Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Foldamers as versatile frameworks for the design and evolution of function

Abstract

Foldamers are sequence-specific oligomers akin to peptides, proteins and oligonucleotides that fold into well-defined three-dimensional structures. They offer the chemical biologist a broad pallet of building blocks for the construction of molecules that test and extend our understanding of protein folding and function. Foldamers also provide templates for presenting complex arrays of functional groups in virtually unlimited geometrical patterns, thereby presenting attractive opportunities for the design of molecules that bind in a sequence- and structure-specific manner to oligosaccharides, nucleic acids, membranes and proteins. We summarize recent advances and highlight the future applications and challenges of this rapidly expanding field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The 14-helix conformation.
Figure 3: 14-helix and mixed α/β-helices.
Figure 4: Design principles for foldamer scaffolds.
Figure 5: Self-associating foldamer.
Figure 6: Downsizing a natural host defense peptide.
Figure 7: Simultaneous parallel and antiparallel hydrophobic packing.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. DeGrado, W.F., Summa, C.M., Pavone, V., Nastri, F. & Lombardi, A. De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999).

    CAS  PubMed  Google Scholar 

  2. Baker, D. Prediction and design of macromolecular structures and interactions. Phil. Trans. R. Soc. Lond. B 361, 459–463 (2006).

    CAS  Google Scholar 

  3. Alvizo, O., Allen, B.D. & Mayo, S.L. Computational protein design promises to revolutionize protein engineering. Biotechniques 42, 31, 33, 35 passim (2007).

    Google Scholar 

  4. Gellman, S.H. Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180 (1998).

    CAS  Google Scholar 

  5. Rueping, M., Mahajan, Y., Sauer, M. & Seebach, D. Cellular uptake studies with β-peptides. ChemBioChem 3, 257–259 (2002).

    CAS  PubMed  Google Scholar 

  6. Potocky, T.B., Menon, A.K. & Gellman, S.H. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a β-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278, 50188–50194 (2003).

    CAS  PubMed  Google Scholar 

  7. Gelman, M.A. et al. Selective binding of TAR RNA by a Tat-derived β-peptide. Org. Lett. 5, 3563–3565 (2003).

    CAS  PubMed  Google Scholar 

  8. Gademann, K., Ernst, M., Hoyer, D. & Seebach, D. Synthesis and biological evaluation of a cyclo-β-tetrapeptide as a somatostatin analogue. Angew. Chem. Int. Ed. 38, 1223–1226 (1999).

    CAS  Google Scholar 

  9. Sadowsky, J.D. et al. Chimeric (α/β + α)-peptide ligands for the BH3-recognition cleft of Bcl-XL: critical role of the molecular scaffold in protein surface recognition. J. Am. Chem. Soc. 127, 11966–11968 (2005).

    CAS  PubMed  Google Scholar 

  10. English, E.P., Chumanov, R.S., Gellman, S.H. & Compton, T. Rational development of β-peptide inhibitors of human cytomegalovirus entry. J. Biol. Chem. 281, 2661–2667 (2006).

    CAS  PubMed  Google Scholar 

  11. Kritzer, J.A., Lear, J.D., Hodsdon, M.E. & Schepartz, A. Helical β-peptide inhibitors of the p53-hDM2 interaction. J. Am. Chem. Soc. 126, 9468–9469 (2004).

    CAS  PubMed  Google Scholar 

  12. Kritzer, J.A., Stephens, O.M., Guarracino, D.A., Reznik, S.K. & Schepartz, A. β-Peptides as inhibitors of protein-protein interactions. Bioorg. Med. Chem. 13, 11–16 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kritzer, J.A., Hodsdon, M.E. & Schepartz, A. Solution structure of a β-peptide ligand for hDM2. J. Am. Chem. Soc. 127, 4118–4119 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephens, O.M. et al. Inhibiting HIV fusion with a β-peptide foldamer. J. Am. Chem. Soc. 127, 13126–13127 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nunn, C. et al. β(2)/β(3)-di- and α/β(3)-tetrapeptide derivatives as potent agonists at somatostatin sst(4) receptors. Naunyn Schmiedebergs Arch. Pharmacol. 367, 95–103 (2003).

    CAS  PubMed  Google Scholar 

  16. Werder, M., Hauser, H., Abele, S. & Seebach, D. β-Peptides as inhibitors of small-intestinal cholesterol and fat absorbtion. Helv. Chim. Acta 82, 1774–1783 (1999).

    CAS  Google Scholar 

  17. Hamuro, Y., Schneider, J.P. & DeGrado, W.F. De novo design of antibacterial β-peptides. J. Am. Chem. Soc. 121, 12200–12201 (1999).

    CAS  Google Scholar 

  18. Porter, E.A., Wang, X., Lee, H.S., Weisblum, B. & Gellman, S.H. Non-haemolytic β-amino-acid oligomers. Nature 404, 565 (2000).

    CAS  PubMed  Google Scholar 

  19. Liu, D. & DeGrado, W. De novo design, synthesis, and characterization of antimicrobial β-peptides. J. Am. Chem. Soc. 123, 7553–7559 (2001).

    CAS  PubMed  Google Scholar 

  20. Epand, R.F., Raguse, T.L., Gellman, S.H. & Epand, R.M. Antimicrobial 14-helical β-peptides: potent bilayer disrupting agents. Biochemistry 43, 9527–9535 (2004).

    CAS  PubMed  Google Scholar 

  21. Epand, R.F. et al. Bacterial species selective toxicity of two isomeric α/β-peptides: role of membrane lipids. Mol. Membr. Biol. 22, 457–469 (2005).

    CAS  PubMed  Google Scholar 

  22. Epand, R.F., Schmitt, M.A., Gellman, S.H. & Epand, R.M. Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochim. Biophys. Acta 1758, 1343–1350 (2006).

    CAS  PubMed  Google Scholar 

  23. Seurynck, S.L., Patch, J.A. & Barron, A.E. Simple, helical peptoid analogs of lung surfactant protein B. Chem. Biol. 12, 77–88 (2005).

    CAS  PubMed  Google Scholar 

  24. Patch, J.A. & Barron, A.E. Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc. 125, 12092–12093 (2003).

    CAS  PubMed  Google Scholar 

  25. Arvidsson, P.I. et al. Antibiotic and hemolytic activity of a β2/β3 peptide capable of folding into a 12/10-helical secondary structure. ChemBioChem 4, 1345–1347 (2003).

    CAS  PubMed  Google Scholar 

  26. Choi, S. et al. The design and evaluation of heparin-binding foldamers. Angew. Chem. Int. Edn Engl. 44, 6685–6689 (2005).

    CAS  Google Scholar 

  27. Cheng, R.P., Gellman, S.H. & DeGrado, W.F. β-Peptides: from structure to function. Chem. Rev. 101, 3219–3232 (2001).

    CAS  PubMed  Google Scholar 

  28. Seebach, D., Hook, D.F. & Glattli, A. Helices and other secondary structures of β- and γ-peptides. Biopolymers 84, 23–37 (2006).

    CAS  PubMed  Google Scholar 

  29. Sharma, G.V.M. et al. A left-handed 9-helix in γ-peptides: synthesis and conformational studies of oligomers with dipeptide repeats of C-linked carbo-γ(4)-amino acids and γ-aminobutyric acid. Angew. Chem. Int. Ed. 45, 2944–2947 (2006).

    CAS  Google Scholar 

  30. Arndt, H.D., Ziemer, B. & Koert, U. Folding propensity of cyclohexylether-δ-peptides. Org. Lett. 6, 3269–3272 (2004).

    CAS  PubMed  Google Scholar 

  31. Trabocchi, A., Guarna, F. & Guarna, A. γ- and δ-amino acids: synthetic strategies and relevant applications. Curr. Org. Chem. 9, 1127–1153 (2005).

    CAS  Google Scholar 

  32. Violette, A. et al. N,N'-linked oligoureas as foldamers: chain length requirements for helix formation in protic solvent investigated by circular dichroism, NMR spectroscopy, and molecular dynamics. J. Am. Chem. Soc. 127, 2156–2164 (2005).

    CAS  PubMed  Google Scholar 

  33. Salaun, A., Potel, M., Roisnel, T., Gall, P. & Le Grel, P. Crystal structures of aza-β(3)-peptides, a new class of foldamers relying on a framework of hydrazinoturns. J. Org. Chem. 70, 6499–6502 (2005).

    PubMed  Google Scholar 

  34. Zega, A. Azapeptides as pharmacological agents. Curr. Med. Chem. 12, 589–597 (2005).

    CAS  PubMed  Google Scholar 

  35. Smith, A.B. III, Knight, S.D., Sprengeler, P.A. & Hirschmann, R. The design and synthesis of 2,5-linked pyrrolinones. A potential non- peptide peptidomimetic scaffold. Bioorg. Med. Chem. 4, 1021–1034 (1996).

    CAS  PubMed  Google Scholar 

  36. Li, X. & Yang, D. Peptides of aminoxy acids as foldamers. Chem. Commun. (Camb.) 3367–3379 (2006).

  37. Chakraborty, T.K., Srinivasu, P., Tapadar, S. & Mohan, B.K. Sugar amino acids in designing new molecules. Glycoconj. J. 22, 83–93 (2005).

    CAS  PubMed  Google Scholar 

  38. Claridge, T.D.W. et al. Helix-forming carbohydrate amino acids. J. Org. Chem. 70, 2082–2090 (2005).

    CAS  PubMed  Google Scholar 

  39. Dervan, P.B. Design of sequence-specific DNA-binding molecules. Science 232, 464–471 (1986).

    CAS  PubMed  Google Scholar 

  40. Mathur, P., Ramakumar, S. & Chauhan, V.S. Peptide design using α,β-dehydro amino acids: From β-turns to helical hairpins. Biopolymers 76, 150–161 (2004).

    CAS  PubMed  Google Scholar 

  41. Baldauf, C., Gunther, R. & Hofmann, H.J. Helices in peptoids of α- and β-peptides. Phys. Biol. 3, S1–S9 (2006).

    CAS  PubMed  Google Scholar 

  42. Lee, B.C., Zuckermann, R.N. & Dill, K.A. Folding a nonbiological polymer into a compact multihelical structure. J. Am. Chem. Soc. 127, 10999–11009 (2005).

    CAS  PubMed  Google Scholar 

  43. Zuckerman, R.N. The chemical synthesis of peptidomimetic libraries. Curr. Opin. Struct. Biol. 3, 580–584 (1993).

    Google Scholar 

  44. Stigers, K.D., Soth, M.J. & Nowick, J.S. Designed molecules that fold to mimic protein secondary structures. Curr. Opin. Chem. Biol. 3, 714–723 (1999).

    CAS  PubMed  Google Scholar 

  45. Yang, X. et al. Backbone-rigidified oligo(m-phenylene ethynylenes). J. Am. Chem. Soc. 126, 3148–3162 (2004).

    CAS  PubMed  Google Scholar 

  46. Kang, S.W., Gothard, C.M., Maitra, S., Wahab, A. & Nowick, J.S. A new class of macrocyclic receptors from iota-peptides. J. Am. Chem. Soc. 129, 1486–1487 (2007).

    CAS  PubMed  Google Scholar 

  47. Fulop, F., Martinek, T.A. & Toth, G.K. Application of alicyclic β-amino acids in peptide chemistry. Chem. Soc. Rev. 35, 323–334 (2006).

    PubMed  Google Scholar 

  48. Park, J.S., Lee, H.S., Lai, J.R., Kim, B.M. & Gellman, S.H. Accommodation of α-substituted residues in the β-peptide 12-helix: expanding the range of substitution patterns available to a foldamer scaffold. J. Am. Chem. Soc. 125, 8539–8545 (2003).

    CAS  PubMed  Google Scholar 

  49. Lelais, G. et al. β-Peptidic secondary structures fortified and enforced by Zn2+ complexation - on the way to β-peptidic zinc fingers? Helv. Chim. Acta 89, 361–403 (2006).

    CAS  Google Scholar 

  50. Langenhan, J.M., Guzei, I.A. & Gellman, S.H. Parallel sheet secondary structure in β-peptides. Angew. Chem. Int. Edn Engl. 42, 2402–2405 (2003).

    CAS  Google Scholar 

  51. Doerksen, R.J., Chen, B., Yuan, J., Winkler, J.D. & Klein, M.L. Novel conformationally-constrained β-peptides characterized by 1H NMR chemical shifts. Chem. Commun. (Camb.) 2534–2535 (2003).

  52. Gademann, K., Hane, A., Rueping, M., Jaun, B. & Seebach, D. The fourth helical secondary structure of β-peptides: The (P)-2(8)-helix of a β-hexapeptide consisting of (2R,3S)-3-amino-2-hydroxy acid residues. Angew. Chem. Int. Ed. 42, 1534–1537 (2003).

    CAS  Google Scholar 

  53. Arvidsson, P.I., Rueping, L. & Seebach, D. Design, machine synthesis, and NMR-solution structure of a β-heptapetide forming a salt-bridge stabilised 314-helix in methanol and in water. Chem. Commun. (Camb.) 649–650 (2001).

  54. Cheng, R.P. & DeGrado, W.F. De novo design of a monomeric helical β-peptide stabilized by electrostatic interactions. J. Am. Chem. Soc. 123, 5162–5163 (2001).

    CAS  PubMed  Google Scholar 

  55. Guarracino, D.A. et al. Relationship between salt-bridge identity and 14-helix stability of β3-peptides in aqueous buffer. Org. Lett. 8, 807–810 (2006).

    CAS  PubMed  Google Scholar 

  56. Hart, S.A., Bahadoor, A.B., Matthews, E.E., Qiu, X.J. & Schepartz, A. Helix macrodipole control of β 3 peptide 14-helix stability in water. J. Am. Chem. Soc. 125, 4022–4023 (2003).

    CAS  PubMed  Google Scholar 

  57. Rueping, M., Jaun, B. & Seebach, D. NMR structure in methanol of a β-hexapeptide with a disulfide clamp. Chem. Commun. (Camb.) 2267–2268 (2000).

  58. Vaz, E. & Brunsveld, L. Stable helical, β(3)-peptides in water via covalent bridging of side chains. Org. Lett. 8, 4199–4202 (2006).

    CAS  PubMed  Google Scholar 

  59. Smith, C.K. & Regan, L. Guidelines for protein design: the energetics of β sheet side chain interactions. Science 270, 980–982 (1995).

    CAS  PubMed  Google Scholar 

  60. Kritzer, J.A. et al. Relationship between side chain structure and 14-helix stability of β3-peptides in water. J. Am. Chem. Soc. 127, 167–178 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Daniels, D.S., Petersson, E.J., Qiu, J.X. & Schepartz, A. High-resolution structure of a β-peptide bundle. J. Am. Chem. Soc. 129, 1532–1533 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Steiner, T.C.H. C-H···O hydrogen bonding in crystals. Cryst. Rev. 9, 177–228 (2003).

    CAS  Google Scholar 

  63. Mathad, R.I., Gessier, F., Seebach, D. & Jaun, B. The effect of backbone-heteroatom substitution on the folding of peptides a single fluorine substituent prevents a β-heptapeptide from folding into a 3(14)-helix (NMR analysis). Helv. Chim. Acta 88, 266–280 (2005).

    CAS  Google Scholar 

  64. Pavone, V. et al. β-Alanine containing cyclic peptides with turned structure: the pseudo type II β turn. VI. Biopolymers 34, 1517–1526 (1994).

    CAS  PubMed  Google Scholar 

  65. Karle, I.L., Handa, B.K. & Hassall, C.H. Conformation of cyclic tetrapeptide L-Ser(O-t-Bu)-β-Ala-Gly-L-β-Asp(Ome) containing a 14-membered ring. Acta Crystallogr. B 31, 555–560 (1975).

    Google Scholar 

  66. Chatterjee, S., Roy, R.S. & Balaram, P. Expanding the polypeptide backbone: hydrogen-bonded conformations in hybrid polypeptides containing the higher homologues of α-amino acids. J. R. Soc. Interface (in the press).

  67. Ananda, K. et al. Polypeptide helices in hybrid peptide sequences. J. Am. Chem. Soc. 127, 16668–16674 (2005).

    CAS  PubMed  Google Scholar 

  68. De Pol, S., Zorn, C., Klein, C.D., Zerbe, O. & Reiser, O. Surprisingly stable helical conformations in α/β-peptides by incorporation of cis-β-aminocyclopropane carboxylic acids. Angew. Chem. Int. Edn Engl. 43, 511–514 (2004).

    CAS  Google Scholar 

  69. Hayen, A., Schmitt, M.A., Ngassa, F.N., Thomasson, K.A. & Gellman, S.H. Two helical conformations from a single foldamer backbone: “split personality” in short α/β-peptides. Angew. Chem. Int. Edn Engl. 43, 505–510 (2004).

    CAS  Google Scholar 

  70. Horne, W.S., Price, J.L., Keck, J.L. & Gellman, S.H. Helix bundle quaternary structure from α/β-peptide foldamers. J. Am. Chem. Soc. (in the press).

  71. McNulty, J.C. et al. Electron spin resonance of TOAC labeled peptides: folding transitions and high frequency spectroscopy. Biopolymers 55, 479–485 (2000).

    CAS  PubMed  Google Scholar 

  72. Huston, S.E. & Marshall, G.R. α/3(10)-helix transitions in α-methylalanine homopeptides: conformational transition pathway and potential of mean force. Biopolymers 34, 75–90 (1994).

    CAS  PubMed  Google Scholar 

  73. Schmitt, M.A., Choi, S.H., Guzei, I.A. & Gellman, S.H. Residue requirements for helical folding in short α/β-peptides: crystallographic characterization of the 11-helix in an optimized sequence. J. Am. Chem. Soc. 127, 13130–13131 (2005).

    CAS  PubMed  Google Scholar 

  74. Schmitt, M.A., Weisblum, B. & Gellman, S.H. Unexpected relationships between structure and function in α,β-peptides: antimicrobial foldamers with heterogeneous backbones. J. Am. Chem. Soc. 126, 6848–6849 (2004).

    CAS  PubMed  Google Scholar 

  75. Sharma, G.V.M. et al. 9/11 mixed helices in α/β peptides derived from C-linked carbo-β-amino acid and L-ala repeats. Angew. Chem. Int. Ed. 44, 5878–5882 (2005).

    CAS  Google Scholar 

  76. Sharma, G.V.M. et al. 12/10- and 11/13-mixed helices in α/γ- and β/γ-hybrid peptides containing C-linked carbo-γ-amino acids with alternating α- and β-amino acids. J. Am. Chem. Soc. 128, 14657–14668 (2006).

    CAS  PubMed  Google Scholar 

  77. Srinivas, D., Gonnade, R., Ravindranathan, S. & Sanjayan, G.J. A hybrid foldamer with unique architecture from conformationally constrained aliphatic-aromatic amino acid conjugate. Tetrahedron 62, 10141–10146 (2006).

    CAS  Google Scholar 

  78. Vasudev, P.G. et al. Hybrid peptide design. Hydrogen bonded conformations in peptides containing the stereochemically constrained γ-amino acid residue, gabapentin. J. Am. Chem. Soc. (in the press).

  79. Huc, I. Aromatic oligoamide foldamers. Eur. J. Org. Chem. 2004, 17–29 (2004).

    Google Scholar 

  80. Li, Z.T., Hou, J.L., Li, C. & Yi, H.P. Shape-persistent aromatic amide oligomers: new tools for supramolecular chemistry. Chem. Asian J. 1, 766–778 (2006).

    CAS  PubMed  Google Scholar 

  81. Hamuro, Y., Geib, S.J. & Hamilton, A.D. Oligoanthranilamides; non-peptide subunits that show intramolecular hydrogen bonding control of secondary structure. J. Am. Chem. Soc. 118, 7529–7541 (1996).

    CAS  Google Scholar 

  82. Gong, B. et al. Creating nanocavities of tunable sizes: hollow helices. Proc. Natl. Acad. Sci. USA 99, 11583–11588 (2002).

    CAS  PubMed  Google Scholar 

  83. Dolain, C., Jiang, H., Leger, J.M., Guionneau, P. & Huc, I. Chiral induction in quinoline-derived oligoamide foldamers: assignment of helical handedness and role of steric effects. J. Am. Chem. Soc. 127, 12943–12951 (2005).

    CAS  PubMed  Google Scholar 

  84. Yi, H.P., Li, C., Hou, J.L., Jiang, X.K. & Li, Z.T. Hydrogen-bonding-induced oligoanthranilamide foldamers. Synthesis, characterization, and complexation for aliphatic ammonium ions. Tetrahedron 61, 7974–7980 (2005).

    CAS  Google Scholar 

  85. Hou, J.L. et al. Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides. J. Am. Chem. Soc. 126, 12386–12394 (2004).

    CAS  PubMed  Google Scholar 

  86. Li, C. et al. F...H-N hydrogen bonding driven foldamers: efficient receptors for dialkylammonium ions. Angew. Chem. Int. Ed. 44, 5725–5729 (2005).

    CAS  Google Scholar 

  87. Berl, V., Huc, I., Khoury, R.G., Krische, M.J. & Lehn, J.M. Interconversion of single and double helices formed from synthetic molecular strands. Nature 407, 720–723 (2000).

    CAS  PubMed  Google Scholar 

  88. Jiang, H., Leger, J.M. & Huc, I. Aromatic δ-peptides. J. Am. Chem. Soc. 125, 3448–3449 (2003).

    CAS  PubMed  Google Scholar 

  89. Kanamori, D., Okamura, T.A., Yamamoto, H. & Ueyama, N. Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. Angew. Chem. Int. Ed. 44, 969–972 (2005).

    CAS  Google Scholar 

  90. Kolomiets, E. et al. Contraction/extension molecular motion by protonation/deprotonation induced structural switching of pyridine derived oligoamides. Chem. Commun. (Camb.) 2868–2869 (2003).

  91. Maurizot, V., Dolain, C. & Huc, I. Intramolecular versus intermolecular induction of helical handedness in pyridinedicarboxamide oligomers. Eur. J. Org. Chem. 2005, 1293–1301 (2005).

    Google Scholar 

  92. Haldar, D., Jiang, H., Leger, J.M. & Huc, I. Interstrand interactions between side chains in a double-helical foldamer. Angew. Chem. Int. Ed. 45, 5483–5486 (2006).

    CAS  Google Scholar 

  93. Doerksen, R.J. et al. Controlling the conformation of arylamides: computational studies of intramolecular hydrogen bonds between amides and ethers or thioethers. Chem. Eur. J. 10, 5008–5016 (2004).

    CAS  PubMed  Google Scholar 

  94. Tang, H., Doerksen, R.J., Jones, T.V., Klein, M.L. & Tew, G.N. Biomimetic facially amphiphilic antibacterial oligomers with conformationally stiff backbones. Chem. Biol. 13, 427–435 (2006).

    CAS  PubMed  Google Scholar 

  95. Rodriguez, J.M. & Hamilton, A.D. Intramolecular hydrogen bonding allows simple enaminones to structurally mimic the i, i+4, and i+7 residues of an α-helix. Tetrahedr. Lett. 47, 7443–7446 (2006).

    CAS  Google Scholar 

  96. Estroff, L.A., Incarvito, C.D. & Hamilton, A.D. Design of a synthetic foldamer that modifies the growth of calcite crystals. J. Am. Chem. Soc. 126, 2–3 (2004).

    CAS  PubMed  Google Scholar 

  97. Jiang, H., Maurizot, V. & Huc, I. Double versus single helical structures of oligopyridine-dicarboxamide strands. Part 1: effect of oligomer length. Tetrahedron 60, 10029–10038 (2004).

    CAS  Google Scholar 

  98. Eldred, S.E. et al. Effects of side chain configuration and backbone spacing on the gene delivery properties of lysine-derived cationic polymers. Bioconjug. Chem. 16, 694–699 (2005).

    CAS  PubMed  Google Scholar 

  99. Seebach, D., Beck, A.K. & Bierbaum, D.J. The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers. 1, 1111–1239 (2004).

    CAS  PubMed  Google Scholar 

  100. Geueke, B. et al. Bacterial cell penetration by β(3)-oligohomoarginines: Indications for passive transfer through the lipid bilayer. ChemBioChem 6, 982–985 (2005).

    CAS  PubMed  Google Scholar 

  101. Porter, E.A., Weisblum, B. & Gellman, S.H. Use of parallel synthesis to probe structure-activity relationships among 12-helical β-peptides: evidence of a limit on antimicrobial activity. J. Am. Chem. Soc. 127, 11516–11529 (2005).

    CAS  PubMed  Google Scholar 

  102. Arvidsson, P.I. et al. Exploring the antibacterial and hemolytic activity of shorter- and longer-chain β-, α,β-, and γ-peptides, and of β-peptides from β2–3-aza- and β3–2-methylidene-amino acids bearing proteinogenic side chains–a survey. Chem. Biodivers. 2, 401–420 (2005).

    CAS  PubMed  Google Scholar 

  103. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    CAS  PubMed  Google Scholar 

  104. Schmitt, M.A., Weisblum, B. & Gellman, S.H. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J. Am. Chem. Soc. 129, 417–428 (2007).

    CAS  PubMed  Google Scholar 

  105. Kuroda, K. & DeGrado, W.F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 127, 4128–4129 (2005).

    CAS  PubMed  Google Scholar 

  106. Ivanov, I. et al. Characterization of nonbiological antimicrobial polymers in aqueous solution and at water-lipid interfaces from all-atom molecular dynamics. J. Am. Chem. Soc. 128, 1778–1779 (2006).

    CAS  PubMed  Google Scholar 

  107. Murray, J.K. et al. Efficient synthesis of a β-peptide combinatorial library with microwave irradiation. J. Am. Chem. Soc. 127, 13271–13280 (2005).

    CAS  PubMed  Google Scholar 

  108. Knight, S.M., Umezawa, N., Lee, H.S., Gellman, S.H. & Kay, B.K. A fluorescence polarization assay for the identification of inhibitors of the p53–DM2 protein-protein interaction. Anal. Biochem. 300, 230–236 (2002).

    CAS  PubMed  Google Scholar 

  109. Kritzer, J.A., Luedtke, N.W., Harker, E.A. & Schepartz, A. A rapid library screen for tailoring β-peptide structure and function. J. Am. Chem. Soc. 127, 14584–14585 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sadowsky, J.D. et al. (α/β+α)-Peptide antagonists of BH3 Domain/Bcl-x(L) recognition: toward general strategies for foldamer-based inhibition of protein-protein interactions. J. Am. Chem. Soc. 129, 139–154 (2007).

    CAS  PubMed  Google Scholar 

  111. Martinek, T.A. et al. Secondary structure dependent self-assembly of β-peptides into nanosized fibrils and membranes. Angew. Chem. Int. Ed. 45, 2396–2400 (2006).

    CAS  Google Scholar 

  112. Pomerantz, W.C., Abbott, N.L. & Gellman, S.H. Lyotropic liquid crystals from designed helical β-peptides. J. Am. Chem. Soc. 128, 8730–8731 (2006).

    CAS  PubMed  Google Scholar 

  113. Arnt, L. & Tew, G.N. New poly(phenyleneethynylene)s with cationic, facially amphiphilic structures. J. Am. Chem. Soc. 124, 7664–7665 (2002).

    CAS  PubMed  Google Scholar 

  114. Liu, D. et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem. Int. Edn Engl. 43, 1158–1162 (2004).

    CAS  Google Scholar 

  115. Tew, G.N. et al. De novo design of biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci. USA 99, 5110–5114 (2002).

    CAS  PubMed  Google Scholar 

  116. Hill, D.J., Mio, M.J., Prince, R.B., Hughes, T.S. & Moore, J.S. A field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

    CAS  PubMed  Google Scholar 

  117. Arnt, L. & Tew, G.N. Cationic facially amphiphilic poly(phenylene ethynylene)s studied at the air-water interface. Langmuir 19, 2404–2408 (2003).

    CAS  Google Scholar 

  118. Tew, G.N., Clements, D., Tang, H., Arnt, L. & Scott, R.W. Antimicrobial activity of an abiotic host defense peptide mimic. Biochim. Biophys. Acta 1758, 1387–1392 (2006).

    CAS  PubMed  Google Scholar 

  119. Arnt, L., Rennie, J.R., Linser, S., Willumeit, R. & Tew, G.N. Membrane activity of biomimetic facially amphiphilic antibiotics. J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 110, 3527–3532 (2006).

    CAS  PubMed  Google Scholar 

  120. Chen, X. et al. Observing a molecular knife at work. J. Am. Chem. Soc. 128, 2711–2714 (2006).

    CAS  PubMed  Google Scholar 

  121. Lopez, C., Nielsen, S. & Srinivas, G. Probing membrane insertion activity of antimicrobial polymers via coarse-grain molecular dynamics. J. Chem. Theory Comp. 2, 649–655 (2006).

    CAS  Google Scholar 

  122. Chen, L. et al. p53 α-helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol. Cancer Ther. 4, 1019–1025 (2005).

    CAS  PubMed  Google Scholar 

  123. Ernst, J.T., Becerril, J., Park, H.S., Yin, H. & Hamilton, A.D. Design and application of an α-helix-mimetic scaffold based on an oligoamide-foldamer strategy: antagonism of the bak BH3/Bcl-xL complex. Angew. Chem. Int. Ed. 42, 535–539 (2003).

    CAS  Google Scholar 

  124. Yin, H. et al. Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-x(L)/Bak interaction. J. Am. Chem. Soc. 127, 5463–5468 (2005).

    CAS  PubMed  Google Scholar 

  125. Yin, H., Frederick, K.K., Liu, D., Wand, A.J. & DeGrado, W.F. Arylamide derivatives as peptidomimetic inhibitors of calmodulin. Org. Lett. 8, 223–225 (2006).

    CAS  PubMed  Google Scholar 

  126. Cheng, R.P. & DeGrado, W.F. Long-range interactions stabilize the fold of a non-natural oligomer. J. Am. Chem. Soc. 124, 11564–11565 (2002).

    CAS  PubMed  Google Scholar 

  127. Chakraborty, P. & Diederichsen, U. Three-dimensional organization of helices: design principles for nucleobase-functionalized β-peptides. Chem. Eur. J. 11, 3207–3216 (2005).

    CAS  PubMed  Google Scholar 

  128. Raguse, T.L., Lai, J.R., LePlae, P.R. & Gellman, S.H. Toward β-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. Org. Lett. 3, 3963–3966 (2001).

    CAS  PubMed  Google Scholar 

  129. Qiu, J.X., Petersson, E.J., Matthews, E.E. & Schepartz, A. Toward β-amino acid proteins: a cooperatively folded β-peptide quaternary structure. J. Am. Chem. Soc. 128, 11338–11339 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Seebach, D., Ciceri, P.E., Overhand, M., Jaun, B. & Rigo, D. Probing the helical secondary structure of short-chain β-peptides. Helv. Chim. Acta 79, 2043–2066 (1996).

    CAS  Google Scholar 

  131. Appella, D.H., Christianson, L.A., Karle, I.L., Powell, D.R. & Gellman, S.H. β-peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 118, 13071–13072 (1996).

    CAS  Google Scholar 

  132. Appella, D.H. et al. Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384 (1997).

    CAS  PubMed  Google Scholar 

  133. Guichard, G. et al. Melanoma peptide MART-1(27–35) analogues with enhanced binding capacity to the human class I histocompatibility molecule HLA-A2 by introduction of a β-amino acid residue: implications for recognition by tumor-infiltrating lymphocytes. J. Med. Chem. 43, 3803–3808 (2000).

    CAS  PubMed  Google Scholar 

  134. Webb, A.I. et al. T cell determinants incorporating β-amino acid residues are protease resistant and remain immunogenic in vivo. J. Immunol. 175, 3810–3818 (2005).

    CAS  PubMed  Google Scholar 

  135. Gesell, J., Zasloff, M. & Opella, S.J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR 9, 127–135 (1997).

    CAS  PubMed  Google Scholar 

  136. Nusslein, K., Arnt, L., Rennie, J., Owens, C. & Tew, G.N. Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic. Microbiology 152, 1913–1918 (2006).

    CAS  PubMed  Google Scholar 

  137. Schmitt, M.A., Choi, S.H., Guzei, I.A. & Gellman, S.H. New helical foldamers: heterogeneous backbones with 1: 2 and 2: 1 α:β-amino acid residue patterns. J. Am. Chem. Soc. 128, 4538–4539 (2006).

    CAS  PubMed  Google Scholar 

  138. Claridge, T.D.W. et al. 10-Helical conformations in oxetane [β]-amino acid hexamers. Tetrahedr. Lett. 42, 4251–4255 (2001).

    CAS  Google Scholar 

  139. Hetenyi, A., Mandity, I.M., Martinek, T.A., Toth, G.K. & Fulop, F. Chain-length-dependent helical motifs and self-association of β-peptides with constrained side chains. J. Am. Chem. Soc. 127, 547–553 (2005).

    CAS  PubMed  Google Scholar 

  140. Aravinda, S., Ananda, K., Shamala, N. & Balaram, P. α-γ hybrid peptides that contain the conformationally constrained gabapentin residue: characterization of mimetics of chain reversals. Chemistry (Easton) 9, 4789–4795 (2003).

    CAS  Google Scholar 

  141. Arvidsson, P.I., Frackenpohl, J. & Seebach, D. Syntheses and CD-spectroscopic investigations of longer-chain β-peptides: preparation by solid-phase couplings of single amino acids, dipeptides, and tripeptides. Helv. Chim. Acta 86, 1522–1553 (2003).

    CAS  Google Scholar 

  142. Murray, J.K. & Gellman, S.H. Application of microwave irradiation to the synthesis of 14-helical β-peptides. Org. Lett. 7, 1517–1520 (2005).

    CAS  PubMed  Google Scholar 

  143. Carrillo, N., Davalos, E.A., Russak, J.A. & Bode, J.W. Iterative, aqueous synthesis of β(3)-oligopeptides without coupling reagents. J. Am. Chem. Soc. 128, 1452–1453 (2006).

    CAS  PubMed  Google Scholar 

  144. Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural potypeptide synthesis. Nat. Methods 3, 357–359 (2006).

    CAS  PubMed  Google Scholar 

  145. Josephson, K., Hartman, M.C.T. & Szostak, J.W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

    CAS  PubMed  Google Scholar 

  146. Hartman, M.C.T., Josephson, K. & Szostak, J.W. Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc. Natl. Acad. Sci. USA 103, 4356–4361 (2006).

    CAS  PubMed  Google Scholar 

  147. Yoo, B. & Kirshenbaum, K. Protease-mediated ligation of abiotic oligomers. J. Am. Chem. Soc. 127, 17132–17133 (2005).

    CAS  PubMed  Google Scholar 

  148. Glattli, A. & van Gunsteren, W.F. Are NMR-derived model structures for β-peptides representative for the ensemble of structures adopted in solution? Angew. Chem. Int. Ed. 43, 6312–6316 (2004).

    CAS  Google Scholar 

  149. Trzesniak, D., Glattli, A., Jaun, B. & van Gunsteren, W.F. Interpreting NMR data for β-peptides using molecular dynamics simulations. J. Am. Chem. Soc. 127, 14320–14329 (2005).

    CAS  PubMed  Google Scholar 

  150. Applequist, J., Bode, K.A., Appella, D.H., Christianson, L.A. & Gellman, S.A. Theorectical and experimental circular dichroic spectra of the novel helical foldamer poly[(1R,2R)-trans-2-aminocyclopentanecarboxylic acid]. J. Am. Chem. Soc. 120, 4891–4892 (1998).

    CAS  Google Scholar 

  151. Glattli, A., Daura, X., Seebach, D. & van Gunsteren, W.F. Can one derive the conformational preference of a β-peptide from its CD spectrum? J. Am. Chem. Soc. 124, 12972–12978 (2002).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F DeGrado.

Ethics declarations

Competing interests

W. DeGrado is named on patents for antimicrobial and antiheparin foldamers. These patents are held by the University of Pennsylvania and licensed to PolyMedix.

Supplementary information

Supplementary Fig. 1

Model of the interaction between a designed arylamide (smMLCK mimic) and calmodulin. (PDF 56 kb)

Supplementary Table 1

Interactions of non-natural foldamers with biological targets. (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, C., Choi, S., Shandler, S. et al. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3, 252–262 (2007). https://doi.org/10.1038/nchembio876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing