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Design of crystal-like aperiodic solids with selective
disorder–phonon coupling
Alistair R. Overy1,2, Andrew B. Cairns1,3, Matthew J. Cliffe1,4, Arkadiy Simonov1, Matthew G. Tucker2,5

& Andrew L. Goodwin1

Functional materials design normally focuses on structurally ordered systems because

disorder is considered detrimental to many functional properties. Here we challenge this

paradigm by showing that particular types of strongly correlated disorder can give rise to

useful characteristics that are inaccessible to ordered states. A judicious combination of

low-symmetry building unit and high-symmetry topological template leads to aperiodic

‘procrystalline’ solids that harbour this type of disorder. We identify key classes of procrys-

talline states together with their characteristic diffraction behaviour, and establish mappings

onto known and target materials. The strongly correlated disorder found in these systems is

associated with specific sets of modulation periodicities distributed throughout the Brillouin

zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that

resembles the poorly understood ‘waterfall’ effect observed in relaxor ferroelectrics. This

property of procrystalline solids suggests a mechanism by which strongly correlated topo-

logical disorder might allow independently optimized thermal and electronic transport

behaviour, such as required for high-performance thermoelectrics.
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T
he relationship between building block geometry and bulk
material structure is one of the cornerstones of structural
science. By way of example, the solid phases of elemental

Xe (ref. 1), C60 (ref. 2) and human adenovirus3 are all structurally
related, not by virtue of any particular chemical similarity but
because each of these phases reflects the same solution to the
problem of packing weakly interacting spherical objects in three-
dimensional (3D) space. The reticular approach to understanding
zeolite and metal–organic framework topologies is related from a
conceptual viewpoint, because it links the geometries of molecule-
like components (coordination polyhedra, molecular linkers) to
the 3D architectures formed by their assemblies4,5. The
importance of structure in determining the physical properties
of solids is what then gives sense to the approach of developing
new types of functional materials through informed design of
constituent building blocks. It is precisely this type of ‘ground-up’
approach that has recently been exploited in the rational design
of, for example, solid oxide fuel-cell cathodes and room-
temperature multiferroic candidates6,7.

To a large extent, the rich structural information accessible
using crystallographic techniques has focussed effort on the
design of crystalline materials. There are also obvious functional
advantages to the long-range periodicity characteristic of crystals,
because it governs useful correlated properties—including the
lattice dynamics, electronic states, and charge, orbital and
magnetic order. Moreover, crystal symmetry is central to
mechanical properties such as piezoelectricity and ferroelasticity,
and is clearly pivotal in determining phase transition behaviour.
While certain building block geometries allow—or can even
force8,9—non-crystalline assemblies, the link to function is
usually much less clear in these cases. Indeed the received
wisdom is that disorder is something to be avoided, despite
increasingly strong empirical evidence that links disordered states
to advanced functionalities10. So the development of disorder—
property relationships, and the eventual control over these
properties through suitable building block design have emerged
as key challenges in the field.

Here we develop an approach of intentionally designing
functional disordered materials by focussing on systems in which
structural disorder is extremely strongly correlated. The type of
disorder we consider is similar to that found in ice, and our paper
begins by developing a generalization of ice-like states to arbitrary
materials geometries. We proceed to establish a link between the
geometry of structural building blocks and the propensity for
specific types of strongly correlated disorder in the resulting
material assembly. This is the design element of our approach.
Having made this connection, we suggest a number of physical
realizations of these correlated disordered states. Our paper
concludes by demonstrating how the correlated disorder
deliberately engineered within one representative affects its lattice
dynamics in a highly specific manner. This is the functional
element of our approach because the effect we observe suggests,
for example, a fundamentally new way of optimizing thermo-
electric response.

Results
Generalization of ice rules. Our starting point is the simple toy
model of square ice, in which water molecules are arranged on a
square lattice and oriented so as to satisfy sensible hydrogen-
bonding rules (Fig. 1a). As there is no unique way of satisfying
these rules the system is disordered, even if the molecule orien-
tations are far from random. As in the real-world examples of
cubic ice (Ic) and its nano-confined variants11, this system is
characterized by a degenerate manifold of structural ground
states12. An idea we will come to develop is that this propensity

for disorder is encoded in the combination of the symmetry of the
water molecule (that is, the structural building block) and the
lattice on which the water molecules are arranged (here enforced
by the directionality of the chemical interactions between
building blocks). Any system that shares these geometric
features will be characterized by the same configurational
degeneracy. So, for example, replacing O–HyO linkages by the
M–C–N–M motif found in transition-metal cyanides gives a
mapping that—in 3D—relates head-to-tail cyanide disorder in
Cd(CN)2 to water molecule orientations in cubic ice (Fig. 1b)13.
The question of O/N ordering within square grid layers of
transition-metal oxynitrides presents a related problem, which
maps onto the square ice model following geometry inversion
from one site to the next (Fig. 1c)14. These examples involve
compositional or orientational modulations of the square lattice,
but the same ideas are well-known to translate to a variety of
modulation types, many of which are key to material function: for
example; displacive, electronic, charge density, spin density,
orbital and spin orientation (Fig. 1d). For ice-like disorder on the
diamond lattice, these mappings are well-established in the
literature: hence the ‘Coulomb phases’15 of charge16, orbital17 and
spin18 ices.

In seeking to generalise ice-like states, we take our lead from
the reticular chemistry approach for generating network
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Figure 1 | Correlated disorder in square ice analogues. (a) A

configurational fragment of square ice. The water molecules are arranged

on a square lattice and are oriented so as to satisfy local hydrogen-bonding

rules: each molecule accepts two hydrogen bonds and donates two

hydrogen bonds. There is no unique solution to satisfying these local

constraints, and so the square ice state is configurationally disordered.

(b) A square-planar transition-metal cyanide configuration that maps onto

the ice-like state in a. Here each metal cation (coloured green) is

coordinated by two nitrogen atoms (blue) and two carbon atoms (grey)

such that each N atom is opposite to a C atom. (c) Transition metal

oxynitrides adopt a related structure14, in which square-grid layers consist

of metal cations coordinated by two nitrogen atoms (blue) and two oxygen

atoms (red). The topological equivalence to the square ice configuration

can be seen by alternately considering O–M–O and N–M–N orientations for

neighbouring metal centres (shaded regions)26. (d) Displacive modulation

of a square MO2 lattice by in-plane [MO4] rotations gives configurations

that again map onto the square ice state. The correspondence relates

displacements above and below the plane with, respectively, O and N atoms

of the oxynitride configuration shown in c.
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structures19,20. The key idea here is that lattice topologies can be
considered in terms of the assembly of nodes and linkers (Fig. 2a):
the geometry of the node determines the possible topologies of
the corresponding lattice. In this context, the various square-ice
systems of Fig. 1 can be considered perturbations of the square
lattice in which two adjacent linkers are distinguished among the
four that meet at each square node. If we identify three linkers
rather than two, then we generate a distinct family of disordered
configurations that—from a reticular chemistry perspective—
might be considered to arise from the linking of T-shaped
building blocks (Fig. 2b). As for the square ices, there are many
possible realizations of this same state: one mapping is to
Anderson’s resonance valence bond (RVB) description of singlet
pair formation in cuprate superconductors21; another is to
so-called ‘domino’ tilings of the plane22.

There are in total just six cases to be considered for
perturbations of the square lattice. Two of these are trivial
(distinguishing either four or zero linkers); two are related to one
another (distinguishing one linker being the same as distinguish-
ing three); and the two cases that remain distinguish different
pairings of the four linkers, as shown in Fig. 2c,d. We have

already met the first of these cases in the guise of square ice
(Fig. 1c); the second case—in which the linkers distinguished are
opposite one another—is ordered and results in symmetry
breaking of the underlying square lattice. So there is a nontrivial
relationship between perturbations of the node symmetry and the
resulting configurational degeneracy.

Ice-like configurations are not confined to perturbations of the
square lattice. Equivalent states for the hexagonal, triangular,
diamond, cubic and pyrochlore nets are enumerated in Fig. 2e–s
and Supplementary Figs 1–37. The extent of disorder can be
deduced from the corresponding diffraction patterns, which
contain structured diffuse scattering in cases where there is strong
correlated disorder (Fig. 2; ref. 10). What emerges is that a
substantive fraction of these systems admit large configurational
entropies, with a complex relationship between node geometry
and extent of correlated disorder. So as to provide insight into
this relationship, we generalise Pauling’s approximation for the
configurational entropy of ice12,14:
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Figure 2 | Reticular design approach to generating procrystalline networks. (a) High-symmetry building blocks connect to form familiar two- and three-

dimensional networks: square (indigo), hexagonal (blue), triangular (green), diamondoid (orange) and cubic (red). (b–s) Distinguishing different possible

subsets of linkers for these high-symmetry lattices gives a variety of ordered and disordered states, which are grouped here according to the parent lattice.

For each panel, the perturbed node geometry is shown in the top-left corner, followed immediately below by a representation of the Pauling number p, a

qualitative indicator of the propensity for disorder. A representative network configuration is shown as the main image, with nodes coloured according to

their orientation. One suitable projection of the corresponding X-ray diffraction pattern is given in the bottom-left corner (see Supplementary Figs 1–37 for

further details). For the configuration shown in b two overlapping neighbourhoods are outlined in black. The Dirichlet–Voronoi cell of the neighbourhood

lattice is shown in red; the neighbourhood itself is generated by augmenting this cell to include connected latticed points (see Supplementary Figs 38 and

39 and Supplementary Note 1 for further details). The asterisk in l indicates that a single enantiomer of the node geometry is used (cf. k); this node is chiral

when constrained to lie in two dimensions. Further discussion, including extension to the pyrochlore lattice, is given in Supplementary Tables 2 and 3 and

Supplementary Note 2.
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Here d represents the underlying node connectivity and n
corresponds to the number of symmetry-equivalent node
perturbations of a given type. The value of n can often be
determined by inspection, but it is given more rigorously by the
ratio of the orders of the point groups of the parent and perturbed
node geometries; for example, n¼ |D4h|/|C2v|¼ 4 for square ice.
We call p¼ n/2d/2 the Pauling number, with the significance that
maximising p maximises the propensity for disorder. In this way
one expects low-symmetry perturbations of high-symmetry
lattices to lead to states of the greatest configurational entropy,
a qualitative relationship that is borne out in practice (Fig. 2).
From a materials design perspective, what we are saying is that
building block geometry and the arrangement of the interactions
between building blocks can together encode for specific types of
correlated structural disorder.

The procrystalline state. Common to many of the configurations
of Fig. 2 is the absence of translational periodicity characteristic of
the crystalline state. For a given configuration, every node
experiences the same local environment—and hence it is not
meaningful to think of these structures as defective in the
vernacular sense. Yet there is no unit cell and space group
symmetry that properly describes the topological connectivity.
We proceed to argue that these systems should not be considered
as crystals, but form a separate class of aperiodic solid with its
own characteristics. We will use the term ‘procrystalline’ to
describe this state and to emphasise that conventional crystals
might be seen as a special case of the definitions that follow.

The procrystalline state is a dense, overlapping packing of
identical fundamental structural units (we use the term
‘neighbourhoods’), which are positioned periodically but orienta-
tionally permuted as permitted by the point symmetry of the
neighbourhood geometry. For magnetic systems, these permuta-
tions may involve time reversal operations as realized in, for
example, the Ising spin ices23. In simple cases the neighbourhood
corresponds to the Dirichlet–Voronoi cell of the underlying
lattice augmented to include neighbouring, correlated lattice
points (Fig. 2b; Supplementary Note 1 and Supplementary Figs 38
and 39). Whereas crystals correspond to the special case in which
the neighbourhood orientations are themselves periodic, the more
general procrystalline state allows for discrete orientational
disorder (cf. the continuous orientational degrees of freedom in,
for example, plastic crystals and superionics). Any such disorder
will always be correlated since neighbourhoods overlap.

Because their underlying neighbourhood lattice is periodic, all
procrystals admit a Bragg diffraction pattern and have a well-
defined reciprocal lattice. This diffraction pattern can be analysed
using conventional crystallographic approaches but doing so
yields a structural model in which neighbourhoods are averaged
over their different possible orientations and all information
regarding orientational correlation is lost; for example, the states
represented in Fig 2r,s share identical Bragg diffraction patterns
in spite of their distinct local symmetries. Like crystals,
procrystalline phases are characterized by macroscopic point
symmetry that can be as high as that of the neighbourhood lattice.
Yet, unlike crystals, they can support a complete absence of any
point or translational symmetry at the microscopic level. It is the
existence of a periodic 3D reciprocal lattice that distinguishes
procrystals from incommensurate and quasicrystalline phases,
and which also guarantees a well-defined Brillouin zone and
Bloch-wave-like description of phonon and electronic states.

Physical realizations of procrystallinity. The structures of a
number of well- and lesser-known materials can be thought of in
precisely these terms. This is true by construction for any phase

with ice-like disorder; in addition to the various systems descri-
bed above, the family of ferroelectric phases related to KH2PO4 is
an obvious additional example24. Similarly well-established are
the statistical mechanical models of RVB25 and loop26 states,
which correspond to procrystalline lattices with, respectively, one
and two linkers distinguished for each node. Hence, physical
realizations of either class also fall under our definition
(for example, TaS2 (ref. 27) and SrTaO2N (ref. 28)). A less
obvious example is the assembly of p-terphenyl-3,5,30,
50-tetracarboxylic acid molecules on pyrolytic graphite to
form a hydrogen-bonded network related to the procrystalline
lattice illustrated in Fig. 2e (Fig. 3a,b)29. This arrangement maps
onto the so-called ‘rhombus’ or ‘lozenge’ tiling, which in turn
corresponds at once to both the Ising triangular antiferromagnet
and the RVB description of p-bonding in graphene30–32. These
equivalences are straightforwardly seen in reciprocal space:
Fourier transform of the scanning tunnelling microscopy image
of Fig. 3b reveals the same distribution of diffuse scattering and
‘pinch point’ features expected from our simple geometric model
(Fig. 3c,d). A further example is the pattern of correlated Nb off-
centre displacements found in the high-temperature cubic phase
of KNbO3 (ref. 33). Here the mapping is to the procrystalline
lattice illustrated in Fig. 2s, as reflected (again) in the diffuse
scattering distribution observed in single-crystal diffraction
measurements (Fig. 3e–g).

We expect the link between characteristic diffuse scattering
patterns and particular procrystalline states to aid in diagnosing
and understanding a range of problems of correlated disor-
der10,34. For powder diffraction measurements, often the only
signature of this diffuse scattering is the presence of hkl-
dependent anisotropic peak shape broadening. This is the case,
for example, in the scattering patterns of Pd(CN)2 and Pt(CN)2; a
procrystalline structural model based on connected square-planar
[M(C/N)4] units provides the first convincing description of their
diffraction behaviour (Fig. 3h,i)35. In other cases, procrystalline
states (if not necessarily recognized as such) have been inferred
from the combination of a disordered average structure and clear
signatures of local distortions that can persist only if suitably
correlated. Examples include Jahn Teller distortions in the high-
temperature orbital-disordered phase of LaMnO3 (refs 36,37) and
the high-pressure amorphous phase of ZrW2O8 (ref. 38). So there
is good evidence that a variety of procrystalline phases do exist,
even if their structures are difficult to interpret using established
crystallographic approaches.

Disorder–phonon coupling. But what of the link between
correlated structural disorder and function? In principle, the
existence of a well-defined Brillouin zone allows coupling between
the structural modulations that characterize the procrystalline
state and other physical properties that depend on periodicity—
for example, the lattice dynamics and electronic band structure39.
We tested for coupling of this type using as our example a two-
dimensional oxynitride lattice (Fig. 1c). The idea was to set up a
simple harmonic lattice dynamical model in which we assigned
different equilibrium values and stiffnesses to M–O and M–N
bond lengths, and/or to O–M–O, N–M–O and N–M–N bond
angles, and then to determine the extent to which correlated
compositional order might affect the phonon spectrum.
Conventional lattice dynamical calculations are designed for
periodic (crystalline) structures, and so we made use of a supercell
lattice dynamical approach in order to treat compositional
disorder explicitly. We first benchmarked our calculations by
determining the ‘mean-field’ phonon dispersion expected for an
average of the different force constant values; we found perfect
agreement between our supercell lattice dynamical calculations
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and those obtained using a conventional implementation
of the general utility lattice programme (GULP)40 (Fig. 4a,
Supplementary Fig. 40 and Supplementary Methods 1). For
random distributions of equal numbers of O and N atoms, the
basic phonon structure was similar to the mean-field case, with a
slight broadening of phonon frequencies throughout the Brillouin
Zone (Fig. 4b). This result is in agreement with ab initio
molecular dynamics studies of the related problem of the lattice
dynamics of configurational glasses41. By contrast, for the
procrystalline arrangement there was a dramatic dispersion in
energy of the acoustic branches that we observed most noticeably
for wave-vectors near the zone corner (Fig. 4c,d). The qualitative
similarity to the ‘waterfall’ phonons observed in thermoelectrics
and relaxor ferroelectrics is striking, and suggests a plausible
origin for the phenomenon in those systems42,43.

So this is our key result: strongly correlated structural disorder
allows selective control over physical properties that depend on
periodicity. The implication for systems where thermal and
electronic conductivities are mediated by, respectively, phonons
and electronic states localised in different regions of the Brillouin
zone is that disorder–phonon coupling offers a means of
selectively reducing thermal conductivity (inversely proportional
to phonon bandwidth) without affecting charge transport
behaviour. This is an attractive design strategy for developing
next-generation thermoelectrics, and one that contrasts with the

use of ‘rattlers’ which are indiscriminate in their k-space
coupling44.

Discussion
Our reticular chemistry methodology suggests a number of
synthetic routes for realising new classes of functional
procrystalline solids. Metal-organic frameworks are an obvious
platform, given they offer the requisite control over building
unit geometry and their energetics tend to be dominated by local
interactions45,46. While there is reduced scope for coupling
between structural disorder and electronic behaviour in these
systems, porosity percolation will certainly be affected by
disorder and may in turn govern sorption, mechanical and ion
storage properties47,48. In more conventional inorganics, local
symmetry lowering can be achieved by covalency effects (as in
mixed-anion perovskites) or by first- or second-order Jahn
Teller distortion (as in the chalcogenide thermoelectrics and
perovskite ferroelectrics). Moreover, because our analysis is
essentially geometric in nature, there is clear scope to extend
these concepts to magnetic or electronic states, or indeed to the
macroscopic scale. The recent demonstration that disordered
metamaterials can show strong structural coupling to light
scattering processes is an example relevant to the generation of
modern photonics49. Thinking beyond the ground-state
properties of procrystals, we anticipate the existence of
novel collective and hidden degrees of freedom that promise a
rich physics of their own; for example, topological excitations50

and/or ‘hidden order’ transitions between distinct local
symmetries51.
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Figure 3 | Representative physical realizations of procrystalline states.

(a) Molecules of p-terphenyl-3,5,30 ,50-tetracarboxylic acid (TPTC) self

assemble on pyrolytic graphite to form a hexagonal procrystalline network

related to that represented in Fig. 2e (ref. 29). One possible arrangement is

shown here (left), together with our topological abstraction (centre);

molecule orientations in the former map onto the ‘missing’ linkers of the

latter. Shown in background is the configurationally-equivalent rhombus

tiling, which further relates to the triangular Ising antiferromagnet (right):

opposite vertices of each rhombus are decorated with pairs of ‘spin-up’

(white circles) and ‘spin-down’ (black circles) states such that each triplet

of neighbouring spins (red triangle) contains at least one state of each kind.

(b) A scanning tunnelling microscopy image of the corresponding

experimental state. Adapted from ref. 29. Reprinted with permission from

AAAS. (c) The Fourier transform of the image in b showing regions of

structured diffuse scattering. (d) The strikingly similar scattering pattern

calculated for the hexagonal procrystalline network of Fig. 2e. (e) In the

high-temperature cubic phase of KNbO3, Nb
5þ ions displace towards one

face of their octahedral coordination environment such that neighbouring

Nb centres displace in the same sense relative to the vector joining the pair.

Octahedral faces alternately near to (red) and away from (blue) the

displaced Nb centres gives a procrystalline net related to that shown in

Fig. 2s. (f) Structured diffuse scattering observed in single-crystal X-ray

diffraction measurements of KNbO3. Adapted from ref. 33. Reprinted with

permission of the International Union of Crystallography. (g) Diffuse

scattering calculated for the cubic procrystalline network of Fig. 2s. (h) A

procrystalline model for the structure of Pd(CN)2 and Pt(CN)2 based on the

state represented in Fig. 2p: the two possible orientations of square-planar

M(C/N)4 nodes are shown in indigo and gold. (i) Comparison of the

Rietveld fit for this structural model of Pd(CN)2 (red lines) and the

experimental X-ray powder diffraction data of ref. 35 (black points,

l¼ 1.54Å); tick marks indicate the positions of parent Bragg reflections and

the difference (data–fit) is shown in blue (see Supplementary Fig. 42,

Supplementary Tables 4 and 5, Supplementary Note 3 and Supplementary

Method 2 for further discussion).
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Methods
Procrystal lattice generation. Representative procrystalline configurations were
generated using a suite of custom Monte Carlo codes. For each given lattice type,
a supercell of the corresponding crystallographic cell was generated and periodic
boundary conditions were applied [Supplementary Table 1]. Linkers were
randomly assigned one of two initial states e¼±1. A fictitious configurational
energy of typical form:

E ¼
X

i2nodes

X
j2linkers

eij

0
@

1
A��e

������

������

2

ð2Þ

was calculated, where eij represents the state of the jth linker of the ith node and the
expectation value �e is a function of the particular node geometry of interest. By way
of example, �e ¼ 0 for ice-like states on the diamond lattice, since a local ‘2-in-2-out’
configuration is described by two linkers with e¼ þ 1 and two with e¼ � 1. The
form of equation (2) is more complex for some combinations of lattice and node
geometry, but the relationship that E¼ 0 if and only if every node adopts the same
local geometry was maintained throughout our study. Monte Carlo minimisation
proceeded via the usual Metropolis algorithm52, with moves eij-� eij. Because we
are interested in defect-free procrystalline states, and because the absolute value of
the energy term in equation (2) is not physically meaningful, we terminated our
Monte Carlo minimisation not at equilibrium but only when E¼ 0. We note that
in physical realizations of procrystalline states higher-order correlations may
bias towards specific subsets of the E¼ 0 configurational space explored in this
first-order Monte Carlo approach. All relevant code is available by request.

Diffuse scattering calculations. Physical realizations of the various procrystalline
networks generated as described above were produced by placing Nb atoms at
every node position and O atoms at those linker sites for which eij¼ þ 1. Linker
sites for which eij¼ � 1 were left vacant. Powder and single crystal X-ray
diffraction patterns were generated from individual atomic configurations using the
programs CrystalDiffract and SingleCrystal, respectively. Note that the diffuse
scattering evident in our diffraction patterns contains contributions only from the
linker sites, and its intensity is proportional to the difference in scattering power for
eij¼±1 occupancies. Consequently, all simple substitutional realizations of a given
procrystalline state share the same diffuse scattering pattern, up to a constant
factor.

Lattice dynamical calculations. Phonon calculations made use of the GULP
program40. Supercells of a fictitious two-dimensional NbON square lattice
containing 30� 30� 1 unit cells (space group symmetry Pm; relative atom
coordinates Nb 1

2 ;
1
2 ; 0

� �
, O=N1 1

2 ; 0; 0
� �

, O=N2 0; 12 ; 0
� �

) were constructed in three
ways. First, a ‘mean-field’ configuration was generated in which all O/N sites were
treated as hybrid atoms. Second, random assignment of O/N sites to equal numbers
of O and N atoms gave a ‘random disorder’ configuration. And, third, a suitable
procrystalline configuration of the type illustrated in Fig. 1c was used to assign O
and N atoms such that each Nb centre was coordinated by exactly two O and two
N atoms in a cis arrangement; we refer to this as the ‘correlated disorder’
configuration. In all cases the same set of simple harmonic potentials was used to
calculate the lattice enthalpy

Elatt ¼
1
2
k1

X
ij

rij � re
� �2 þ 1

2
k2

X
ijk

yijk � ye
� �2 þ k3

X
ijk

1þ cos yijk
� �2

: ð3Þ

Here k1¼ 10 eVÅ� 2 is the stiffness of the Nb–O/N bond, k2¼ 2 eV rad� 2 is
the stiffness of the O/N–Nb–O/N angle, and k3¼ 0.1 eV is the stiffness of the
Nb–O/N–Nb angle. This potential model was chosen because it gave a phonon
spectrum with physically sensible mode frequencies, good separation between
branches, and realistic low-energy mode features (e.g., low-energy tilts at the zone
corner). Ultimately, we found that the difference between the phonon dispersion
for random and correlated disorder configurations was sensitive to variation in any
or all of the ki, re, ye and atomic masses for O and N atoms. For the phonon
dispersion curves illustrated in Fig. 4 we used the very simplest case in which only
the value of ye was distinguished: specifically, we used values of 75�, 90� and 105�
for N–Nb–N, N–Nb–O and O–Nb–O angles in each of the random and correlated
disorder configurations and a common value of ye¼ 90� for the mean-field
configuration. In all cases, the same equilibrium bond length re¼ 1Å was used,
corresponding to half the NbyNb separation in the configurations. Likewise all O
and N atoms were assigned the same effective mass of 15 a.m.u.

Atomic coordinates were relaxed and phonon calculations performed at the
G point (ksupercell¼ (0, 0, 0)) of the supercell which corresponds to the k-vector grid
of 1

30 in the reduced mean-field unit cell. The normal modes were calculated as
eigenvalues of the dynamical matrix. Despite nominal Pm symmetry, not all of the
phonons with atomic displacements along z could be fully separated from in-plane
displacements (most probably due to numerical errors). Thus the eigenvalues were
calculated using the ‘scipy’ python library from the two-dimensional component of
dynamical matrix which calculated by the GULP. The contribution of each
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Figure 4 | Selective disorder–phonon coupling in a procrystalline network. (a) Mean-field phonon dispersion curves for a two-dimensional oxynitride

lattice, determined using the SCLD approach described in the text. (b) The phonon dispersion determined using SCLD for configurations in which equal

numbers of O and N atoms are distributed randomly across the O/N sites of the same oxynitride lattice. There is a slight broadening of phonon frequencies

relative to (a). (c) A third set of phonon dispersion curves, again determined using SCLD but for configurations in which O and N atoms have been

distributed according to the correlated disorder (procrystalline) model of Fig. 2c. There is now substantive ‘waterfall’-like phonon broadening around the M

point. (d) The calculated single crystal scattering pattern for the procrystalline model of Fig. 2c, demonstrating that this particular state is characterized by

modulations that—like the phonon broadening—are localised around the M point of the BZ. BZ, Brillouin zone; SCLD, supercell lattice dynamics.
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eigenvector ei to all possible k-points was calculated by projecting the eigenvectors
at each wave-vector k in the following way:

ei kj ¼
X
ja

X
‘

ei j‘; að Þexp ik � r ‘ð Þ½ �
�����

�����
2

; ð4Þ

where j indexes the atoms in each unit cell ‘ of the supercell, and aA{x, y}. For the
mean-field case the projection gave phonon dispersion curves indistinguishable
from those obtained using a conventional single-cell GULP calculation
(Supplementary Fig. 40 and Supplementary Methods 2). In the case of the random
and correlated disorder configurations, the phonon dispersion curves shown in
Fig. 4 represent an average over the results obtained for five independent
configurations. All relevant code is available by request.

Optical Fourier transform. The scanning tunnelling microscopy image shown in
Fig. 3b was Fourier transformed using the Java applet ‘Diffraction and Fourier
transform’53. The input data were converted to grayscale, inverted, and optimized
for brightness and contrast; the output data were corrected for sample orientation
and symmetrised (plane symmetry p6m). The actual image used and its raw
transform are shown in Supplementary Fig. 41.
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