Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging analytical approaches for low-carbon transitions

Abstract

Low-carbon transitions are long-term multi-faceted processes. Although integrated assessment models have many strengths for analysing such transitions, their mathematical representation requires a simplification of the causes, dynamics and scope of such societal transformations. We suggest that integrated assessment model-based analysis should be complemented with insights from socio-technical transition analysis and practice-based action research. We discuss the underlying assumptions, strengths and weaknesses of these three analytical approaches. We argue that full integration of these approaches is not feasible, because of foundational differences in philosophies of science and ontological assumptions. Instead, we suggest that bridging, based on sequential and interactive articulation of different approaches, may generate a more comprehensive and useful chain of assessments to support policy formation and action. We also show how these approaches address knowledge needs of different policymakers (international, national and local), relate to different dimensions of policy processes and speak to different policy-relevant criteria such as cost-effectiveness, socio-political feasibility, social acceptance and legitimacy, and flexibility. A more differentiated set of analytical approaches thus enables a more differentiated approach to climate policy making.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. World in Transition – A Social Contract for Sustainability (German Advisory Council on Global Change, 2011).

  2. Edenhofer, O. Climate Change 2014: Mitigation of Climate Change (Cambridge Univ. Press, 2014).

    Google Scholar 

  3. Weyant, J. P. A perspective on integrated assessment. Climatic Change 95, 317–323 (2009).

    Article  Google Scholar 

  4. van Vuuren, D. P. & Kok, M. in Encyclopedia of Global Environmental Governance and Politics (eds Pathberg, P. H. & Zelli, F.) 119–127 (Edward Elgar, 2015).

    Google Scholar 

  5. Hamilton, S. H., ElSawah, S., Guillaume, J. H. A., Jakeman, A. J. & Pierce, S. A. Integrated assessment and modelling: overview and synthesis of salient dimensions. Environ. Modell. Softw. 64, 215–229 (2015).

    Article  Google Scholar 

  6. Transformative Cornerstones of Social Science Research For Global Environmental Change (International Social Science Council, 2012).

  7. Hackmann, H., Moser, S. C. & St. Clair, A. L. The social heart of global environmental change. Nature Clim. Change 4, 653–655 (2014).

    Article  Google Scholar 

  8. Sovacool, B. K. Diversity: energy studies need social science. Nature 511, 529–530 (2014).

    Article  CAS  Google Scholar 

  9. Weaver, C. P. From global change science to action with social sciences. Nature Clim. Change 4, 656–659 (2014).

    Article  Google Scholar 

  10. McDowall, W. Exploring possible transition pathways for hydrogen energy: a hybrid approach using socio-technical scenarios and energy system modelling. Futures 63, 1–14 (2014).

    Article  Google Scholar 

  11. Carrico, A. R., Vandenberg, M. P., Stern, P. S. & Dietz, T. US climate policy needs behavioural science. Nature Clim. Change 5, 177–179 (2015).

    Article  Google Scholar 

  12. Victor, D. Embed the social sciences in climate policy. Nature 520, 27–29 (2015).

    Article  CAS  Google Scholar 

  13. Fortes, P., Alvarenga, A., Seixas, J. & Rodrigues, S. Long-term energy scenarios: bridging the gap between socio-economic storylines and energy modeling. Technol. Forecast. Soc. 91, 161–178 (2015).

    Article  Google Scholar 

  14. Schellnhuber, H. J., Crutzen, P. J., Clark, W. C. & Hunt, J. Earth System analysis for sustainability. Environment 47, 11–25 (2005).

    Google Scholar 

  15. Palmer, I. & Smith, M. Earth systems: model human adaptation to climate change. Nature 512, 365–366 (2014).

    Article  CAS  Google Scholar 

  16. Olsson, L., Jerneck, A., Thoren, H., Persson, J. & O'Byrne, D. Why resilience is unappealing to social science: theoretical and empirical investigations of the scientific use of resilience. Science Adv. 1, e1400217 (2015).

    Article  Google Scholar 

  17. Castree, N. Changing the intellectual climate. Nature Clim. Change 4, 763–768 (2014).

    Article  Google Scholar 

  18. Castree, N. Reply to 'Strategies for changing the intellectual climate' and 'Power in climate change research'. Nature Clim. Change 5, 393 (2015).

    Article  Google Scholar 

  19. Geels, F. W. Technological Transitions and System Innovations: A Co-evolutionary and Socio-Technical Analysis (Edward Elgar, 2005).

    Book  Google Scholar 

  20. The Fifth Carbon Budget: The Next step Towards a Low-Carbon Economy (Committee on Climate Change, 2015).

  21. Miller, C. A., Iles, A. & Jones, C. F. The social dimensions of energy transitions: introduction to the special issue. Sci. Cult. 22, 135–148 (2013).

    Article  Google Scholar 

  22. Markard, J., Raven, R. & Truffer, B. Sustainability transitions: an emerging field of research and its prospects. Res. Policy 41, 955–967 (2012).

    Article  Google Scholar 

  23. Penna, C. C. R. & Geels, F. W. Multi-dimensional struggles in the greening of industry: a dialectic issue lifecycle model and case study. Technol. Forecast. Soc. 79, 999–1020 (2012).

    Article  Google Scholar 

  24. Kern, F. The discursive politics of governing transitions towards sustainability: an analysis of the Carbon Trust in the UK. Int. J. Sust. Dev. 15, 90–106 (2012).

    Article  Google Scholar 

  25. Meadowcroft, J. What about the politics? Sustainable development, transition management, and long term energy transitions. Policy Sci. 42, 323–340 (2009).

    Article  Google Scholar 

  26. O'Brien, K. Political agency: the key to tackling climate change. Science 350, 1170–1171 (2015).

    Article  Google Scholar 

  27. Messner, D. A social contract for low carbon and sustainable development: reflections on non-linear dynamics of social realignments and technological innovations in transformation processes. Technol. Forecast. Soc. 98, 260–270 (2015).

    Article  Google Scholar 

  28. Laird, F. N. Against transitions? Uncovering conflicts in changing energy systems. Sci. Cul. 22, 149–156 (2013).

    Article  Google Scholar 

  29. Nye, D. E. The United States and alternative energies since 1980: technological fix or regime change? Theo. Cult. Soc 31, 103–125 (2014).

    Article  Google Scholar 

  30. Hirsh, R. F. & Jones, C. F. History's contributions to energy research and policy. Energ. Res. Soc. Sci. 106–111 (2014).

  31. Stern, N. Why Are We Waiting? The Logic, Urgency, and Promise of Tackling Climate Change (MIT Press, 2015).

    Google Scholar 

  32. Grubb, M., Hourcade, J.-C. & Neuhoff, K. The three domains structure of energy-climate transitions. Technol. Forecast. Soc. 98, 290–302 (2015).

    Article  Google Scholar 

  33. Bauer, N. et al. CO2 emission mitigation and fossil fuel markets: dynamic and international aspects of climate policies. Technol. Forecast. Soc. 90, 243–256 (2015).

    Article  Google Scholar 

  34. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  35. Turnheim, B. et al. Evaluating sustainability transitions pathways: bridging analytical approaches to address governance challenges. Glob. Environ. Change 35, 239–253 (2015).

    Article  Google Scholar 

  36. Bulkeley, H. A., Broto, V. C. & Edwards, G. A. S. An Urban Politics of Climate Change: Experimentation and the Governing of Socio-Technical Transitions (Routledge, 2014).

    Book  Google Scholar 

  37. Seyfang, G. & Haxeltine, A. Growing grassroots innovations: exploring the role of community-based initiatives in governing sustainable energy transitions. Environ. Plann. C 30, 381–400 (2012).

    Article  Google Scholar 

  38. Bai, X. et al. Plausible and desirable futures in the Anthropocene: a new research agenda. Global Environ. Change http://dx.doi.org/10.1016/j.gloenvcha.2015.09.017 (2015).

  39. Staub-Kaminski, I., Zimmer, A., Jakob, M. & Marschinski, R. Climate policy in practice: a typology of obstacles and implications for integrated assessment modeling. Clim. Change Econ. (2013).

  40. Leonard-Barton, D. Core capabilities and core rigidities: a paradox in managing new product development. Strategic Manage. J. 13, 111–125 (1992).

    Article  Google Scholar 

  41. David, P. A. Why are institutions the 'carriers of history'? Path dependence and the evolution of conventions, organizations and institutions. Struct. Change Econ. Dyn. 5, 205–220 (1994).

    Article  Google Scholar 

  42. Tripsas, M. & Gavetti, G. Capabilities, cognition and inertia: evidence from digital imaging. Strategic Manage. J. 21, 1147–1161 (2000).

    Article  Google Scholar 

  43. Geels, F. W. Regime resistance against low-carbon energy transitions: introducing politics and power in the multi-level perspective. Theor. Cult. Soc. 31, 21–40 (2014).

    Article  Google Scholar 

  44. Scrieciu, S. S., Barker, T. & Ackerman, F. Pushing the boundaries of climate economics: critical issues to consider in climate change policy analysis. Ecol. Econ. 85, 155–165 (2013).

    Article  Google Scholar 

  45. Hajer, M. et al. Beyond cockpit-ism: four insights to enhance the transformative potential of the sustainable development goals. Sustainability 7, 1651–1660 (2015).

    Article  Google Scholar 

  46. Schubert, D. K. J., Thuβ, S. & Möst, D. Does political and social feasibility matter in energy scenarios? Energ. Res. Soc. Sci. 7, 43–54 (2015).

    Article  Google Scholar 

  47. World Energy Outlook 2015 (International Energy Agency, 2015).

  48. Schmid, E. & Knopf, B. Ambitious mitigation scenarios for Germany: a participatory approach. Energ. Policy 51, 662–672 (2012).

    Article  Google Scholar 

  49. van Sluisveld, M. et al. Comparing future patterns of energy system change in 2 °C scenarios with historically observed rates of change. Glob. Environ. Chang. 35, 436–449 (2015).

    Article  Google Scholar 

  50. Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity growth of energy technologies: are scenarios consistent with historical evidence? Climatic Change 118, 381–395 (2013).

    Article  Google Scholar 

  51. van Vuuren, D. P. et al. What do near-term observations tell us about long-term developments in greenhouse gas emissions? Climatic Change 103, 635–642 (2010).

    Article  Google Scholar 

  52. Köhler, J. A transitions model for sustainable mobility. Ecol. Econ. 68, 2985–2995 (2009).

    Article  Google Scholar 

  53. Li, F. G. N., Trunevyte, E. & Strachan, N. A review of socio-technical energy transition (STET) models. Technol. Forecast. Soc. 100, 290–305 (2015).

    Article  Google Scholar 

  54. Gilbert, A. Q. & Sovacool, B. K. Looking the wrong way: bias, renewable electricity, and energy modeling in the United States. Energy 94, 533–541 (2016).

    Article  Google Scholar 

  55. Ackerman, F., DeCanio, S. J., Howarth, R. B. & Sheeran, K. Limitations of integrated assessment models of climate change. Climatic Change 95, 297–315 (2009).

    Article  CAS  Google Scholar 

  56. Sovacool, B. K. What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energ. Res. Soc. Sci. 1, 1–29 (2014).

    Article  Google Scholar 

  57. Ritzer, G. Sociology: A Multiple Paradigm Science (Allyn and Bacon, 1980).

    Google Scholar 

  58. Hassard, J. Multiple paradigms and organizational analysis: a case study. Organ. Stud. 12, 275–299 (1991).

    Article  Google Scholar 

  59. Collins, R. Four Sociological Traditions (Oxford Univ. Press, 1994).

    Google Scholar 

  60. Hall, J. R. Cultures of Inquiry: From Epistemology to Discourse in Sociohistorical Research (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  61. Kagan, J. The Three Cultures: Natural Sciences, Social Sciences and the Humanities in the 21st Century (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  62. Goertz, G. & Mahoney, J. A. Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences (Princeton Univ. Press, 2012).

    Book  Google Scholar 

  63. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  64. Gillingham, K., Newell, R. G. & Pizer, W. A. Modeling endogenous technological change for climate policy analysis. Energy Econ. 30, 2734–2753 (2008).

    Article  Google Scholar 

  65. Farla, J., Markard, J., Raven, R. P. J. M. & Coenen, L. Sustainability transitions in the making: a closer look at actors, strategies and resources. Technol. Forecast. Soc. 79, 991–998 (2012).

    Article  Google Scholar 

  66. Smith, A., Stirling, A. & Berkhout, F. The governance of sustainable socio-technical transitions. Res. Policy 34, 1491–1510 (2005).

    Article  Google Scholar 

  67. Kemp, R., Schot, J. & Hoogma, R. Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technol. Anal. Strat. Manage. 10, 175–196 (1998).

    Article  Google Scholar 

  68. Fuenfschilling, L. & Truffer, B. The structuration of socio-technical regimes — conceptual foundations from institutional theory. Res. Policy 43, 772–791 (2014).

    Article  Google Scholar 

  69. Unruh, G. C. Understanding carbon lock-in. Energ. Policy 28, 817–830 (2000).

    Article  Google Scholar 

  70. Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31, 1257–1274 (2002).

    Article  Google Scholar 

  71. Smith, A., Voβ, J.-P. & Grin, J. Innovation studies and sustainability transitions: the allure of a multi-level perspective and its challenges. Res. Policy 39, 435–448 (2010).

    Article  Google Scholar 

  72. Nykvist, B. & Whitmarsh, L. A multi-level analysis of sustainable mobility transitions: niche developments in the UK and Sweden. Technol. Forecast. Soc. 75, 1373–1387 (2008).

    Article  Google Scholar 

  73. Geels, F. W., Kemp, R., Dudley, G. & Lyons, G. Automobility in Transition? A Socio-Technical Analysis of Sustainable Transport (Routledge, 2012).

    Google Scholar 

  74. Whyte, W. F., Greenwood, D. J. & Lazes, P. Participatory action research: through practice to science in social research. Am. Behav. Sci. 32, 513–551 (1989).

    Article  Google Scholar 

  75. Kindon, S., Pain, R. & Kesby, M. Participatory Action Research: Approaches and Methods (Routledge, 2007).

    Book  Google Scholar 

  76. Walker, G. P., Hunter, S., Devine-Wright, P., Evans, B. & Fay, H. Harnessing community energies: explaining and evaluating community-based localism in renewable energy policy in the UK. Glob. Environ. Polit. 7, 64–82 (2007).

    Article  Google Scholar 

  77. Kerkhof, M. & Wieczorek, A. Learning and stakeholder participation in transition processes towards sustainability: methodological considerations. Technol. Forecast. Soc. 72, 733–747 (2005).

    Article  Google Scholar 

  78. Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Change 20, 550–557 (2010).

    Article  Google Scholar 

  79. Brown, H. S., Vergragt, P., Green, K. & Berchicci, L. Learning for sustainability transition through bounded socio-technical experiments in personal mobility. Technol. Anal. Strat. Manage. 15, 291–315 (2003).

    Article  Google Scholar 

  80. Kolb, D. A. Experiential Learning: Experience as the Source of Learning and Development (Prentice-Hall, 1984).

    Google Scholar 

  81. Petersen, A., Blackstock, J. & Morisetti, N. New leadership for a user-friendly IPCC. Nature Clim. Change 5, 909–911 (2015).

    Article  Google Scholar 

  82. Meadowcroft, J. Planning, democracy and the challenge of sustainable development. Int. Polit. Sci. Rev. 18, 167–190 (1997).

    Article  Google Scholar 

  83. Pemberton, H. Policy networks and policy learning: UK economic policy in the 1960s and 1970s. Pub. Admin. 78, 771–792 (2000).

    Article  Google Scholar 

  84. Sabatier, P. Policy Change and Learning: An Advocacy Coalition Approach (Westview, 1993).

    Google Scholar 

  85. Lindblom, C. E. The science of muddling through. Pub. Admin. Rev. 19, 79–88 (1959).

    Article  Google Scholar 

  86. Pressman, J. & Wildavsky, A. Implementation: How Great Expectations in Washington Are Dashed in Oakland: Or, Why It's Amazing that Federal Programs Work At All (Univ. California Press, 1973).

    Google Scholar 

  87. Mintzberg, H., Ahlstrand, B. & Lampel, J. Strategy Safari: A Guided Tour Through the Wilds of Strategic Management (The Free Press, 1998).

    Google Scholar 

  88. Kemp, R., Rotmans, J. & Loorbach, D. Assessing the Dutch energy transition policy: how does it deal with dilemmas of managing transitions? J. Env. Pol. Plann. 9, 315–331 (2007).

    Article  Google Scholar 

  89. Dijk, M. & Yarime, M. The emergence of hybrid-electric cars: innovation path creation through co-evolution of supply and demand. Technol. Forecast. Soc. 77, 1371–1390 (2010).

    Article  Google Scholar 

  90. Carter, N. & Jacobs, M. Explaining radical policy change: the case of climate change and energy policy under the British Labour Government 2006–10 Pub. Admin. 92, 125–141 (2014).

    Article  Google Scholar 

  91. Ellis, G., Cowell, R., Warren, C., Strachan, P. & Szarka, J. Expanding wind power: a problem of planning, or of perception? Plan. Theor. Pract. 10, 521–547 (2009).

    Article  Google Scholar 

  92. Smith, A., Kern, F., Raven, R. & Verhees, B. Spaces for sustainable innovation: solar photovoltaic electricity in the UK. Technol. Forecast. Soc. 81, 115–130 (2013).

    Article  Google Scholar 

  93. van de Ven, A. H. Engaged Scholarship: A Guide for Organizational and Social Research (Oxford Univ. Press, 2007).

    Google Scholar 

  94. Burnes, B. Managing Change: A Strategic Approach to Organisational Dynamics (Prentice-Hall, 2009).

    Google Scholar 

  95. Kwa, C. Styles of Knowing. A New History of Science From Ancient Times to the Present (Univ. Pittsburgh Press, 2011).

    Book  Google Scholar 

  96. Geels, F. W. Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. Res. Policy 39, 495–510 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

All authors were supported by the European Union's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 603942 (PATHWAYS).

Author information

Authors and Affiliations

Authors

Contributions

F.W.G led the drafting of the text with inputs from all other authors. All authors contributed to the intellectual content.

Corresponding author

Correspondence to Frank W. Geels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geels, F., Berkhout, F. & van Vuuren, D. Bridging analytical approaches for low-carbon transitions. Nature Clim Change 6, 576–583 (2016). https://doi.org/10.1038/nclimate2980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing