Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

More losers than winners in a century of future Southern Ocean seafloor warming

Abstract

The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica’s endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature anomaly (°C) in 2005 to 2099 using RCP8.5 mean ensemble shelf benthic temperatures (<1,000 m).
Figure 2: Temperature ranges of benthic invertebrates from south of 40° S and projected change in seafloor temperatures south of the Polar Front.
Figure 3: Mean ensemble seafloor temperatures (°C) averaged over the historical scenario (1976–2005) and over 2070–2099 under RCP8.5 projections.
Figure 4: The number of species that are predicted to experience a change (increase or decrease) in potentially available area of seafloor at suitable temperatures by 2099 under the RCP8.5 scenario.
Figure 5: Species change/turnover (gain + loss) by 2099 as a percentage of the original number of species potentially inhabiting each pixel (based on suitable present-day temperature ranges, using RCP8.5 mean ensemble projections).
Figure 6: Maximum projected seafloor temperature values for 2099.

Similar content being viewed by others

References

  1. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  Google Scholar 

  2. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    Article  Google Scholar 

  3. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Article  Google Scholar 

  4. Barnes, D. K., Griffiths, H. J. & Kaiser, S. Geographic range shift responses to climate change by Antarctic benthos: where we should look. Mar. Ecol. Prog. Ser. 393, 13–26 (2009).

    Article  Google Scholar 

  5. Wassmann, P., Duarte, C. M., Agusti, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).

    Article  Google Scholar 

  6. Griffiths, H. J., Barnes, D. K. & Linse, K. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeography 36, 162–177 (2009).

    Article  Google Scholar 

  7. Clarke, A., Barnes, D. K. & Hodgson, D. A. How isolated is Antarctica? Trends Ecol. Evol. 20, 1–3 (2005).

    Article  Google Scholar 

  8. Cheung, W. W. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article  Google Scholar 

  9. Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

    Article  Google Scholar 

  10. Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).

    Google Scholar 

  11. Griffiths, H. J. Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5, e11683 (2010).

    Article  Google Scholar 

  12. Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5 (2011).

    Article  Google Scholar 

  13. Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Article  Google Scholar 

  14. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    Article  CAS  Google Scholar 

  15. Somero, G. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    Article  CAS  Google Scholar 

  16. Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    Article  CAS  Google Scholar 

  17. Barnes, D. K. & Peck, L. S. Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim. Res. 37, 149–163 (2008).

    Article  Google Scholar 

  18. Waller, C. L., Overall, A., Fitzcharles, E. M. & Griffiths, H. First report of Laternula elliptica in the Antarctic intertidal zone. Polar Biol. 40, 227–230 (2017).

    Article  Google Scholar 

  19. Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).

    Article  Google Scholar 

  20. Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).

    Article  Google Scholar 

  21. Quilty, P. G., Darragh, T. A., Gallagher, S. J. & Harding, L. A. Pliocene Mollusca (Bivalvia, Gastropoda) from the Sørsdal Formation, Marine Plain, Vestfold Hills, East Antarctica: taxonomy and implications for Antarctic Pliocene palaeoenvironments. Alcheringa Australas. J. Palaeontol. 40, 556–582 (2016).

    Article  Google Scholar 

  22. Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl Acad. Sci. USA 109, 4938–4943 (2012).

    Article  CAS  Google Scholar 

  23. Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    Article  CAS  Google Scholar 

  24. Byrne, M., Gall, M., Wolfe, K. & Agüera, A. From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Glob. Change Biol. 22, 3874–3887 (2016).

    Article  Google Scholar 

  25. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  26. Britayev, T., Rzhavsky, A., Pavlova, L. & Dvoretskij, A. Studies on impact of the alien Red King Crab (Paralithodes camtschaticus) on the shallow water benthic communities of the Barents Sea. J. Appl. Ichthyol. 26, 66–73 (2010).

    Article  Google Scholar 

  27. Griffiths, H. J., Whittle, R. J., Roberts, S. J., Belchier, M. & Linse, K. Antarctic crabs: invasion or endurance? PLoS ONE 8, e66981 (2013).

    Article  CAS  Google Scholar 

  28. Aronson, R. B. et al. No barrier to emergence of bathyal king crabs on the Antarctic shelf. Proc. Natl Acad. Sci. USA 112, 12997–13002 (2015).

    Article  CAS  Google Scholar 

  29. Gutt, J. et al. The Southern Ocean ecosystem under multiple climate change stresses—an integrated circumpolar assessment. Glob. Change Biol. 21, 1434–1453 (2015).

    Article  Google Scholar 

  30. Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014).

    Article  Google Scholar 

  31. Cheung, W. W. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).

    Article  Google Scholar 

  32. Moore, J. K., Abbott, M. R. & Richman, J. G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res. 104, 3059–3073 (1999).

    Article  Google Scholar 

  33. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  34. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213 (2011).

    Article  CAS  Google Scholar 

  35. Meijers, A. The Southern Ocean in the coupled model intercomparison project phase 5. Phil. Trans. R. Soc. A 372, 20130296 (2014).

    Article  CAS  Google Scholar 

  36. Meijers, A. et al. Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res. 117, C12008 (2012).

    Article  Google Scholar 

  37. Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. 118, 547–562 (2013).

    Google Scholar 

  38. Sallée, J. B. et al. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J. Geophys. Res. 118, 1830–1844 (2013).

    Article  Google Scholar 

  39. De Broyer, C. et al. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) Ch. 5, 65–252 (Scientific Committee on Antarctic Research, 2014).

    Google Scholar 

  40. Clarke, K. & Gorley, R. PRIMER v6: User Manual/Tutorial (PRIMER-E, 2006).

Download references

Acknowledgements

The authors would like to thank A. Post, C. Waller, K. Linse, S. Thorpe, J. Turner and D. Vaughan for their useful advice. We thank all of the contributors of data and expert knowledge to the SCAR Biogeographic Atlas of the Southern Ocean. We thank A. Van de Putte for helping to prepare the species occurrence data. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. This paper contributes to the SCAR ‘State of the Antarctic Ecosystem’ (AntEco) and ‘Antarctic Climate Change in the 21st Century’ (AntClim21) programmes. A.J.S.M. was supported by NERC grant NE/N018095/1 (Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports; ORCHESTRA).

Author information

Authors and Affiliations

Authors

Contributions

H.J.G. analysed the data; A.J.S.M. prepared the oceanographic data; all authors wrote the manuscript.

Corresponding author

Correspondence to Huw J. Griffiths.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, H., Meijers, A. & Bracegirdle, T. More losers than winners in a century of future Southern Ocean seafloor warming. Nature Clim Change 7, 749–754 (2017). https://doi.org/10.1038/nclimate3377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing