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Branched-chain amino acid catabolism is a
conserved regulator of physiological ageing
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Ageing has been defined as a global decline in physiological function depending on both

environmental and genetic factors. Here we identify gene transcripts that are similarly

regulated during physiological ageing in nematodes, zebrafish and mice. We observe the

strongest extension of lifespan when impairing expression of the branched-chain amino acid

transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain

amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent

neuro-endocrine signal, which we identify as DAF-7/TGFb, and that impacts lifespan

depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO

and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and

epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent

with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal

lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central

neuro-endocrine response, culminating in extended healthspan.
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Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany. 12 Imaging Facility, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena,
Germany. 13 Institute of Clinical Chemistry and Laboratory Medicine, University of Jena, D-07743 Jena, Germany. 14 Institute of Molecular Systems Biology,
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W
hile the process of ageing has been fascinated
humankind for several thousands of years,
interventions that reproducibly delay physical decline

have first been described less than a century ago1,2. With the
rise of genetic methods, specific pathways that control the
process of ageing have been identified and analysed, giving rise to
novel approaches to improve quality of life at higher age3,4.

The first systematic studies to identify random mutations
associated with longevity were performed in the model organisms
Caenorhabditis elegans2. Subsequently, other organisms including
Saccharomyces cerevisiae, Drosophila melanogaster, rodents
and more recently several fish models were employed to
dissect genetic pathways linked to physiological ageing.
The best-studied one is the insulin/IGF-1 signalling pathway
that has been identified in C. elegans to extend lifespan5,6. This
role has then been extended to other organisms including
Drosophila7,8 and rodents9–11. Given its evidently conserved
nature, it was anticipated and subsequently confirmed that this
pathway may impact human longevity as well12–14. While this
and few other signalling pathways mediated by AMP-activated
protein kinase (AMPK)15, mammalian target of rapamycin
(mTOR)16,17, sirtuins18 or reactive oxygen species19,20 are
evolutionary conserved, multiple others appear restricted to
individual model organisms with little or no impact to mammals
nor humans.

Concomitantly, unbiased screening approaches to identify
ageing-associated genes and pathways have been performed for
single model organisms indicating that B1 per cent of coding
genes may impact the lifespan of nematodes21,22. Subsequently
and to identify conserved pathways that may apply to several
species, two invertebrate model organisms have been compared23,
and genes identified in S. cerevisiae have been, at least in part,
found to be conserved in C. elegans24.

We here have extended these approaches by comparing ageing-
related gene expression patterns in three different organisms,
namely C. elegans, zebrafish and mice, to identify ageing-related
regulations of gene expression levels. We identify a crucial step
for the catabolism of branched-chain amino acids (BCAAs),
encoded by a gene named branched-chain amino acid transferase
1 (bcat-1) to be consistently regulated in three different
organisms, and dissect the signalling role of BCAAs in C. elegans
to promote increased healthspan.

Results
Identification of ageing-related genes in three species. We have
studied three well-established model organisms, the invertebrate
nematode C. elegans, the vertebrate fish Danio rerio and the
mammalian Mus musculus strain C57BL/6J, to identify genes
that are similarly regulated on a transcriptional level during
physiological ageing. We obtained skin samples from individual
zebrafish and mice, as well as pellets containing B2,000
C. elegans Bristol N2, at three different ages (see Fig. 1 for details).
RNA was extracted from these samples and subjected to Illumina
next-generation sequencing (RNA-seq). About 13–82 million
reads were obtained for each individual sample (Supplementary
Data 1–3). Data analysis had to be restricted to genes for which
orthologs could be identified in all three species (C. elegans: 4,850;
D. rerio: 6,064; M. musculus: 5,904; Fig. 1). Those with transcript
levels showing statistically significant differences by both DESeq
and edgeR at least between two time points or by the baySeq test
over the three time points were regarded as differentially
expressed genes (DEG; C. elegans: 3,608; D. rerio: 1,721;
M. musculus: 339; Supplementary Data 1–3). All DEGs were
combined and the expression profiles optimally clustered into six
courses, two of which each showed global up- or downregulation

with ageing, respectively (Fig. 2 and Supplementary Fig. 1).
We identified 13 genes to be upregulated during ageing in all
three species, while 16 genes were found to be downregulated
(Fig. 2).

RNAi-based validation of ageing-related genes in C. elegans.
All of these 29 genes and 12 additionally predicted paralogs
(Supplementary Table 1) were individually targeted by
feeding respective RNA interference (RNAi) to young adult
worms, revealing that 30 out of 41 genes (73%) have an individual
effect on life expectancy in worms (Table 1, Figs 3–6 and
Supplementary Table 2).

Out of these 41 genes, interference with 12 genes did extend
mean lifespan by 5% or more (Table 1 and Supplementary
Table 2). The most pronounced extension of lifespan was
observed when applying RNAi against a crucial step for the
catabolism of BCAAs, encoded by a gene named bcat-1.

Impaired bcat-1 expression extends C. elegans lifespan.
Applying RNAi against bcat-1 did abolish expression of the gene
(Fig. 7a) and extended mean lifespan by 25% and maximum
lifespan by 19%, reflecting the strongest effect of all genes
identified (Fig. 7b, Figs 3–6 and Supplementary Table 2). We next
reanalysed our RNA samples using quantitative PCR (qPCR) to
validate the RNA-seq results, and confirmed the downregulation
of bcat-1 transcript levels during physiological ageing in all three
species (Fig. 7c). Additional support for the important role of
BCAT-1 during ageing comes from an analysis of differentially
regulated metabolic pathways during ageing in C. elegans, in
which we found that the degradation of BCAAs, whose first step
is catalysed by BCAT-1, was the most significantly downregulated
pathway (26 out of 29 BCAA-metabolizing reaction steps,
Supplementary Table 3). Moreover, published metabolomics-
based evidence suggest that BCAAs are upregulated in long-lived
daf-2 nematodes in a daf-16-dependent manner ‘making them
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Figure 1 | Sample acquisition and data processing scheme of the trans-

species screening approach. RNAs of each sample were sequenced. After

passing quality control and sample clustering, the sequences were mapped

to the referring genome. The number of reads of the resulting annotated

genes were used for statistical evaluation. Commonly regulated genes over

the three species were subsequently tested individually for putative impact

on lifespan in C. elegans.
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strong candidates for being causally involved in longevity’25 while
a putative role of bcat-1 has not been analysed in this regard.
Taken together these findings suggest that bcat-1 expression
may promote ageing, and that ageing organisms may
endogenously downregulate this gene, potentially to counteract
ageing across species.

We next applied RNA-seq to nematodes exposed to bcat-1
RNAi for 5 days, and analysed the number of genes consistently
regulated during physiological ageing (Fig. 2) as well as in the
state of bcat-1 impairment. We found that physiological ageing
and bcat-1 impairment affects DEGs similarly where 45.8%
(physiological ageing) and 54% (bcat-1 RNAi) of the
respective DEGs overlapped (Fig. 7d). Moreover, we found that
physiological ageing and bcat-1 RNAi up- or downregulate the
same DEGs, respectively: while 1700 DEGs were up- and 1378
DEGs were downregulated in the same direction, only 619 and

822 DEGs were regulated in an opposing manner (Fig. 7e),
respectively. Lastly, statistical analysis revealed a highly significant
(MonteCarlo, P¼ 0.00099) correlation between DEGs of normal
ageing versus bcat-1 RNAi, suggesting a global functional
relevance of BCAT-1 for the process of physiological ageing.

Impairing bcat-1 expression promotes C. elegans healthspan.
We next aimed at quantifying a number of ageing-associated
parameters, including the accumulation of previously established
ageing pigments26, which was observed to be reduced in 13-days-
old nematodes exposed to bcat-1 RNAi (Fig. 7f). While
interventions to extend lifespan typically reduce fecundity, we
did not observe such effect of bcat-1 RNAI treatment (Fig. 7g and
Supplementary Fig. 2a). In addition, we quantified maximum
movement speed of nematodes and found impairment of bcat-1
expression to increase this parameter (Fig. 7h). Hence, reduced
bcat-1 expression extends lifespan without affecting fecundity,
reduces ageing pigments and promotes physical activity,
consistent with increased health.

Impairing bcat-1 expression increases BCAAs. We next
questioned whether blocking bcat-1 expression would affect
accumulation of its substrates, namely L-leucine, L-isoleucine and
L-valine. Consistent with the biochemical role of the enzyme
BCAT-1, all three BCAAs were found to be increased by 158% or
more (L-valþ 167%, L-ile þ 158%, L-leu þ 225%), while
L-alanine, L-glutamine and L-glutamate were found to be slightly
decreased (Fig. 7i), possibly resembling anaplerotic refuelling
of the Krebs cycle, while other amino acids remained unchanged
(Supplementary Fig. 2b). The increase in BCAAs was indepen-
dently confirmed using mass spectrometry-based metabolomics
(Fig. 7j). The latter methodology in addition indicated a
metabolic shift in bcat-1-impaired worms (Supplementary Data
4), further corroborated by RNA-seq pathway analysis of
such nematodes (upregulated: neuro-active ligand-receptor
interaction (cel04080); downregulated: TGFb signalling pathway
(cel04350), oxidative phosphorylation (cel00190), BCAA degra-
dation (cel00280)), both in comparison with wild-type controls,
at an age of 5 days.

Increasing BCAA levels promotes C. elegans longevity. Based
on the findings on increased BCAA levels (Fig. 7i,j), we then
exposed wild-type N2 nematodes to the BCAA L-leucine at a
concentration of 5mM, while L-alanine served as a control. While
L-alanine had no effect on C. elegans lifespan, L-leucine did
promote longevity (Fig. 8a, Supplementary Table 4, applies to all
subsequent lifespan analyses) however to a lesser extent than
bcat-1 RNAi (Fig. 7b). Similar results were obtained for the
remaining BCAAs, namely L-isoleucine (Supplementary Fig. 2c)
and L-valine (Supplementary Fig. 2d). These findings suggest that
impaired bcat-1 expression may promote lifespan, at least in part,
by increasing organismal levels of different BCAAs.

We next tested whether and to which extent known transcrip-
tional executers of lifespan-extending interventions may contribute
to the phenotype by performing epistasis experiments. While the
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Figure 2 | A trans-species screening approach to identify ageing-

associated genes. (a) Depicts species subjected to RNA extraction at three

different ages. (b) Depicts relative RNA transcript levels uniformly
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C. elegans results are shown in black, D. rerio in green and M. musculus
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Table 1 | Effects of individual RNAis on C. elegans lifespan.

Effect on lifespan Upregulated genes Downregulated genes

Shortened sma-1, mod-5, mfb-1 calu-1, spds-1, ssq-1, act-4, fat-7, act-1
Unchanged mrp-2, cft-1, M116.2, cht-1 cpn-2, tba-9, ifa-1, ost-1, ssq-4, ssq-3, ifc-1
Extended o5% Y71G12B.31, ZC373.4 plk-3, tba-6, ifb-2, F13A7.1, ifb-1, ifc-2, cyb-2.1
Extended Z5% fkh-7, csp-2, lgg-1, Y50C1A.1 bcat-1, T25B9.1, ndk-1, ifd-1, tba-4, ifa-3, try-1, ifp-1
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NRF2/SKN-1 pathway appears dispensable for the bcat-1 RNAi- as
well as the L-leucine-mediated lifespan extension (Supplementary
Fig. 2e,f), both FoxO/Dauer formation 16 (DAF-16) and heat-
shock factor 1 (HSF-1) appear to be epistatically relevant, since
impairment of hsf-1 abolished lifespan extension (Fig. 8b,
Supplementary Fig. 2g ), and impaired daf-16 expression reduced
it almost completely (Fig. 8c and Supplementary Fig. 2h). More-
over, application of bcat-1 RNAi to nematodes increases
phosphorylation of the C. elegans equivalent of the murine
Ser326 residue of HSF-1 (Supplementary Fig. 2i–l).

Bcat-1-mediated longevity depends on mTOR activation.
Quantifying individual amino acid concentrations following
bcat-1 impairment (Fig. 7i) also indicated a global increase
(þ 38.4%) in organismal free amino acids. Increased levels of
amino acids activate the mTOR pathway, or its C. elegans
ortholog let-363, respectively. Inhibition of this pathway is
known to extend lifespan in different species17, being in apparent
conflict with our current findings (Figs 7b and 8a, Supplementary
Fig. 2c,d). We therefore repeated the experiments depicted
in Fig. 7b in the presence of the mTOR-inhibitor rapamycin
and the respective solvent control. As previously observed27,
rapamycin extended lifespan of C. elegans (Fig. 8d). Interestingly,
the effect of bcat-1 on lifespan was reduced by chemically
inhibiting LET-363 to the same extent as lifespan was increased
by rapamycin alone (Fig. 8d). This unexpectedly indicates that
bcat-1 disruption acts lifespan-extending in a let-363-dependent

manner (Fig. 8d) paralleled by increased BCAAs and global
amino acid levels (Fig. 7i,j).

Neuronal mTOR signalling transduces bcat-1 impairment.
Treatment with RNAi is known to affect all tissues of the wild-type
Bristol N2 strain except for neurons, while small molecule-based
compounds like rapamycin also act on this latter cell type. This
together with the findings summarized above raised the hypothesis
that non-neuronal bcat-1 interference would generate a cell-non-
autonomous small-molecule signal that exerts its lifespan-extend-
ing effects in the neuronal compartment in a let-363-dependent
manner. To test this, we used the C. elegans TU3311 strain known
to respond to RNAi feeding by preferentially impairing expression
of the corresponding gene in neurons only28. Impairing expression
of let-363 in neurons only had no effect on C. elegans lifespan
(Fig. 8e), while the effect of reducing bcat-1 in neurons had a
strongly reduced, albeit still detectable effect (Fig. 8e). Interestingly,
impairing expression of both bcat-1 and let-363 in neurons in
parallel almost completely abolished the effect of bcat-1 RNAi on
lifespan (Fig. 8e). Given the fact that mTOR transduces availability
of anabolic substrates and specifically the BCAA L-leucine in
the murine hypothalamus16,29, we next analysed a possible
involvement of the nematodal ASI neurons which are considered
the hypothalamus equivalent in C. elegans. To test this, we
laser-ablated these two neurons in nematodes and found the effect
of bcat-1 RNAi (Fig. 8f) and L-leucine feeding (Fig. 8g) on lifespan
to be abolished, while sham-treated worms still responded to the
respective intervention (Supplementary Figs 3a, b). Altogether this
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Figure 3 | Lifespan analyses in C. elegans for validation of impact on ageing with significantly increased lifespan (Z5%). (a–k) depict lifespan assays

following RNAi treatment during adult life with control vector (black) or RNAi against the respective gene (blue) starting at L4 larvae stage. For P-values

and number of experiments see Supplementary Table 2. Note that results for bcat-1 have been omitted since shown subsequently.
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indicates that peripheral BCAAs activate neuronal let-363 as well as
ASI neuron-specific pathways to exert a lifespan-extending
response.

Hypothalamic TGFb signalling executes bcat-1 impairment.
Given this potentially ASI-specific response (Fig. 8d,e) as well as
the RNA-seq-based pathway analysis (Fig. 7l), we next studied the
nematodal paralog of mammalian TGFb, daf-7, as a putative
candidate to explain the BCAA-dependent activation of let-363 in
neurons, also since daf-7 expression is restricted to ASI neurons30

and to the daf-16 pathway31,32, while hypothalamic TGFb is
linked to ageing in mammals33. When exposing a strain with a
constitutive inactivation of daf-7, namely daf-7 (m62), to bcat-1
RNAi no effect of this treatment was observed (Fig. 8h) opposing
the effect in wild-type nematodes (Fig. 7b). This indicates that
ASI-specific release of DAF-7 may execute the effect of bcat-1
impairment on lifespan. To further support this, we epistatically
tested whether the absence of known DAF-7-receptor genes,
namely daf-1 and daf-4, would affect bcat-1 RNAi-mediated
lifespan extension. Indeed, the impairment of either daf-1 (Fig. 8i)
or daf-4 (Fig. 8j) expression completely inhibited the bcat-1 RNAi
effects on lifespan: while daf-1-mutated worms were long-lived,
and so were nematodes treated with daf-4 RNAi, addition of
bcat-1 RNAi would not extend lifespan further, indicating that
bcat-1 and daf-1/daf-4 epistatically share a downstream pathway.
Notably and since daf-4 RNAi does not affect neurons, while daf-
7 expression is limited to ASI neurons30, this also indicates that
this TGFb/daf-7 signal qualifies as a cell-non-autonomous
feedback loop linking peripheral signals that activate neuronal
(and potentially ASI-specific) mTOR back to the periphery.

Overexpression of bcat-1 impairs lifespan and fecundity. We
next questioned whether overexpression of bcat-1 would have
opposing effects on lifespan, particularly in comparison to
states of impaired expression, as shown above (Fig. 7b). To this

purpose, we expressed a bcat-1-complementary DNA (cDNA)
30-/C-terminally fused to a green fluorescent protein (GFP)-
cDNA under the control of the endogenous bcat-1 promoter.
Fluorescent microphotographs indicated a reduction of BCAT-1
expression with increasing age (Fig. 9a), consistent with the gene
expression levels of the endogenous bcat-1 in wild-type worms
(Fig. 7c). Importantly and opposing the findings on bcat-1 RNAi
(Fig. 7b), overexpression of bcat-1 shortens C. elegans lifespan
(Fig. 9b), further supporting a regulatory role in the regulation
of lifespan. Moreover, overexpression of bcat-1 decreased fertility
of nematodes (Fig. 9c) that, from an evolutionary perspective,
suggests a selective advantage of low bcat-1 expression levels,
notably independent of ageing.

HLH-15 is a transcriptional regulator of bcat-1. Based on the
fact that reduced versus increased levels of BCAT-1 exhibit
opposing effects on lifespan (Figs 7b versus 9a), we next
questioned whether and how bcat-1 expression may be
systemically controlled during physiological ageing. We in silico
analysed a 1,000 base-pair promoter fragment upstream of the
bcat-1 start codon, and identified a transcription factor named
helix-loop-helix factor 15 (hlh-15) to (i) show the highest (n¼ 3)
number of binding sites within this promoter fragment and to
have (ii) the highest P-value for binding probability (Markov
Chain model, P¼ 8.7e-07; Supplementary Table 5).

To confirm the in silico prediction that HLH-15 may control
the expression of bcat-1, we applied RNAi against hlh-15 to
wild-type nematodes and found expression of bcat-1 to be
reduced by 450% (Fig. 9d). When analysing the RNA-seq data
obtained from C. elegans during physiological ageing (Fig. 2), we
found expression levels of bcat-1 (Fig. 9e, Pearson r¼ � 0.9964)
and hlh-15 (Fig. 9e, Pearson r¼ � 0.9693) to be correlated by
trend (Pearson P¼ 0.0537), suggesting that HLH-15 may regulate
bcat-1 expression during physiological ageing. To lastly test this,
we have performed the corresponding epistasis experiments:
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Figure 4 | Lifespan analyses in C. elegans for validation of impact on ageing with significantly increased lifespan (o5%). (a–i) depict lifespan assays

following RNAi treatment during adult life with control vector (black) or RNAi against the respective gene (blue) starting at L4 larvae stage. For P-values

and number of experiments see Supplementary Table 2.
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RNAi against bcat-1 or against hlh-15, respectively, extended
nematodal lifespan to the exact same extent (Fig. 9f).
Co-application of both RNAis did show the same effect as each
RNAi individually (Fig. 9f), altogether suggesting that HLH-15
and BCAT-1 may actively synergize in the regulation of
physiological ageing (Fig. 9g).

Discussion
Increased BCAA catabolism and specifically increased activity of
the corresponding enzyme, BCAT, has been linked to various
pathological states, including accelerated growth of malignant
gliomas34, decreased sepsis survival35 and increased accumulation
of liver fat36, the latter being linked to a number of
metabolic diseases37. Consistently, systemic disruption of one
BCAT isoform38, namely BCATm, in mice increases energy
expenditure and reduces body weight39.

More specifically, L-leucine is capable of reducing food uptake
in rodents when injected into the hypothalamus, notably
depending on neuronal mTOR (refs 16,29). By contrast, others
have linked hypothalamic BCAAs to increased insulin resistance,
providing a potential link to type 2 diabetes40,41. Since nematodal
ASI neurons are considered the homologue of the mammalian
hypothalamus42, and ablation of these two neurons abolishes the
effect of both L-leucine (Fig. 8g) and bcat-1 RNAi (Fig. 8f), the
effect of increasing organismal L-leucine levels on lifespan
(Fig. 7b,i,j) may be translatable into mammals. Indeed, feeding
increased amounts of BCAAs to middle-aged mice did improve

healthspan depending on induction of endothelial nitric oxide
synthase43, an enzyme not known in C. elegans44. Moreover,
other hypothalamic signals have been recently linked to the
regulation of lifespan in rodents45,46, while mTOR signalling has
not been tested in this regard.

Global inhibition of mTOR is generally considered to promote
lifespan in different species17 including C. elegans27 (also
confirmed by our control findings, Fig. 8d). By contrast and
unexpectedly, we here find that activation of mTOR in nematodal
neurons due to a peripheral BCAA signal promotes lifespan
(Fig. 7e) and parameters of healthspan (Fig. 7f,h) without affecting
fecundity (Fig. 7g). Exerting the BCAA signal in neurons only still
exerts an effect on lifespan, however to a reduced extent (Fig. 8e).
Activation of mTOR is known to induce HSF-1 (ref. 47), and the
latter suppresses daf-7 (ref. 48), consistent with our findings which
link mTOR activation to suppression of daf-7/TGFb signalling
(Figs 7l and 8h–j). Since daf-7 is expressed in ASI neurons only30,
while its receptors daf-1 and daf-4 act in the periphery49, daf-7/
TGFb may now be considered to act cell-non-autonomous as a
neuro-endocrine hormone that impairs lifespan in otherwise
healthy animals in response to evolutionary conserved pathways
and amino acid signals derived thereof (Fig. 9g).

Methods
Chemicals. All chemicals were obtained from Sigma-Aldrich (Munich, Germany)
unless stated otherwise.
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Figure 5 | Lifespan analyses in C. elegans for validation of impact on ageing with no significant effect on lifespan. (a–k) depict lifespan assays following

RNAi treatment during adult life with control vector (black) or RNAi against the respective gene (blue) starting at L4 larvae stage. For P-values and number

of experiments see Supplementary Table 2.
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C. elegans strains and maintenance. C. elegans strains used for this publication
were provided by the Caenorhabditis Genetics Center (University of Minnesota,
USA). Nematodes were grown and maintained on Nematode growth media
(NGM) agar plates at 20 �C using E. coli OP50 bacteria as food source50. After
plates were poured and dried, they were sealed and stored at 4 �C. Freshly prepared
E. coli were spotted on plates on the previous evening and allowed to dry and settle
overnight. For all experiments we used Bristol N2 wild-type except the following
we received from CGC: EU31 skn-1(zu135), PS3551 hsf-1(sy441), CF 1038
daf-16(mu86), CX3596 kyIs128[str-3::GFP]; lin-15B(n765), TU3311 uIs60[unc-
119p::YFPþ unc-119p::sid-1], SJ4100 zcIs13[hsp-6::GFP], DR62 daf-7(m62)and
DR40 daf-1(m40).

Sample preparation for physiological worm ageing experiments. Freshly
prepared bacteria OP50 were spotted on 10 cm NGM agar plates on the previous
evening and allowed to dry and settle overnight. Synchronized, young adult worms
(64 h after synchronization) were transferred to fresh plates using S-Buffer51. For
maintaining synchronized populations in long-term experiments, worms were
daily washed off the plates to 15ml tubes, allowed to settle and washed until the
supernatant was free of progeny. The clean worm pellet was transferred to freshly
prepared treatment plates. Worms were pelleted and frozen at an adult age of 1, 10
and 20 days.

RNAi-mediated gene knockdown and compound treatment. For RNAi gene
knockdown experiments we applied E. coli HT115 to the worms as previously
described52. The clones for act-1,daf-4, cyb-2.1, ssq-1, F13A7.1, ssq-4, T25B9.1,
ifa-1, ifa-3, ifb-2, ifc-2, ifd-1, ndk-1, plk-3, try-1, calu-1, fat-7, spds-1, cpn-2, tba-4,
tba-6, mfb-1, lgg-1 and hlh-15 RNAi were obtained from feeding RNAi ORF library
v1.1 (Thermo Fisher Scientififc, Waltham, MA, USA). The clone for bcat-1, let-363,
cht-1, ost-1, ifb-1, ifp-1, sma-1, tba-9, mod-5, Y50C1A.1 and ZC373.4 derived from
Ahringer library (Source BioScience, Nottingham, UK). The remaining clones were
generated from PCR products of genomic DNA and were cloned into control
vector L4440 using its EcoRV restriction site. Primer sequences are listed in
Supplementary Table 6. All (that is, also commercially obtained) clones were
sequenced prior use.

The bacteria were spotted on NGM plates containing additionally 1mM
isopropyl-b-D-thiogalactoside, 100 mgml� 1 ampicillin and, if required,
12.5 mgml� 1 tetracycline (all from Applichem, Darmstadt, Germany). After plates
were poured and dried, they were sealed and stored at 4 �C. Freshly prepared
bacteria were spotted on plates on the previous evening and allowed to dry and
settle overnight. Incubations with compounds started 64 h after synchronization of
the population, by washing the synchronized, young adult worms and then
transferring them to the respective treatment plates using S-Buffer51. For
maintaining synchronized populations in long-term experiments, worms were

daily washed off the plates to 15ml tubes, allowed to settle and washed until the
supernatant was free of progeny. The clean worm pellet was transferred to freshly
prepared treatment plates.

For compound treatments, all agar plates were prepared from the same batch
of NGM agar, whereas treatment plates were supplemented with L-leucine,
L-alanine (both 5mM final concentration) or water as solvent control. Rapamycin
was used in a concentration of 100mM and dimethylsulphoxide (DMSO) served
as solvent control. For all experiments with amino acid supplementation only
heat-inactivated bacteria were used to avoid influences on bacterial metabolism.
The bacteria were heat-inactivated for 45min at 65 �C in a shaking incubator and
resuspended and concentrated (20� ) in S-buffer containing 5 mgml� 1 and
10mM MgSO4. The experimental procedures are the same as described above for
RNAi treatment experiments.

Nematodal lifespan assays. All lifespan assays were performed at 20 �C
according to standard protocols and as previously described52. Briefly, a C. elegans
population was synchronized as described above at day 0 of the lifespan. 64 h after
egg preparation around 100 nematodes were manually transferred to fresh
incubation plates containing the respective compounds. Experiments were
conducted in triplicates. For the first 10 days, worms were transferred every day
and afterwards every second day. Nematodes that show no reaction to gently
stimulation were scored as death. Those animals that crawled off the plates or
display non-natural death due to internal hatching were censored.

D. rerio. Zebrafish of the TüAB strain were kept in groups of 20–30 animals under
standard husbandry conditions. Skin tissue from male zebrafish at the age of 5
months (n¼ 12), 24 months (n¼ 12) and 42 months (n¼ 6) was dissected and
stored in RNAlater (Qiagen, Hilden, Germany) at � 80 �C. Total RNA was isolated
with TRIzol (Life Technologies, Darmstadt, Germany) according to the instruc-
tions of the manufacturer.

M. musculus. Young (2 months), mature (15 months) and aged (30 months) old
mice were deeply anaesthetized with isoflurane anaesthesia (2.5% in a mixture of
3:1 N2O:O2). One square cm hairless abdominal skin was taken and snap frozen.
The isolated skin was homogenized in 500 ml QIAzol (Qiagen) by subsequently
adding 100ml chloroform. Following phase separation, the aqueous phase was
transferred into a fresh tube, then 0.16 volume NaAc (2M, pH 4.0) and 1.1 volume
isopropanol were added. The RNA was precipitated by centrifugation and the pellet
was washed with 75% ethanol. Total RNA was resuspended in 20 ml water and
stored at –80 �C until use.
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Figure 6 | Lifespan analyses in C. elegans for validation of impact on ageing with significantly shortened lifespan. (a–i) depict lifespan assays following

RNAi treatment during adult life with control vector (black) or RNAi against the respective gene (blue) starting at L4 larvae stage. For P-values and number

of experiments see Supplementary Table 2.
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Breeding and housing conditions. The study was carried out on male C57BL/6J
mice (Jackson Laboratories). Animals of given ages were raised in our own facil-
ities. All animal procedures were approved by the local government (Thueringer
Landesamt, Bad Langensalza, Germany) and conformed to international guidelines
on the ethical use of animals. All mice were maintained in a specific pathogen-free
environment at room temperature (22 �C) at 68% humidity and light/dark
(12 h/12 h) cycles with access to water and food (V1534-300, SsniffSpezialdiäten
GmbH, Soest, Germany), ad libitum and were tested negative for parasites and
other routine pathogens.

RNA-seq. RNA integrity was determined by Agilent’s Bioanalyzer 2100 (with
RNA 7500 kit, both Agilent Technologies, Santa Clara, CA, USA).

M. musculus and C. elegans physiological ageing samples. Total RNA (2.5mg)
was used with Illumina’sTruSeq RNA sample prep kit v2 following the
manufacturer’s instruction. Illumina 50 bp single reads (SR) were obtained using
the HiSeq2000 by multiplexing four samples per lane. Sequencing resulted in
around 40–50 mio reads per sample. The sequence information was extracted using
Illumina’s supported CASAVA v1.7 as FastQ format.

D. rerio. Total RNA (5mg) was used for preparation of multiplex libraries using
Illumina’s mRNA-Seq sample prep kit (Illumina, San Diego, CA, USA) following
the manufacturer’s instruction. Libraries were sequenced in one per lane using
Illumina’s Genome Analyzer (GAIIx) in SR mode creating reads with a length of
76 bp. Sequencing resulted in around 30 mio reads per samples. Sequence
information was extracted in FastQ format using the Illumina’s supported GA-
Pipeline v1.5.

C. elegans bcat-1 RNAi perturbation samples. Total RNA (1 mg) was used for
library preparation using TruSeq RNA sample prep kit v2 following the
manufacturer’s instruction. Sequencing was done on a HiSeq2500 in SR/50 bp/high
output mode. Libraries were multiplexed in five per lane. Sequencing resulted in
around 35-45 mio reads per sample. The sequence information was extracted using
Illumina’s supported bcl2FastQ v1.8.4 as FastQ format.

RNA-seq data analysis. Normal ageing samples. The resulting FastQ files were
mapped using Bowtie53 versus the respective genomic sequences and a splice site
data set created using UCSC’s RefSeq annotation for each species. Counting of
uniquely mapped reads and assignment to RefSeq transcripts/genes was performed
using R Statistical Language and Bioconductor. Afterwards, reads per kilobase
transcript per million reads (RPKM) values54 were calculated for each transcript and
gene from the corresponding RefSeq annotation. For each species DEG were
identified using the DESeq55, edgeR56, and the baySeq57 packages. Those genes
showing statistically significant differences (FDR adjusted Po0.05) by DESeq and
edgeR at least between two time points or by the baySeq test over the three time
points were regarded as DEGs (C. elegans: n¼ 3,608; D. rerio: n¼ 1,721; and M.
musculus: n¼ 339). Next, orthology relations between genes of the three species were
obtained using EnsemblCompara and the orthology R package58 to facilitate the
cross-species comparison. Since the individual species exhibit different lifespan, the
gene expression time courses were rescaled, followed by a combined fuzzy c-means
clustering with the exponent m¼ 2 of the orthologous DEG expression profiles59, to
identify common time courses. The optimal number of six clusters was estimated by
the vote of several cluster validity indices, which capture different aspects of a
clustering structure60. By intersecting the resulting clustered gene sets with the
orthology relations extracted previously, gene sets with similar temporal pattern
across all three species were identified.

For the analysis of differentially regulated metabolic pathways in the normal
ageing samples, C. elegans genes were mapped to metabolic pathways using the
PathwayTools software61. A reaction was assumed differentially regulated if at least
one enzyme catalysing this reaction was significantly differentially expressed
between young and old worms. Pathways were assumed significantly differentially
regulated if a hypergeometric test of differentially regulated reactions yielded a FDR
adjusted P-valueo0.05.

C. elegans bcat-1 RNAi perturbation samples. FastQ files were mapped using
Tophat (v2.0.6)62 versus the reference genome WBcel235.74 obtained from
Ensembl. Uniquely mapped reads were counted for all genes using
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featureCounts63. RPKM values were computed using exon lengths provided by
featureCounts and the sum of all mapped reads per sample. DEG were identified
using the DESeq and edgeR. Generally applicable gene set enrichment for pathway
analysis (GAGE)64 was used to detect significantly regulated Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (FDR adjusted Po0.05).

To evaluate whether the probability for the intersection of two gene expression
sets is significantly different from the intersection of random sets we applied a
Monte Carlo-based test. We first randomly generated subsets out of our two
universe lists of all genes which were measured in both data sets according the
number of genes of our real data sets. Then, we counted the number of genes in
these random intersections for 1,000 iterations which resulted in a distribution of
random intersection values. If the observed intersection value was 495% quantile
we considered our intersection of genes to be significant.

Reverse transcriptase qPCR (RT-qPCR). Reverse transcription of RNA into cDNA
was generated with the iScript cDNA synthesis kit (Bio-Rad, Munich, Germany) and
qPCR was carried out with the SybrGreenERqPCRSupermix (Life Technologies) for
iCycler. All PCR reactions were performed in triplicates and negative controls were
always included. Ct-values of bcat-1 were normalized to two reference genes (for C.

elegans: cdc-42 and pmp-3; for zebrafish: tbp and insra; for mouse: gapdh and hmbs; see
Supplementary Table 7 for sequences). Determination of age-specific
expression and statistical analysis was carried out using the relative expression software
tool65.

Bcat-1 RNAi perturbation C. elegans. Adult wild-type worms were treated for
48 h with control vector L4440 or bcat-1 RNAi, respectively.

Laser ablation of ASI neurons. The laser ablation of ASI neurons was performed as
described42,66 and as follows: for focused laser ablation the output laser beam of a UV
pulsed laser (diode-pumped, Q-Switched Frequency-Tripled Laser System: Triton;
TEM00, 349 nm; maximum power 1W, pulsed; repetition rate: 1–1,000Hz; pulse
width: o15ns; pulse energy: adjustable from 1 to 200mJ; Spectra Physics, Darmstadt,
Germany) was expanded by a telescope system and was coupled into a confocal laser
scanning microscope (LSM510) via epi-fluorescence illumination path. The laser
beam was focused into the object plane by a Zeiss Plan-Neofluar 100/1.30 oil objective
(spot diameter o500nm) after reflection by a dielectric mirror (Laser Optik,
Germany). The dielectric mirror is placed on the empty laser scanning position of the
fluorescence reflector slider and transmits the scanning lasers as well as the emitted
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(d) Depicts the effects of the mTOR-inhibitor rapamycin (100mM) on wild-type worms (grey versus black) versus the lack of effect of non-neuronal bcat-1

RNAi in the presence of rapamycin (100mM), all on lifespan (Po0.05 for control RNAi/rapamycin versus control RNAi/DMSO, P¼0.07 for bcat-1 RNAi/

rapamycin versus control RNAi/rapamycin, Po0.0001 for bcat-1 RNAi/rapamycin versus bcat-1 RNAi/DMSO, Po0.0001 for bcat-1 RNAi/DMSO versus

control RNAi/DMSO, log-rank test, n¼ 3). (e) Depicts the effects of neuronal bcat-1 RNAi on lifespan in the presence (purple) and absence (red) of

neuronal RNAi against let-363/mTOR (P¼45 for control/let-363 RNAi versus control RNAi, Po0.05 for control/let-363 RNAi versus let-363/bcat-1 RNAi,

Po0.0001 for control/bcat-1 RNAi versus let-363/bcat-1 RNAi, Po0.0001 for control RNAi versus control/bcat-1 RNAi, log-rank test, n¼ 3). (f,g) Depict

the lack of effect of (f) peripheral bcat-1 RNAi (P¼0.73, log-rank test, n¼ 3) and (g) L-leucine supplementation (P¼0.96, log-rank test, n¼ 3) on an ASI-

ablated reporter strain. (h–j) Show the lack of effect of bcat-1 RNAi on strains mutant for (h) daf-7 (P¼0.15, log-rank test, n¼ 3) and (i) daf-1 (P¼0.84,

log-rank test, n¼ 3), as well (j) in the co-presence (purple) or absence (red) of RNAi against daf-4 (P¼0.8 for control/bcat-1 RNAi versus daf-4/bcat-1

RNAi, Po0.0001 for all treatments versus control, log-rank test, n¼ 3). For P-values and number of repetitions see Supplementary Table 4.
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fluorescence and reflects the pulsed laser beam of Triton. Thus the imaging functions
of the laser scanning microscope (LSM) are not reduced. Before entering the
microscope, laser pulse energy was reduced by a gradient position dependent
attenuator (Laser Optik) to 80%.

Paralyzed post-L4 nematodes that expresses GFP from a ASI-specific str-3
promoter (kyIs128[str-3::gfp]) were irradiated by several laser pulses at laser energy
of 4 mJ. The live-cell damage was recorded and controlled by time series function of
the Zeiss laser scanning microscope which is equipped with an Argon ion laser and
emission filter sets for the detection of EGFP signals (BP530/20) and the Zeiss LSM
software version 3.2. Immediately after ablation, worms were transferred to the
corresponding treatment plates and analysed for life expectancy according to the
described lifespan protocol above.

Protein quantification. Protein content in nematodes and cells was determined by
the Bradford method67 or the bicinchoninic acid (BCA) method68. Assays were
performed in 96-well plates using commercial available kits (Bio-Rad Laboratories
AG, Cressier, Switzerland, and Thermo Scientific, Waltham, MA, USA). Absorbance
was measured in a micro-plate reader (Fluostar Optima, BMG Labtech, Offenburg,
Germany).

Determination of amino acid concentrations by HPLC. Frozen worm pellets
have been ground with 200 ml PBS (pH¼ 7.4) and de-proteinized with sulfo-

salicylic acid (final concentration 2%; Sigma-Aldrich, St Louis, MO, USA). The cell
debris and protein precipitate were separated by spinning. For the measurements
30 ml of supernatant was used.

Determination of amino acid concentration was carried out on a Biochrome
30þ Amino Acid Analyzer (Biochrom, Cambridge, UK) following manufacturer’s
instructions. This standard method in clinical diagnostics is based on separation on
a retention column with lithium citrate buffer of different pH. The post-column
derivatization with ninhydrin enables photometric detection at 570 and 440 nm.
Samples were normalized to protein content as described above.

Non-targeted metabolomics analysis. Metabolite extracts were prepared from
worms by smashing (Schütt rotation homogenizer) and heating to 70 �C for 10min
in ethanol. After centrifugation the supernatant was stored at � 80 �C until use.

Non-targeted analysis of the metabolome was performed by flow injection
analysis-time of flight mass spectrometry on an Agilent 6550 QTOF instrument69.
All samples were injected in duplicates. Ions were annotated based on their
accurate mass and the KEGG has reference list allowing a tolerance of 0.001Da.
Unknown ions and those annotated as adducts were discarded.

Locomotion analysis. Worms were synchronized and treated for 10 days with
control vector or bcat-1 RNAi as described above. After 10 days four to five worms
were picked from RNAi plates and released on fresh plates without bacteria. We
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defined the refuge behaviour induced velocity as maximum speed. Directly after
release 1min movie clips were recorded with a Leica system (Leica M165FC with
Leica camera DFC 3000 G). Subsequently, the videos were analysed using parallel
worm tracker software developed by Goodman Lab which tracks based on centroid
position of the worms70. The pixel to distance ratio was calibrated. For each
treatment five independent videos were used.

Age pigment analysis. Age pigments in C. elegans reflect biological age26. Worms
were synchronized and treated for 10 days with control vector or bcat-1 RNAi
starting at L4 larvae stage. On day 10 worms were washed off the plates and
distributed on 8 wells of a 96-well plate (Bioswisstec 96-well CG black with glass
bottom, art. no.: 5241). The fluorescence of the age pigments was measured using a
fluorescence plate reader (FLUOstar Omega, BMG Labtech, Offenburg, Germany;
exciatition: 340-10 nm, emission: 440-80 nm; gain: 1,844). We normalized the age
pigment fluorescence to the stable auto-fluorescence signal of the worms (filters:
excitation: 290-10 nm, emission: 330-10 nm; gain: 1800) as described26.

Fertility assay. For determination of fertility we synchronized nematodes as
previously described52. Single L4 larvae were transferred on single plates carrying
RNAi bacteria and subsequently every 24 h to fresh plates. Progeny were allowed to
hatch and counted. For every condition 10 worms were used.

Bcat-1 overexpression. We combined a 1 kb endogenous promoter with a bcat-1-
cDNA C-terminally fused to GFP, as well as an unc-119 rescue gene, and imple-
mented the construct into nematodes using ballistic transformation techniques as
described before71. The generated transgenic lines were selected for stable
integration. The resulting strain named MIR23 carrying the integrated construct
risIs[Pbcat-1::bcat-1::gfpþ unc119] has been used for experiments.

Immunoblotting. Nematodes were washed three times with ice-cold S-buffer and
pellets were shock-frozen in liquid nitrogen. Frozen pellets were grinded in a
nitrogen-chilled mortar and suspended in phosphate buffer containing protease
and phosphatase inhibitors (Complete protease inhibitor cocktail (Roche, Penz-
berg, Germany) and additionally 2mM sodium fluoride, 2mM sodium orthova-
nadate, 1mM phenylmethylsulphonyl fluoride and 2mM EDTA). Extracts were
sonicated three times and centrifuged for 7min at 12,000g at 4 �C. Supernatants
were used for protein quantification, and an aliquot was boiled in Laemmli buffer
and applied to SDS–polyacrylamide gel electrophoresis. Antibodies against phos-
pho-HSF-1 (1:1,000, pSer326, Enzo, order number ADI-SPA-902-D) and alpha-
tubulin (1:2,000, clone DM1A; Sigma-Aldrich; order number T6199) were used.

Promoter analyses. The search for transcription factor binding sites was done
within the proximal bcat-1 promoter region 1 kb upstream of the predicted start
codon. Therefore, a FASTA file containing the promoter region of bcat-1 was created
using WormMart44. Next, the remaining sequence file was scanned for one or more
matches to the position-specific scoring matrices of all available transcription factors
using the matrix scan function of the pattern-matching programme RSAT
(regulatory sequence analysis tools)72. The position-specific scoring matrices
contains the nucleotide frequency at each position within the binding sites and were
obtained from the databases Transfac and Jaspar73–75. The threshold P-value, which
indicates the risk of false–positive predictions, was set to 0.0001.

Statistical analyses. Data are expressed as means±s.d. unless otherwise indicated.
Statistical analyses for all C. elegans data except lifespan assays were performed by
Student’s t-test (unpaired, two-tailed) or one-way analysis of variance (ANOVA) after
testing for equal distribution of the data and equal variances within the data set. For
comparing significant distributions between different groups in the lifespan assays
and stress resistance assays, statistical calculations were performed using JMP soft-
ware version 10 (SAS Institute Inc., Cary, NC, USA) applying the log-rank test. The
comparison of correlation between bcat-1 and hlh-15 expression over age was per-
formed by applying Fisher z transformation of the Pearson correlation coefficients.
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ALN,, Solé-Casals, J. & Fernandes, P.) 105–110 (Barcelona: Scitepress - Science
and Technology Publications, 2013).

59. Cannon, R. L., Dave, J. V. & Bezdek, J. C. Efficient implementation of the
fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8,
248–255 (1986).
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