Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes

Abstract

Living organisms maintain a balance of chemical elements for optimal growth and reproduction, which plays an important role in global biogeochemical cycles1,2,3,4,5. Human domination of Earth’s ecosystems has led to drastic global changes6,7,8, but it is unclear how these affect the stoichiometric coupling of nutrients in terrestrial plants, the most important food source on Earth. Here we use meta-analyses of 1,418 published studies to show that the ratio of terrestrial plant nitrogen (N) to phosphorus (P) decreases with elevated concentrations of CO2, increasing rainfall, and P fertilization, but increases with warming, drought, and N fertilization. Our analyses also reveal that multiple global change treatments generally result in overall additive effects of single-factor treatments and that the responses of plant nutrients and their stoichiometry are similar in direction, but often greater in controlled than in natural environments. Our results suggest a decoupling of the P biogeochemical cycle from N in terrestrial plants under global changes6,7,8, which in turn may diminish the provision of ecosystem services1,5,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A conceptual diagram of the influence of global changes on processes controlling the stoichiometry of plant C, N and P.
Figure 2: Responses of plant N:P to global change treatments.
Figure 3: Paired meta-analysis of multi-factor studies.
Figure 4: Sensitivities of plant N:P response ratios to quantities of global change treatments.

Similar content being viewed by others

References

  1. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).

    Google Scholar 

  2. Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).

    Article  Google Scholar 

  3. Schlesinger, W. H., Cole, J. J., Finzi, A. C. & Holland, E. A. Introduction to coupled biogeochemical cycles. Front. Ecol. Environ. 9, 5–8 (2011).

    Article  Google Scholar 

  4. Rivas-Ubach, A., Sardans, J., Perez-Trujillo, M., Estiarte, M. & Peñuelas, J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl Acad. Sci. USA 109, 4181–4186 (2012).

    Article  CAS  Google Scholar 

  5. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Commun. 4, 2934 (2013).

    Article  Google Scholar 

  6. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article  CAS  Google Scholar 

  7. Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    Article  CAS  Google Scholar 

  8. Peñuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2012).

    Article  Google Scholar 

  9. Elser, J. J. et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578–580 (2000).

    Article  CAS  Google Scholar 

  10. Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 243–266 (2004).

    Article  Google Scholar 

  11. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  Google Scholar 

  12. Melillo, J. M. et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).

    Article  CAS  Google Scholar 

  13. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Article  CAS  Google Scholar 

  14. Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).

    Article  Google Scholar 

  15. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  CAS  Google Scholar 

  16. Loladze, I. Rising atmospheric CO2 and human nutrition: Toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 17, 457–461 (2002).

    Article  Google Scholar 

  17. Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).

    Article  Google Scholar 

  18. Cotrufo, M. F., Ineson, P. & Scott, A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Change Biol. 4, 43–54 (1998).

    Article  Google Scholar 

  19. Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 14, 33–47 (2012).

    Article  Google Scholar 

  20. Dijkstra, F. A. et al. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. 196, 807–815 (2012).

    Article  CAS  Google Scholar 

  21. Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Ecol. Syst. 40, 613–635 (2009).

    Article  Google Scholar 

  22. Matzek, V. & Vitousek, P. M. N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).

    Article  Google Scholar 

  23. Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    Article  CAS  Google Scholar 

  24. Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 111, 1–39 (2012).

    Article  Google Scholar 

  25. Elser, J. J. et al. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326, 835–837 (2009).

    Article  CAS  Google Scholar 

  26. Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).

    Article  CAS  Google Scholar 

  27. He, M. & Dijkstra, F. A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol. 204, 924–931 (2014).

    Article  CAS  Google Scholar 

  28. Leuzinger, S. et al. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol. 26, 236–241 (2011).

    Article  Google Scholar 

  29. Yuan, Z. Y., Chen, H. Y. H. & Reich, P. B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Commun. 2, 344 (2011).

    Article  CAS  Google Scholar 

  30. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  31. Dieleman, W. I. J. et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science and Engineering Council of Canada (Discovery Grant 283336), an Early Researcher Award and an Ontario Post-Doctoral Fellowship from the Ontario Ministry of Research and Innovation, National Natural Sciences Foundation of China (31370455) and 100 Talents Program of The Chinese Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y.Y. and H.Y.H.C. designed the project. Z.Y.Y. compiled the data set. Z.Y.Y. and H.Y.H.C. performed the analysis and wrote the manuscript.

Corresponding author

Correspondence to Han Y. H. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Chen, H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Clim Change 5, 465–469 (2015). https://doi.org/10.1038/nclimate2549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing