Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Habitat-based conservation strategies cannot compensate for climate-change-induced range loss

Abstract

Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change1. Conservation measures to increase the (meta-)population capacity2 and permeability of landscapes3 may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species’ projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean effects of current climate/moderately pronounced climate change (turquoise bars) and of conservation strategies (red bars) on species range size until the end of the twenty-first century.
Figure 2: The effect of implementing high effort conservation strategies (that is, conversion of 5% of intensively used habitats into extensively used ones) on projected range sizes of lowland species.

Similar content being viewed by others

References

  1. Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article  Google Scholar 

  2. Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

    Article  CAS  Google Scholar 

  3. McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    Article  CAS  Google Scholar 

  4. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  5. Pauli, H. et al. Recent plant diversity changes on Europe’s mountain summits. Science 336, 353–355 (2012).

    Article  CAS  Google Scholar 

  6. Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    Article  CAS  Google Scholar 

  7. Ordonez, A., Martinuzzi, S., Radeloff, V. C. & Williams, J. W. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Change 4, 811–816 (2014).

    Article  Google Scholar 

  8. Dullinger, S. et al. Modelling the effect of habitat fragmentation on climate-driven migration of European forest understorey plants. Divers. Distrib. 21, 1375–1387 (2015).

    Article  Google Scholar 

  9. Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).

    Article  CAS  Google Scholar 

  10. Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 5, 941–945 (2015).

    Article  Google Scholar 

  11. Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article  CAS  Google Scholar 

  12. Nuñez, T. A. et al. Connectivity planning to address climate change. Conserv. Biol. 27, 407–416 (2013).

    Article  Google Scholar 

  13. Mawdsley, J. R., O’Malley, R. & Ojima, D. S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23, 1080–1089 (2009).

    Article  Google Scholar 

  14. Directive EH European Habitats Directive (1992); http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm

  15. EC Green Infrastructure (GI)—Enhancing Europe’s Natural Capital (2013); http://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF

  16. EC Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020 (2011); http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0244&from=EN

  17. Akçakaya, H. R., Butchart, S. H., Watson, J. E. & Pearson, R. G. Preventing species extinctions resulting from climate change. Nat. Clim. Change 4, 1048–1049 (2014).

    Article  Google Scholar 

  18. Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    Article  Google Scholar 

  19. Kuttner, M. et al. A new high-resolution habitat distribution map for Austria, Liechtenstein, southern Germany, South Tyrol and Switzerland. Eco Mont-J. Protect. Mt. Areas Res. 7, 18–29 (2015).

    Google Scholar 

  20. Dirnböck, T., Dullinger, S. & Grabherr, G. A regional impact assessment of climate and land-use change on alpine vegetation. J. Biogeogr. 30, 401–417 (2003).

    Article  Google Scholar 

  21. Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Article  Google Scholar 

  22. Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

    Google Scholar 

  23. WCPA World Database on Protected Areas (2016); https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas

  24. Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    Article  CAS  Google Scholar 

  25. Ehrlén, J. & Morris, W. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).

    Article  Google Scholar 

  26. Hassall, C. & Thompson, D. J. Study design and mark-recapture estimates of dispersal: a case study with the endangered damselfly Coenagrion mercuriale. J. Insect Conserv. 16, 111–120 (2012).

    Article  Google Scholar 

  27. Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    Article  Google Scholar 

  28. Zimmermann, N. E. et al. Climatic extremes improve predictions of spatial patterns of tree species. Proc. Natl Acad. Sci. USA 106, 19723–19728 (2009).

    Article  CAS  Google Scholar 

  29. Taylor, K., Brummer, T., Taper, M. L., Wing, A. & Rew, L. J. Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Divers. Distrib. 18, 942–951 (2012).

    Article  Google Scholar 

  30. IUCN SSC Guidelines for Reintroductions and Other Conservation Translocations, Version 1.0 57 (International Union for Conservation of Nature, 2013).

  31. Hülber, K. et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol. 22, 2608–2619 (2016).

    Article  Google Scholar 

  32. Niklfeld, H. Mapping the flora of Austria and the eastern Alps. Revue Valdôtaine d’Histoire Naturelle 51 (suppl.), 53–62 (1998).

    Google Scholar 

  33. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  34. Katul, G. G. et al. Mechanistic analytical models for long-distance seed dispersal by wind. Am. Nat. 166, 368–381 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the Austrian Climate and Energy Fund (Project Number KR11AC0K00355). The computational results presented have been achieved using the Vienna Scientific Cluster (VSC). We are very grateful to the Floristic Mapping Projects of Austria, Switzerland, South Tyrol, Bavaria and Baden-Wurttemberg, the Austrian Working Group on Orthoptera, the Centre Suisse de Cartographie de la Faune, the Bayerisches Landesamt für Umwelt, the Tiroler Landesmuseen-Betriebsgesellschaft m.b.H., the Staatliches Museum für Naturkunde Karlsruhe, the Naturmuseum Südtirol, H. Habeler, J. Pennerstorfer, H. Höttinger, P. Detzel, S. Maas, A. Staudt and all other colleagues and institutions that provided distribution data for this study. We thank J. Settele and O. Schweiger (UFZ, Halle) for sharing and discussing demographic and dispersal traits of butterflies. Pictograms of plants and grasshoppers were derived from the PhyloPic (www.phylopic.org).

Author information

Authors and Affiliations

Authors

Contributions

S.D. and F.E. designed the study. F.E., S.S. and W.R. compiled the species data. M.K. and D.M. compiled the region and climate data. A.G., J.W., K.H., D.M., M.K. and S.D. performed the analyses. J.W., S.D., K.H. and F.E. wrote the text with further input from all authors.

Corresponding author

Correspondence to Karl Hülber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wessely, J., Hülber, K., Gattringer, A. et al. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss. Nature Clim Change 7, 823–827 (2017). https://doi.org/10.1038/nclimate3414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing