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Molar tooth carbonates and benthic methane
fluxes in Proterozoic oceans
Bing Shen1,2,*, Lin Dong1,*, Shuhai Xiao3, Xianguo Lang1,2, Kangjun Huang1,2, Yongbo Peng4, Chuanming Zhou5,

Shan Ke6 & Pengju Liu7

Molar tooth structures are ptygmatically folded and microspar-filled structures common in

early- and mid-Proterozoic (B2,500–750 million years ago, Ma) subtidal successions, but

extremely rare in rocks o750Ma. Here, on the basis of Mg and S isotopes, we show that

molar tooth structures may have formed within sediments where microbial sulphate reduc-

tion and methanogenesis converged. The convergence was driven by the abundant produc-

tion of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich

seawaters that were widespread in Proterozoic continental margins. In this convergence zone,

methyl sulphides served as a non-competitive substrate supporting methane generation and

methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4,

formation of degassing cracks in sediments and an increase in the benthic methane flux from

sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related

alkalinity accumulation. Deep ocean ventilation and oxygenation around 750Ma brought

molar tooth structures to an end.
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M
olar tooth carbonates (MTCs), or carbonate rocks
containing molar tooth structures (MTSs), occur mostly
if not exclusively in successions deposited in subtidal

environments before 750Ma (refs 1,2). The formation of MTCs
requires the generation of cracks within unconsolidated
sediments, followed by the rapid infilling of such cracks with
early diagenetic calcispar before sediment compaction. The
formation of molar tooth (MT) cracks have been variously
related to subaqueous syneresis3, gas bubble expansion resulting
from CH4, H2S or CO2 degassing2,4–6 and seismic activities7,8.
The disappearance of MTCs at around 750Ma has been related
to the rise of animals5,7–9, a drop in calcite saturation of
seawater1,2,10 or an increase in the concentrations of calcite
precipitation inhibitors such as Fe2þ , Mg2þ , SO4

2– or PO4

(refs 1–3,11).
To illuminate the origin of MTCs, we measured the Mg, S and

C isotopic compositions of MTCs from the early Neoproterozoic
(1,000–750Ma) Wanlong Formation in southern Jilin Province of
North China (Supplementary Fig. 1). In the Wanlong Formation,
MTSs are abundant within the thick-bedded argillaceous lime
mudstone that is intercalated with the finely laminated limestone
(Supplementary Note 1 and Supplementary Figs 2 and 3a).
Sedimentological evidence, including the predominance of
parallel bedding and the lack of subaerial exposure structures,
indicates that MTCs in the Wanlong Formation was deposited
below fair-weather wave base12. S isotopic data indicate that MT
microspar was precipitated within microbial sulphate reduction
(MSR) zone and Mg isotopic data suggest that microspar
precipitation predated the dolomitization of host rock. We
propose that MT microspar was precipitated in the sediment
column where MSR and methanogenesis occur simultaneously
underneath sulphidic seawaters and where the production of CH4

from methyl sulphides and the inhibition of CH4 oxidation by
methanethiol allowed CH4 to build up in the sediments.

Results
Petrographic observations of the MTCs. MTSs are normally
oriented vertically or obliquely with respect to bedding planes
and show clear cross-cutting relationships with each other
(Supplementary Fig. 3b–d). MT cracks are filled with micro-
crystalline calcite crystals (MT microspars) ranging from 10 to
20 mm in size (Supplementary Fig. 3e,f). The argillaceous
host rocks (with an average siliciclastic content of 33.4 wt%,
Supplementary Table 5) are partially dolomitized (Supplementary
Fig. 3g,h).

Isotopic compositions of the MTCs. Sulphur isotopic values
of carbonate-associated sulphate (CAS) extracted from MT
microspars (d34SMT: 31.9–42.8%) are higher than those of CAS
from calcareous host rock (d34SHR: 19.1–27.6%; Fig. 1a,

Supplementary Fig. 4 and Supplementary Table 2). Mg isotopic
compositions of MT microspars (d26MgMT) is around –3.3%
(relative to DSM3), B1.6% lower than those of the host rock
(d26MgHR; Fig. 1b, Supplementary Fig. 5 and Supplementary
Table 1). C isotopes of MT microspars (d13CMT) are system-
atically heavier than host rock (d13CHR) by 0.5–1% (Fig. 1c and
Supplementary Table 3).

Discussion
d34SHR of the Wanlong carbonates is within the range of sulphur
isotopic compositions of Neoproterozoic CAS13. The greater
values of d34SMT indicate that MT microspar was precipitated in
the sulphate reduction zone in the sediment column, where 32S is
preferentially removed from the porewater sulphate pool by
sulphate reduction microbes14 (Supplementary Note 2). MT
microspar precipitation in the MSR zone is also consistent with
generally lower CAS concentrations in MT microspar than in
host rock (Supplementary Fig. 6 and Supplementary Table 4).

d26MgMT is related to the Mg isotopic composition of
porewater (d26Mgpw), from which MT microspar precipitates,
and the relationship can be expressed as follows:

d26Mgpw¼d26MgMT þDcal ð1Þ

where Dcal is the fractionation associated with inorganic
precipitation of low-Mg calcite and can be set at 2.2–2.7%
(refs 15,16). Thus, d26Mgpw is estimated to be between –0.6 and
–1.1%, within the range of seawater compositions in the past 70
million years17,18. Greater d26MgHR values might be attributed to
the partial dolomitization of host rock, because dolostone is
systematically heavier than limestone in Mg isotopes19,20. On the
other hand, as dolomite and other authigenic Ca carbonate
formed in the sediment column would preferentially scavenge
24Mg from porewater21,22 (Supplementary Note 3), d26Mgpw
would increase as dolomitization proceeds. It is estimated that
10–25wt% of carbonate in the host rock of the Wanlong
Formation is dolomitized (Fig. 1b), meaning d26Mgpw would
increase by B2% (Supplementary Fig. 7). Had MT microspar
in the Wanlong Formation precipitated after host rock
dolomitization, seawater Mg isotopic composition would have
to be between –2.6 and –3.1%, which is even lower than the
influx from carbonate weathering (–2.25%; that is, the lower
bound of riverine input)18. Thus, MT microspar precipitation
must predate host rock dolomitization. This inference is also
consistent with the petrographic observation that MT structures
are often ptygmatically folded and sometimes brittly fractured1,
suggesting that MT microspar was precipitated before host rock
cementation. In this light, it is possible that the exclusive
occurrence of MT structures in argillaceous carbonates1 may be
related to clay minerals, which tend to delay host rock
cementation23.
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Figure 1 | Isotopic compositions of MTCs. (a) S isotopic compositions of CAS from MT calcispars (MT) and host rocks (HR). (b) Cross-plot of

Mg/Ca (molar ratio) versus d26Mg. The argillaceous host rock has higher Mg/Ca ratios and is enriched in 26Mg than MT calcispars. (c) C isotopic

compositions of MT calcispars (MT) versus host rock (HR) of four samples (A, B, C and D).
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Thus, sedimentary evidence, S isotopes and Mg isotopes
indicate that MT microspar precipitation must occur in
unconsolidated sediments, within the MSR zone and before
dolomitization. To generate MT structures, cracks must develop
in unlithified sediments and gas expansion is a plausible
mechanism to generate such cracks2,4. Here we explore the
nature of the gases and the unique Proterozoic environments
conducive for gas bubble formation in sediments.

During the early to middle Proterozoic, atmospheric oxygen
level was extremely low (o1% present atmospheric level)
and the deep ocean remained anoxic and sulphidic in
places24–27. Sulphidic conditions were particularly common
in Proterozoic continental margins25,26,28 and perhaps in
epicratonal environments as well29,30. Although euxinia may
have extended over o10% of global seafloor in mid-Proterozoic
according to some estimates27, sulphidic waters might have had
profound impacts on the Proterozoic Earth system. We propose
that methyl sulphides might have been produced in significant
quantities in sulphidic marine environments. Methyl sulphides
are a group of volatile organic sulphur compounds, including
dimethyl sulphide (CH3SCH3) and methanethiol (CH3SH), which
are produced in modern marine and freshwater environments.
Methyl sulphides can be produced either by the degradation
of dimethylsulphoniopropionate in the surface ocean31 or
by anaerobic methylation of hydrogen sulphide in sulphidic
sediments32. Therefore, it is expected that the production of
methyl sulphides would be enhanced in Proterozoic sulphidic
marine environments, both in the water column and within
sediments.

