Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles

Abstract

Warming mean temperatures over the past century1 have probably shifted distributions2, altered phenologies3, increased extinction risks4,5, and impacted agriculture6 and human health7. However, knowledge of mean temperatures alone does not provide a complete understanding either of changes in the climate itself or of how changing climate will affect organisms8,9,10,11. Temporal temperature variation, primarily driven by daily and annual temperature cycles, has profound effects on organism physiology8,9 and ecology12, yet changes in temperature cycling over the past 40 years are still poorly understood1,13. Here we estimate global changes in the magnitudes of diurnal and annual temperature cycles from 1975 to 2013 from an analysis of over 1.4 billion hourly temperature measurements from 7,906 weather stations. Increases in daily temperature variation since 1975 in polar (1.4 °C), temperate (1.0 °C) and tropical (0.3 °C) regions parallel increases in mean temperature. Concurrently, magnitudes of annual temperature cycles decreased by 0.6 °C in polar regions, increased by 0.4 °C in temperate regions, and remained largely unchanged in tropical regions. Stronger increases in daily temperature cycling relative to changes in annual temperature cycling in temperate and polar regions mean that, with respect to diurnal and annual cycling, the world is flattening as temperate and polar regions converge on tropical temperature cycling profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global variation in temperature cycling.
Figure 2: Global anomalies in temperature cycling from 1975 to 2013.
Figure 3: Global convergence in daily relative to annual temperature cycling.

Similar content being viewed by others

References

  1. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F.et al.) Ch. 2, 226–229 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  3. Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    Article  CAS  Google Scholar 

  4. Mantgem, P. J. v. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    Article  Google Scholar 

  5. Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

    Article  CAS  Google Scholar 

  6. Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    Article  CAS  Google Scholar 

  7. Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).

    Article  CAS  Google Scholar 

  8. Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

    Article  Google Scholar 

  9. Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).

    Article  CAS  Google Scholar 

  10. Reside, A. E., VanDerWal, J. J., Kutt, A. S. & Perkins, G. C. Weather, not climate, defines distributions of vagile bird species. PLoS ONE 5, e13569 (2010).

    Article  Google Scholar 

  11. Li, Y., Huang, Y., Bergelson, J., Nordborg, M. & Borevitz, J. O. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 197, 201007431 (2010).

    Google Scholar 

  12. Walther, G-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  Google Scholar 

  13. Stine, A. R., Huybers, P. & Fung, I. Y. Changes in the phase of the annual cycle of surface temperature. Nature 457, 435–440 (2009).

    Article  CAS  Google Scholar 

  14. Rosenzweig, C. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L.et al.) 79–131 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  15. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article  CAS  Google Scholar 

  16. Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

    Google Scholar 

  17. Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).

    Article  CAS  Google Scholar 

  18. Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 201015178 (2011).

    Article  Google Scholar 

  19. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  Google Scholar 

  20. Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).

    Article  CAS  Google Scholar 

  21. Bauerfeind, S. S. & Fischer, K. Simulating climate change: Temperature extremes but not means diminish performance in a widespread butterfly. Popul. Ecol. 56, 239–250 (2014).

    Article  Google Scholar 

  22. Karl, T. R., Knight, R. W. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995).

    Article  CAS  Google Scholar 

  23. Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B.et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  24. Gilman, S. E., Wethey, D. S. & Helmuth, B. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc. Natl Acad. Sci. USA 103, 9560–9565 (2006).

    Article  CAS  Google Scholar 

  25. Stine, A. R. & Huybers, P. Changes in the seasonal cycle of temperature and atmospheric circulation. J. Clim. 25, 7362–7380 (2012).

    Article  Google Scholar 

  26. Chaves, L. F. & Pascual, M. Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med. 3, e295 (2006).

    Article  Google Scholar 

  27. Mudelsee, M. et al. Climate spectrum estimation in the presence of timescale errors. Nonlinear Process. Geophys. 16, 43–56 (2009).

    Article  Google Scholar 

  28. Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: The dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009).

    Article  Google Scholar 

  29. Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    Article  CAS  Google Scholar 

  30. Hay, S. I. et al. Climate change and the resurgence of malaria in the East African highlands. Nature 415, 905–909 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.W. was supported in part by NSF IOB-041684 awarded to R. B. Huey and in part by the Max Planck Institute via D. Weigel. M.E.D. was supported in part by an NSF Minority Postdoctoral Fellowship and by the University of Wyoming. R. J. Hijmans provided assistance with the shoreline distance algorithm. We gratefully acknowledge R. B. Huey, M. R. Frazier, T. L. Daniel, S. Sane, J. Theobald, B. Rowan, J. Edwards and C. Martinez del Rio for fruitful discussions and comments on early versions of the manuscript. Computational resources were provided by the MPI Tuebingen and the UW Department of Geology.

Author information

Authors and Affiliations

Authors

Contributions

G.W. and M.E.D. conceived the methodology. G.W. built the data set and processed the data. M.E.D. and G.W. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to George Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Dillon, M. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nature Clim Change 4, 988–992 (2014). https://doi.org/10.1038/nclimate2378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing