and P. yoelii gametocytes (4� ); (h) number of salivary gland-associated sporozoites 21 days after blood meal;

(i) transcription percentiles of P. berghei ookinetes, P. yoelii midgut-associated sporozoites 9 d.p.i. (2� ), 10 d.p.i., salivary gland-associated sporozoites 14 d.p.i.

(3� ) and 15 d.p.i.; (j) prepatent period in two C57BL/6 mice following bites of 25 infectious mosquitoes (green, both mice became blood-film positive with an

average prepatent period of r4.5 days; yellow, one mouse remained blood-film negative; red, both mice remained blood-film negative); (k) transcription

percentiles of P. yoelii liver stages at 24, 36, 40 (2� ) and 50 h.p.i.; (l) gene identification number.
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therapeutic intervention targeting putative aminophospholipid
translocases.

Methods
Experimental animals. All animal work was conducted in accordance with the
German ‘Tierschutzgesetz in der Fassung vom 18. Mai 2006 (BGBl. I S. 1207)’,
which implements the directive 86/609/EEC from the European Union and the
European Convention for the protection of vertebrate animals used for experi-
mental and other scientific purposes. The protocol was approved by the ethics
committee of MPI-IB and the Berlin state authorities (LAGeSo Reg# G0469/09).
We used 6-to-8 weeks old female mice from Charles River: C57BL/6 mice for
sporozoite infections and NMRI mice for all other parasite infections.

Generation of mtp� and mtp::tag parasites. All recombinant parasite lines
were generated in the P. berghei strain ANKA reference line cl15cy1 (ref. 27)
through a gene replacement strategy via double crossover/ends-out homologous
recombination (Fig. 2a). All sequences of the oligonucleotides with the restriction
sites and approximate sizes can be found in Supplementary Table 3. Fragments of
400–650 bp in the 30 flanking regions of the genes of interest were amplified by
using the 30 fragment forward and reverse primer combinations (30MTP-F-AvrII
and 30MTP-R-KpnI). The 30 fragments were cloned using the indicated restriction
sites into the pBAT-SIL6 vector28, resulting in intermediate vectors (pMTP-IM).
For completion of the gene deletion vectors (pMTP-KO), 400–650 bp fragments in
the 50 flanking regions of the target genes were amplified using the 50 fragment
forward and reverse primer combinations (50MTP-F-SacII and 50MTP-R-HpaI)
and cloned into the pMTP-IM vectors from which the mCherry-3xMyc tag
sequence was removed by restriction digestion with SacII and PvuII. For

completion of the tagging vectors (pMTP-tag), 400–650 bp fragments at the
carboxy-terminal (CT) ends of the coding sequences were amplified using the CT
fragment forward and reverse primer combinations (CT-MTP-F-SacII and CT-
MTP-R-HpaI) and cloned into the pMTP-IM vectors using SacII and HpaI
resulting in in-frame fusions of the CT coding regions with the mCherry-3xMyc
tag. All transfection plasmids were verified by commercial Sanger sequencing and
linearized with the enzymes ScaI and SalI.

We transfected P. berghei strain ANKA with 5 mg linearized transfection
plasmid DNA using standard procedures (Fig. 2b)27. In brief, blood of a mouse
infected with WT parasites is harvested by cardiac puncture and cultured
overnight. Following maturation, the parasites fail to egress and arrest at the
schizont stage. These schizonts are purified and transfected with the targeting
constructs. Transfected merozoites are injected intravenously into a naı̈ve mouse.
Administration of pyrimethamine in the drinking water favours the growth of
successfully modified parasites, which now also express a fluorescent protein.
When the parasitaemia is 0.1–1.0% (typically 7–9 days after transfection), 50
mutant parasites are isolated by flow cytometry and transferred to a naı̈ve mouse17.
Eight to ten days after injection, the isogenic parasite line can be harvested, stored
or transferred and tested.

When three repeated gene deletion attempts were unsuccessful, refractoriness of
the genes was confirmed using the available, corresponding PlasmoGEM vectors
(GAP40, PbG01-2401a08; ABCI3, PbG01-2370b05; ATP2, PbG01-2339e11; GCa,
PbG01-2474g01)16. These independent transfection vectors harbour significantly
longer homology arms and integrate more efficiently providing a further, more
stringent test for essentiality. Accessibility of the locus for genetic manipulation was
confirmed using the pMTP-tag vectors.

Correct integration of the transfection vectors in the isogenic parasite lines and
absence of contaminating WT parasites was verified by genotyping PCR (Figs 2a
and 3; Supplementary Table 3). In general, for each target gene two primer
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combinations for genotyping purposes were designed just outside the regions used
for homologous recombination, one flanking the 50 fragment (50MTP-F and
50MTP-R) and one spanning both the CT- and 30 fragments (30MTP-F and 30MTP-
R). To confirm the predicted integration events, the gene-specific primers were
combined with generic pBAT-SIL6-specific primers (50HSP70rev for 50 integration
in mtp� lines, mCherryRev for 50 integration in mtp::tag lines, and 50DHFRrev for
30 integration in both).

Standardized phenotyping screen. To facilitate a comprehensive phenotypic
profiling of the large number of recombinant mtp� parasite lines, we standardized
our life cycle progression analysis to maximize functional read-outs over invested
time and resources, particularly with regard to the number of experimental animals
required. Figure 2c provides a schematic of this protocol, which starts with the
intravenous injection of 107 blood-stage parasites into naı̈ve NMRI mice. Three
days later, blood-stage parasitaemia was counted by microscopic examination of
Giemsa-stained thin blood films and male gamete exflagellation rates were
determined as described below. For transmission, 25 female naı̈ve A. stephensi
Sind-Kasur strain mosquitoes29 were placed into a single cup, starved for at least
8 h, and fed on a mtp� -infected mouse for 30min. After 21 days, infected
mosquitoes were starved for at least 8 h and fed on naı̈ve C57BL/6 mice. From 3 to
15 days after the infectious mosquito bites, blood-stage infection was monitored by
microscopic examination of Giemsa-stained thin blood films. At 24–27 days after
the mosquito blood meal, salivary gland-associated sporozoites were isolated and
quantified.

Blood-stage development and live fluorescence imaging. Blood-stage
development of selected mtp� lines was analysed using a flow cytometry-based
intravital competition assay, growing recombinant parasite lines in competition
with a strongly fluorescent reference strain (Beryellow or Berred) within a single
mouse30. Data from the exponential growth phase, that is, with parasitaemia o1%,
fitted a linear regression well (r2Z0.99) and allowed the calculation of the PMR
from the slopes. For live protein localization, a drop of tail blood from an infected
mouse was mixed with 200 ml pre-warmed RPMI 1640 complemented with 0.2 ml of
the DNA-dye Hoechst 33342 (Invitrogen) and distributed onto poly-L-lysine
coated cover slips. Cells were allowed to settle for 5min at 37 �C. Next, cover slips
were washed three times with pre-warmed RPMI, inverted and sealed. Images were
recorded on a Zeiss AxioObserver Z1 epifluorescence microscope, equipped with a
Zeiss AxioCam MRm camera, and processed minimally with Fiji31.

Sexual blood-stage development and ookinete cultures. Detailed analyses of
sexual development was largely performed as described20. Mice were infected with
107 blood-stage parasites. After 3 days, gametocyte conversion rates and
male:female gametocyte ratios were determined by microscopic examination of
Giemsa-stained thin blood films. For exflagellation analysis, 5 ml of tail blood was
mixed immediately with 125 ml RPMI 1640 complemented with 50 mM xanthurenic
acid, that was pre-warmed at 20 �C. Immediately, 10ml cell suspension was
transferred into a Neubauer chamber and incubated at 20 �C. Exflagellation centres
were quantified by microscopic observation at 400� magnification from 12 to
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18min. Finally, mice were bled by heart puncture and 1ml blood was transferred
immediately into a small cell culture flask containing 10ml complete ookinete
medium (RPMI 1640 with L-glutamine and 25mM HEPES supplemented with
100mM sodium bicarbonate, 125Uml� 1 penicillin/streptomycin, 10% fetal calf
serum and 50 mM xanthurenic acid, pH 8.0). After 18–24 h incubation at 20 �C and
80% humidity, the ookinete culture was centrifuged in a 50ml reaction tube for
8min at 1,800 r.p.m. (560g) without brake. The pellet was resuspended with freshly
prepared cold 0.17M ammonium chloride solution and incubated for 10–15min
on ice. Ookinetes were collected by centrifugation at 4 �C and 2,100 r.p.m. (760g)
for 15min. The pellet was transferred into a 2ml reaction tube and washed twice

with PBS. The enriched ookinete suspension was then diluted appropriately, 10 ml
of it transferred into a Neubauer chamber and quantified by microscopic
examination at 400� magnification.

Mosquito-stage development and live fluorescence imaging. A. stephensi
mosquitoes were raised in a 14 h light/10 h dark cycle at 75% humidity using
standard techniques32. Uninfected and infected mosquitoes were kept at 28 and
20 �C, respectively. Midgut sporozoites were isolated and quantified 14 days after
the mosquito blood meal. Salivary gland-associated sporozoites were isolated and
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quantified between day 18 and 30 following the start of the mosquito infection. To
visualize mosquito-stage development, midguts were isolated in RPMI 1640
supplemented with 2% BSA at 10, 14, 18 and 25 days after the mosquito blood
meal. Mosquito midguts were placed on a glass slide and images recorded
immediately using a Leica DMR epifluorescence microscope with 40� and 100�
objectives.

Gliding motility assay. Glass slides with distinct wells were coated with 3% BSA
in RPMI at 37 �C for 20min. Overall 10,000 sporozoites in RPMI/3% BSA were
added onto each well. Samples were placed at 37 �C in a humid chamber to allow
sporozoites to settle and glide for 45min. The parasites were fixed with 4% PFA for
15min. Parasites and their trails were stained with anti-CSP antiserum (1:500
dilution—kindly provided by K. Müller, MPI-IB, Berlin). Primary antibodies were
detected by fluorescently labelled secondary goat anti-mouse IgG Alexa Fluor 488
conjugated antibodies (1:1,000 dilution, Invitrogen). Sporozoites with trails that
extended longer than one circle were scored as gliding. Data were obtained in three
independent assays using salivary gland-associated sporozoites isolated from
mosquitoes that were fed simultaneously.

Transmissions to mice and quantification of liver loads. For natural trans-
mission, infected mosquitoes were starved for at least 8 h before feeding on
anesthetized naı̈ve C57BL/6 mice. For intravenous and subcutaneous injections in
C57BL/6 mice, the desired numbers of sporozoites, typically 10,000, were isolated
from infected mosquito salivary glands and injected in a volume of 100ml into the
tail vein or a skin fold on the back. To quantify the relative parasite liver infection
load, 10,000 sporozoites were injected intravenously into C57BL/6 mice. After 44 h,
the mice were sacrificed, RNA was isolated from infected livers, and transcribed
into cDNA as described previously33. Quantitative real time PCR was performed
on WT and mutant cDNA by using primers specific for P. berghei 18S rRNA and
mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH)33. The mRNA level
of P. berghei 18S rRNA was calculated relative to the mouse GAPDH levels.

In vitro liver-stage growth and immunofluorescence imaging. To study
liver-stage development, in vitro cultured human hepatoma (Huh7) cells34 were
infected with 10,000 sporozoites using standard techniques as described
previously25. After 24, 48 or 70 h, liver-stage parasites were fixed and permeabilized
with ice-cold methanol and stained with the DNA-dye Hoechst 33342 (Invitrogen),
rabbit anti-UIS4 antibodies (1:500 dilution35), and mouse anti-HSP70 antibodies
(1:300 dilution36). Primary antibodies were detected by fluorescently labelled goat
anti-mouse/rabbit IgG Alexa Fluor 488/546 conjugated antibodies (1:1,000
dilution, Invitrogen). Liver-stage parasites were counted and images recorded on a
Zeiss AxioObserver Z1 epifluorescence microscope, equipped with a Zeiss
AxioCam MRm camera, and processed minimally with Fiji31.

Immunizations with mfs6� sporozoites. C57BL/6 mice were immunized with
two doses of 1,000 or 10,000 mfs6� sporozoites by intravenous injection at a 9-day
interval. Mice that remained parasite-free were challenged three weeks after the
final immunization with 10,000 WT sporozoites. Blood-stage infection was mon-
itored daily from days 3–15 after infection by microscopic examination of Giemsa-
stained thin blood films.
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