As volatile gases, methyl sulphides produced in water
column tend to readily emit to atmosphere, but those generated
within the sediments can serve as a non-competitive substrate
for methanogens33–35. As sulphur-reducing microbes cannot
use methyl sulphides but methanogens can, MSR and

methanogenesis can co-occur simultaneously within sediments
where methyl sulphides are present36, resulting in the con-
vergence of the MSR and methanogenesis zones. In addition,
anaerobic oxidation of methane (AOM) is inhibited by methyl
sulphides such as methanethiol. With methane oxidation
inhibited, CH4 can accumulate in sediments in significant
quantity37, in sharp contrast to modern marine sediments,
where the MSR zone lies invariably above the methanogenesis
zone38, with intensive AOM at the base of MSR zone consuming
most CH4 and consequently modern marine CH4 discharge
accounting for only 2% of the global flux39 (Fig. 2).

We propose that the accumulation of the insoluble gas CH4

in the convergence zone provided a physical mechanism to
generate cracks in unconsolidated sediments2,4. Furthermore, the
geochemistry within the convergence zone where MSR and
methanogenesis overlap could have facilitated the precipitation of
calcite to fill such cracks. With the generally low concentrations
of Fe2þ in sulphidic porewaters, pyrite formation would
involve the reaction between H2S and Fe2O3. In fact, the host
rock of MTCs in the Wanlong Formation contains an average
of 0.42wt% of pyrites (Supplementary Table 5). The overall
reactions for pyrite formation fueled by MSR and methanogenesis
using methanethiol and dimethyl sulphide can be described as
follows:

4CH2Oþ 2SO2�
4 þ Fe2O3 ¼ FeS2 þ Fe2þþ 4HCO�

3 þ 2OH�þH2O

ð2Þ

4CH3SHþ 2Fe2O3¼3CH4 þ 2FeS2 þ 2Fe2þ þHCO�
3 þ 3OH�

ð3Þ

2CH3SCH3 þ Fe2O3 þH2O ¼3CH4 þ FeS2 þ Fe2þþHCO�
3 þOH�

ð4Þ
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Figure 2 | Schematic diagram showing geochemical reactions within marine sediments bathed beneath ferruginous and sulphidic seawaters.

(a) Under ferruginous conditions, the MSR and methanogenesis zones are separated. Methanogens are outcompeted by sulphate-reducing bacteria,

if both use competitive substrates (CH2O)n. Within the MSR zone, reaction between H2S and Fe2þ precipitates pyrite and generates Hþ , which lowers

porewater pH. Most CH4 produced within methanogenesis zone is oxidized by sulphate at the base of MSR zone where AOM occurs. Thus, there is little

benthic CH4 flux from marine sediments. (b) Under sulphidic conditions, methyl sulphides are produced within both water column and sediments. In

sediments, methyl sulphides serve as a non-competitive substrate for methanogens, allowing MSR and methanogenesis to take place concurrently in the

MSR-methanogenesis convergence zone. H2S and Fe2O3 react to produce pyrite and generate OH–, thus favouring CaCO3 precipitation. AOM is prohibited

by methanethiol, allowing CH4 accumulation in sediments and significant benthic CH4 fluxes into atmosphere.
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These reactions generate OH� and HCO�
3 , which elevate

pH, increase porewater alkalinity and favour CaCO3

precipitation40–42. In addition, the dearth of calcite inhibitors
such as Fe2þ and SO4

2– in sulphidic sediments would also
promote rapid precipitation of CaCO3 (ref. 11).

d13CMT of the Wanlong carbonate is only slightly greater than
d13CHR by 0.5–1% (Fig. 1c), similar to previous studies showing
that MT microspar and host carbonate rock have nearly
indistinguishable d13C values5,6,43. To assess the extent of
carbon isotope variation between MT microspar and host rock,
we consider a simple model where methanogenesis produces
sufficient CH4 to produce cracks that are immediately filled with
MT microspar. To generate cracks by CH4 accumulation, gas
pressure must be balanced with the hydrostatic pressure, which is
dependent on water depth. Our calculation shows that
methanogenesis alone does not generate sufficient bicarbonate
(and MT microspar) to fill the cracks that would be created at
reasonable water depths by the amount of CH4 it produces. Thus,
MT microspar precipitation was probably supplemented by
porewater bicarbonate (which would be isotopically similar to
seawater bicarbonate and to d13Chost) and bicarbonate derived
from sulphate reduction (Supplementary Note 4). To simplify our
calculation, we consider the simplest situation in which
bicarbonate derived from methanogenesis was entirely used in
MT microspar precipitation, with additionally needed alkalinity
coming from porewater (that is, a binary mixing model).
Assuming that d13C of methyl sulphides and carbon isotope
fractionation during methanogenesis are –30% and –60%

(ref. 44), respectively, mass balance consideration requires that
d13C of HCO�

3 derived from methanogenesis be þ 150% based
on equations (3) and (4). Our calculation shows that MT
microspar precipitation at 100m water depth would be B1%
heavier than host rock (black solid line in Fig. 3) and
methanogenesis-derived HCO�

3 only accounts for o1% of MT
microspar precipitation. Smaller isotopic difference between MT
microspars and host rock would be expected if MSR-derived
HCO�

3 is involved (dashed lines in Fig. 3).
The disappearance of MTCs is coincident with the elevation of

atmospheric oxygen levels at B750Ma (refs 1,45), suggesting a
possible causal relationship. A direct consequence of ocean
oxygenation and ventilation is the reduction of the areal coverage
of euxinic waters and decrease in methyl sulphide production,
which in turn would result in the spatial separation of the MSR
and methanogenesis zones in sediments. As such, most CH4 was
consumed at the base of MSR zone by AOM, preventing crack
formation by CH4 accumulation. Furthermore, pyrite formation
in ferruginous sediments through reaction with Fe2þ would
generate protons, lowering porewater pH and favouring CaCO3

dissolution46,47. All these secular changes associated with
atmospheric and oceanic oxygenation may have contributed to
the disappearance of MT structure around 750Ma.

CH4 accumulation in sediments also implies benthic CH4

discharge from marine sediments. The environmental impacts of
benthic CH4 fluxes on the Proterozoic Earth system could
potentially be profound. First, enhanced CH4 discharge would
contribute to the persistently low atmospheric O2 levels in
Proterozoic25,48. Second, strong benthic CH4 fluxes from
continental margins would have contributed to the maintenance
of an ice-free Earth in the middle Proterozoic. Finally,
a significant reduction of CH4 discharge associated with the
750Ma oxygenation event might have triggered the
Neoproterozoic global glaciations. Thus, the Neoproterozoic
oxygenation event may have had an impact on the secular
distribution of sedimentary structures such as MT structure and
the global climate system, as well as the rise of animals45.

Methods
Mg isotope analysis. Rock samples were split into two parts using a rock saw.
A highly polished slab was prepared from one split, while a mirrored thin section
was made from the counterpart. Sample powers were drilled from the polished
slab using a hand-held micro-drill. The sampling procedure was guided by the
petrographic observation of the corresponding thin sections. For Mg isotopic
analysis, about 10–30mg of powder was dissolved in 0.5N acetic acid in a 15-ml
centrifuge tube. Tubes were placed in an ultrasonic bath for 30min, to allow
complete dissolution of carbonate components. After centrifuging, supernatant
was collected for column chemistry and elemental composition analysis.

Mg was purified using cation-exchange chromatography. The detailed
procedure of column chemistry was reported in Shen, et al.49 and Huang et al.20

Mg was purified in two steps. Column 1 was designated to separate Mg from Ca.
Mg was eluted by 4ml of 10N HCl, whereas Ca was retained in resin. Column 2
was used to separate Mg from all other elements. Na, Al, Fe and K were
sequentially eluted using 1N HCl, 1N HNO3þ 0.5N HF and 1N HNO3, whereas
Mg was collected using 5ml of 2N HNO3. To obtain a pure fraction of Mg, sample
solutions passed through column 1 twice, followed by three passes through
column 2. After column chemistry, Ca/Mg, Na/Mg, Al/Mg and Fe/Mg ratios were
o0.05 and the Mg recovery rate was better than 99%.

Mg isotopic ratios were measured on a Thermo Scientific Neptune Plus
high-resolution multicollector inductively coupled plasma mass spectrometry
at the Isotope Laboratory in China University of Geosciences, Beijing. The
standard-sample bracketing method was used to correct the instrumental mass bias
and drift. An in-house solution (FZT) was used as the working standard. Analyses
were performed in the low-resolution mode, simultaneously measuring 26Mg,
25Mg and 24Mg isotopes. Mg isotope ratios are reported by the delta notation as %
deviation relative to the DSM3 standard50:

dxMg ¼1000�
ðxMg=24MgÞsample

ðxMg=24MgÞDSM3

� 1

" #
ð5Þ

where x refers to 25 or 26.
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Figure 3 | Geochemical model showing the carbon isotopic difference

between MT microspar and host rock formed at different water depths.

First, the amount of CH4 required to produce a unit volume of cracks at

ambient pressure and temperature was estimated. The co-production of

HCO�
3 related to CH4 generation was then estimated and assumed to have

been used fully for MT microspar precipitation. The methanogenic HCO�
3

was inadequate to precipitate enough MTmicrospar to fill a unit volume

and the shortage was made up by (1) pore water HCO�
3 (black solid line);

(2) HCO�
3 from MSR (ðHCO�

3 ÞMSR) and methanogenesis (ðHCO�
3 ÞCH4)

with a molar ratio of 1:1, and the remaining shortage fulfilled by pore water

HCO�
3 (red dotted line); or (3) HCO�

3 from MSR and methanogenesis with

a molar ratio of 2:1, and the remaining shortage fulfilled by pore water

HCO�
3 (blue dashed line). Porewater HCO�

3 was assumed to have a

d13C value similar to that of host rock (that is, 1%). The d13C value of

methanogenic HCO�
3 was estimated at þ 150%, given a d13C value of

methyl sulphides at –30%, a fractionation between CH4 and methyl

sulphides at –60% and the production of 3/4 mole of CH4 and 1/4 mole of

HCO�
3 from each mole of methyl sulphides (equations (2) and (3)). The

d13C value of MSR HCO�
3 was assumed to be –30%. The x axis represents

water depths and the y axis indicates the isotopic difference between MT

microspar and host rock (d13CMT-d13CHR).
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The internal precision was determined on the basis of Z3 repeated runs of the
same sample solution during a single analytical session and is better than ±0.10%
(2 s.d.). The accuracy is determined by the measurements of synthetic solution
(GSB-Mg) and USGS basalt standards (BCR-2). Multiple analyses of the synthetic
solution (GSB-Mg) yield d26Mg values ranging from –2.07 to –2.04%, which is
consistent with the preferred value of –2.05±0.05% (2s). d26Mg of BCR-2 is
–0.17±0.06% (2s), consistent with the published values51–54.

Sulphur isotope analysis. Traditional CAS extraction procedure typically requires
420 g of carbonate powder. Thus, it is impossible to collect enough sample
powder from MT microspar without contamination from the host rock using the
traditional method, because MT cracks are typically a few millimetres in width.
To analyse CAS of MT microspar, we devised a new extraction procedure that only
requires B1 g of carbonate powders for each sample. The validity of the new
procedure was verified by analysing the same carbonate sample by using both the
traditional and new procedures. Powders were carefully drilled from MT microspar
only to a shallow depth so as to avoid the potential contamination from host rock.
Often, multiple MT cracks in a polished slab were drilled to collect enough powder
for CAS extraction. Sample powder was placed in a 50-ml centrifuge tube and were
treated with 10% NaCl solution for 24 h to dissolve non-CAS sulphate. After
supernatant removal, residues were washed with deionized water for three times.
The above cleaning procedures were repeated at least three times, to ensure
complete removal of non-CAS sulphate. The cleaned sample powder was dissolved
in 40ml of 3N HCl. After 1 h of reaction, reaction tubes were centrifuged and the
supernatants were collected. About 1–2mg of nano-SiO2 was added into the
centrifuge tube and then 10ml of saturated BaCl2 was added to precipitate sulphate
as barite. The use of nano-SiO2 was to facilitate barite collection. Barite pre-
cipitation was allowed to proceed for 48 h. After centrifuging, barite precipitate
was washed by DI water for three times, to remove residual HCl, and then dried
in an oven.

Sulphur isotopic compositions were measured at Indiana University on a
Finnigan Delta V advantage gas source mass spectrometry fitted with a
peripheral Costech elemental analyser for on-line sample combustion.
Sulphur isotope compositions are reported as % deviation from V-CDT,
d34S¼ (Rsample/RV-CDT� 1)� 1,000, where R is the ratio of 34S/32S. Analytical error
is ±0.1% (1s) as determined from repeated analyses of samples and laboratory
standards. The analytical results were calibrated using the standard NBS-127
(20.3%) and three internal standards: a silver sulphide (ERE-Ag2S: � 4.3%),
a chalcopyrite (EMR-CP: þ 0.9%) and a barite (PQB2: þ 40.5%).

Inductively coupled plasma optical emission spectrometer analysis. Elemental
compositions were determined at Peking University on a Spectro Blue Sop
inductively coupled plasma optical emission spectrometer fitted with a Water
Cross-flow nebulizer. All analyses were calibrated by a series of gravimetric
standards with different concentrations (ranging from 0.1 to 10 p.p.m.) that were
run before sample measurements and between every 20 samples. The external
reproducibility for the major and minor elements (Na, Mg, Al, K, Ca, Fe, Mn,
Sr and S) is ±2%.
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