Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitric oxide activates TRP channels by cysteine S-nitrosylation

Abstract

Transient receptor potential (TRP) proteins form plasma-membrane cation channels that act as sensors for diverse cellular stimuli. Here, we report a novel activation mechanism mediated by cysteine S-nitrosylation in TRP channels. Recombinant TRPC1, TRPC4, TRPC5, TRPV1, TRPV3 and TRPV4 of the TRPC and TRPV families, which are commonly classified as receptor-activated channels and thermosensor channels, induce entry of Ca2+ into cells in response to nitric oxide (NO). Labeling and functional assays using cysteine mutants, together with membrane sidedness in activating reactive disulfides, show that cytoplasmically accessible Cys553 and nearby Cys558 are nitrosylation sites mediating NO sensitivity in TRPC5. The responsive TRP proteins have conserved cysteines on the same N-terminal side of the pore region. Notably, nitrosylation of native TRPC5 upon G protein–coupled ATP receptor stimulation elicits entry of Ca2+ into endothelial cells. These findings reveal the structural motif for the NO-sensitive activation gate in TRP channels and indicate that NO sensors are a new functional category of cellular receptors extending over different TRP families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NO activates TRPC5-mediated Ca2+ response.
Figure 2: The TRPC5-activating action of NO can be probed by reactive disulfides.
Figure 3: Chemical characterization and membrane sidedness of the action of NO and reactive disulfide in activating TRPC5 channels.
Figure 4: Cysteine modification activates TRPC5 channels via a pathway independent of receptor-activated PLC signaling cascades.
Figure 5: S-nitrosylation in TRPC5 channel protein complexes.
Figure 6: Molecular conservation of NO-induced activation in TRP channels.
Figure 7: Regulation of TRPV channel activation by nitrosylation.
Figure 8: Physiological S-nitrosylation of native TRPC5 proteins in cultured endothelial cells.
Figure 9: Native TRPC5 channels are essential for NO-induced Ca2+ influx in endothelial cells.
Figure 10: Model for TRP channel activation by NO and reactive disulfides.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Berridge, M.J., Bootman, M.D. & Lipp, P. Calcium—a life and death signal. Nature 395, 645–648 (1998).

    Article  CAS  Google Scholar 

  2. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  Google Scholar 

  3. Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  Google Scholar 

  4. Voets, T., Talavera, K., Owsianik, G. & Nilius, B. Sensing with TRP channels. Nat. Chem. Biol. 1, 85–92 (2005).

    Article  CAS  Google Scholar 

  5. Clapham, D.E., Julius, D., Montell, C. & Schultz, G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol. Rev. 57, 427–450 (2005).

    Article  CAS  Google Scholar 

  6. Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85, 661–671 (1996).

    Article  CAS  Google Scholar 

  7. Vazquez, G., Wedel, B.J., Aziz, O., Trebak, M. & Putney, J.W., Jr. The mammalian TRPC cation channels. Biochim. Biophys. Acta 1742, 21–36 (2004).

    Article  CAS  Google Scholar 

  8. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  Google Scholar 

  9. Patapoutian, A., Peier, A.M., Story, G.M. & Viswanath, V. Thermo TRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529–539 (2003).

    Article  CAS  Google Scholar 

  10. Jaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P. & Snyder, S.H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3, 193–197 (2001).

    Article  CAS  Google Scholar 

  11. Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. & Stamler, J.S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  12. Zaidi, N.F., Lagenaur, C.F., Abramson, J.J., Pessah, I. & Salama, G. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. J. Biol. Chem. 264, 21725–21736 (1989).

    CAS  PubMed  Google Scholar 

  13. Moncada, S., Higgs, A. & Furchgott, R. International Union of Pharmacology nomenclature in nitric oxide research. Pharmacol. Rev. 49, 137–142 (1997).

    CAS  PubMed  Google Scholar 

  14. Venema, V.J. et al. Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase Cγ1 in vascular endothelial cells. Biochem. Biophys. Res. Commun. 246, 70–75 (1998).

    Article  CAS  Google Scholar 

  15. Zachary, I. & Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 49, 568–581 (2001).

    Article  CAS  Google Scholar 

  16. Koyama, T., Kimura, C., Park, S.J., Oike, M. & Ito, Y. Functional implications of Ca2+ mobilizing properties for nitric oxide production in aortic endothelium. Life Sci. 72, 511–520 (2002).

    Article  CAS  Google Scholar 

  17. Hutcheson, I.R. & Griffith, T.M. Central role of intracellular calcium stores in acute flow- and agonist-evoked endothelial nitric oxide release. Br. J. Pharmacol. 122, 117–125 (1997).

    Article  CAS  Google Scholar 

  18. Lantoine, F., Iouzalen, L., Devynck, M.A., Millanvoye-Van Brussel, E. & David-Dufilho, M. Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx. Biochem. J. 330, 695–699 (1998).

    Article  CAS  Google Scholar 

  19. Lin, S. et al. Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J. Biol. Chem. 275, 17979–17985 (2000).

    Article  CAS  Google Scholar 

  20. Yao, X. & Garland, C.J. Recent developments in vascular endothelial cell transient receptor potential channels. Circ. Res. 97, 853–863 (2005).

    Article  CAS  Google Scholar 

  21. Mungrue, I.N. & Bredt, D.S. nNOS at a glance: implications for brain and brawn. J. Cell Sci. 117, 2627–2629 (2004).

    Article  CAS  Google Scholar 

  22. Khan, S.A. & Hare, J.M. The role of nitric oxide in the physiological regulation of Ca2+ cycling. Curr. Opin. Drug Discov. Devel. 6, 658–666 (2003).

    CAS  PubMed  Google Scholar 

  23. Volk, T., Mäding, K., Hensel, M. & Kox, W.J. Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP. J. Cell. Physiol. 172, 296–305 (1997).

    Article  CAS  Google Scholar 

  24. Chen, J. et al. Autocrine action and its underlying mechanism of nitric oxide on intracellular Ca2+ homeostasis in vascular endothelial cells. J. Biol. Chem. 275, 28739–28749 (2000).

    Article  CAS  Google Scholar 

  25. Li, N., Sul, J.Y. & Haydon, P.G. A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J. Neurosci. 23, 10302–10310 (2003).

    Article  CAS  Google Scholar 

  26. Kwan, H.Y., Huang, Y. & Yao, X. Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J. Biol. Chem. 275, 6758–6763 (2000).

    Article  CAS  Google Scholar 

  27. Dedkova, E.N. & Blatter, L.A. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J. Physiol. (Lond.) 539, 77–91 (2002).

    Article  CAS  Google Scholar 

  28. Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002).

    Article  CAS  Google Scholar 

  29. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    Article  CAS  Google Scholar 

  30. Okada, T. et al. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J. Biol. Chem. 273, 10279–10287 (1998).

    Article  CAS  Google Scholar 

  31. del Camino, D. & Yellen, G. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32, 649–656 (2001).

    Article  CAS  Google Scholar 

  32. Sugawara, H., Kurosaki, M., Takata, M. & Kurosaki, T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078–3088 (1997).

    Article  CAS  Google Scholar 

  33. Choi, Y.B. et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3, 15–21 (2000).

    Article  CAS  Google Scholar 

  34. Vannier, B., Zhu, X., Brown, D. & Birnbaumer, L. The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J. Biol. Chem. 273, 8675–8679 (1998).

    Article  CAS  Google Scholar 

  35. Chang, A.S., Chang, S.M., Garcia, R.L. & Schilling, W.P. Concomitant and hormonally regulated expression of trp genes in bovine aortic endothelial cells. FEBS Lett. 415, 335–340 (1997).

    Article  CAS  Google Scholar 

  36. Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D.E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat. Neurosci. 6, 837–845 (2003).

    Article  CAS  Google Scholar 

  37. Xu, L., Eu, J.P., Meissner, G. & Stamler, J.S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237 (1998).

    Article  CAS  Google Scholar 

  38. Broillet, M.C. & Firestein, S. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron 16, 377–385 (1996).

    Article  CAS  Google Scholar 

  39. Yamada, H. et al. Spontaneous single-channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci. Lett. 285, 111–114 (2000).

    Article  CAS  Google Scholar 

  40. Jin, Y. et al. Thimerosal decreases TRPV1 activity by oxidation of extracellular sulfhydryl residues. Neurosci. Lett. 369, 250–255 (2004).

    Article  CAS  Google Scholar 

  41. Tousova, K., Susankova, K., Teisinger, J., Vyklicky, L. & Vlachova, V. Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology 47, 273–285 (2004).

    Article  CAS  Google Scholar 

  42. Xu, S.Z. et al. Generation of functional ion-channel tools by E3 targeting. Nat. Biotechnol. 23, 1289–1293 (2005).

    Article  CAS  Google Scholar 

  43. Zeng, X.H., Xia, X.M. & Lingle, C.J. Redox-sensitive extracellular gates formed by auxiliary β subunits of calcium-activated potassium channels. Nat. Struct. Biol. 10, 448–454 (2003).

    Article  CAS  Google Scholar 

  44. Tang, X.D. et al. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425, 531–535 (2003).

    Article  CAS  Google Scholar 

  45. Zeng, F. et al. Human TRPC5 channel activated by a multiplicity of signals in a single cell. J. Physiol. (Lond.) 559, 739–750 (2004).

    Article  CAS  Google Scholar 

  46. van Rossum, D.B., Patterson, R.L., Ma, H.T. & Gill, D.L. Ca2+ entry mediated by store depletion, S-nitrosylation, and TRPC3 channels. J. Biol. Chem. 275, 28562–28568 (2000).

    Article  CAS  Google Scholar 

  47. Thyagarajan, B. et al. Expression of Trp3 determines sensitivity of capacitative Ca2+ entry to nitric oxide and mitochondrial Ca2+ handling: evidence for a role of Trp3 as a subunit of capacitative Ca2+ entry channels. J. Biol. Chem. 276, 48149–48158 (2001).

    Article  CAS  Google Scholar 

  48. Koliwad, S.K., Kunze, D.L. & Elliott, S.J. Oxidant stress activates a non-selective cation channel responsible for membrane depolarization in calf vascular endothelial cells. J. Physiol. (Lond.) 491, 1–12 (1996).

    Article  CAS  Google Scholar 

  49. Zhang, N., Beuve, A. & Townes-Anderson, E. The nitric oxide-cGMP signaling pathway differentially regulates presynaptic structural plasticity in cone and rod cells. J. Neurosci. 25, 2761–2770 (2005).

    Article  CAS  Google Scholar 

  50. Freichel, M. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat. Cell Biol. 3, 121–127 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.E. Clapham and C. Strubing for TRPC5-DN, T. Furukawa and M. Nishida for helpful discussions, E. Mori and M. Sasaki for expert experiments and T. Kurosaki for IP3 receptor–deficient DT40 cells. This study was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science, and from the Mitsubishi Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.Y., acquisition, analysis and interpretation of data, and drafting and revision of the manuscript; N.T., S.Y., Y.H., R.I., T.M., M.T., S.S. and Y.S., acquisition, analysis and interpretation of data; Y.M., analysis and interpretation of data, and drafting and critical review of the manuscript.

Corresponding author

Correspondence to Yasuo Mori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Inoue, R., Morii, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2, 596–607 (2006). https://doi.org/10.1038/nchembio821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing