Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization

A Corrigendum to this article was published on 17 June 2013

This article has been updated

Abstract

The caspases are a family of cytosolic proteases with essential roles in inflammation and apoptosis. Drug discovery efforts have focused on developing molecules directed against the active sites of caspases, but this approach has proved challenging and has not yielded any approved therapeutics. Here we describe a new strategy for generating inhibitors of caspase-6, a potential therapeutic target in neurodegenerative disorders, by screening against its zymogen form. Using phage display to discover molecules that bind the zymogen, we report the identification of a peptide that specifically impairs the function of caspase-6 in vitro and in neuronal cells. Remarkably, the peptide binds at a tetramerization interface that is uniquely present in zymogen caspase-6, rather than binding into the active site, and acts via a new allosteric mechanism that promotes caspase tetramerization. Our data illustrate that screening against the zymogen holds promise as an approach for targeting caspases in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pep419 binds to zymogen caspase-6 at a new tetramer interface.
Figure 2: Pep419 inhibits active caspase-6 via a noncompetitive allosteric mechanism.
Figure 3: Pep419 is a specific inhibitor of cellular caspase-6 function.
Figure 4: Proposed model for inhibition of caspase-6 function via tetramer sequestration.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Change history

  • 21 May 2013

    In the version of this article initially published, Irina Krylova was inadvertently acknowledged rather than included in the author list. The author list, author contributions and acknowledgements have been edited to reflect this change. The text and Supplementary Methods have also been updated to more accurately describe phage clone and peptide optimization. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Alnemri, E.S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  Google Scholar 

  2. Denault, J.B. & Salvesen, G.S. Caspases: keys in the ignition of cell death. Chem. Rev. 102, 4489–4500 (2002).

    Article  CAS  Google Scholar 

  3. Riedl, S.J. & Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897–907 (2004).

    Article  CAS  Google Scholar 

  4. Talanian, R.V. et al. Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682 (1997).

    Article  CAS  Google Scholar 

  5. Stennicke, H.R., Renatus, M., Meldal, M. & Salvesen, G.S. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem. J. 350, 563–568 (2000).

    Article  CAS  Google Scholar 

  6. Stennicke, H.R. & Salvesen, G.S. Caspases—controlling intracellular signals by protease zymogen activation. Biochim. Biophys. Acta 1477, 299–306 (2000).

    Article  CAS  Google Scholar 

  7. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    Article  CAS  Google Scholar 

  8. Salvesen, G. Caspases: cell signaling by proteolysis. in Handbook of Cell Signaling 2nd edn (eds. Bradshaw, R.A. & Dennis, E.A.) 1297–1302 (Elsevier Inc., 2010).

  9. Riedl, S.J. et al. Structural basis for the activation of human procaspase-7. Proc. Natl. Acad. Sci. USA 98, 14790–14795 (2001).

    Article  CAS  Google Scholar 

  10. Chai, J. et al. Crystal structure of a procaspase-7 zymogen. Mechanisms of activation and substrate binding. Cell 107, 399–407 (2001).

    Article  CAS  Google Scholar 

  11. Wang, X.J. et al. Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep. 11, 841–847 (2010).

    Article  CAS  Google Scholar 

  12. Boatright, K.M. et al. A unified model for apical caspase activation. Mol. Cell 11, 529–541 (2003).

    Article  CAS  Google Scholar 

  13. Sohn, D., Schulze-Osthoff, K. & Janicke, R.U. Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J. Biol. Chem. 280, 5267–5273 (2005).

    Article  CAS  Google Scholar 

  14. Yu, J.W., Jeffrey, P.D. & Shi, Y. Mechanism of procaspase-8 activation by c-FLIPL. Proc. Natl. Acad. Sci. USA 106, 8169–8174 (2009).

    Article  CAS  Google Scholar 

  15. Salvesen, G.S. & Dixit, V.M. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967 (1999).

    Article  CAS  Google Scholar 

  16. Pop, C. & Salvesen, G.S. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284, 21777–21781 (2009).

    Article  CAS  Google Scholar 

  17. Shi, Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 13, 1979–1987 (2004).

    Article  CAS  Google Scholar 

  18. Albrecht, S., Bogdanovic, N., Ghetti, B., Winblad, B. & LeBlanc, A.C. Caspase-6 activation in familial Alzheimer disease brains carrying amyloid precursor protein or presenilin I or presenilin II mutations. J. Neuropathol. Exp. Neurol. 68, 1282–1293 (2009).

    Article  CAS  Google Scholar 

  19. Albrecht, S. et al. Activation of caspase-6 in aging and mild cognitive impairment. Am. J. Pathol. 170, 1200–1209 (2007).

    Article  CAS  Google Scholar 

  20. Guo, H. et al. Active caspase-6 and caspase-6–cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer's disease. Am. J. Pathol. 165, 523–531 (2004).

    Article  CAS  Google Scholar 

  21. Klaiman, G., Petzke, T.L., Hammond, J. & Leblanc, A.C. Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol. Cell. Proteomics 7, 1541–1555 (2008).

    Article  CAS  Google Scholar 

  22. Nikolaev, A., McLaughlin, T., O'Leary, D.D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989 (2009).

    Article  CAS  Google Scholar 

  23. Wellington, C.L. et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci. 22, 7862–7872 (2002).

    Article  CAS  Google Scholar 

  24. Graham, R.K. et al. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J. Neurosci. 30, 15019–15029 (2010).

    Article  CAS  Google Scholar 

  25. Graham, R.K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179–1191 (2006).

    Article  CAS  Google Scholar 

  26. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  27. Hermel, E. et al. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ. 11, 424–438 (2004).

    Article  CAS  Google Scholar 

  28. Linton, S.D. Caspase inhibitors: a pharmaceutical industry perspective. Curr. Top. Med. Chem. 5, 1697–1717 (2005).

    Article  CAS  Google Scholar 

  29. Callus, B.A. & Vaux, D.L. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ. 14, 73–78 (2007).

    Article  CAS  Google Scholar 

  30. Datta, D., Scheer, J.M., Romanowski, M.J. & Wells, J.A. An allosteric circuit in caspase-1. J. Mol. Biol. 381, 1157–1167 (2008).

    Article  CAS  Google Scholar 

  31. Hardy, J.A., Lam, J., Nguyen, J.T., O'Brien, T. & Wells, J.A. Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA 101, 12461–12466 (2004).

    Article  CAS  Google Scholar 

  32. Scheer, J.M., Romanowski, M.J. & Wells, J.A. A common allosteric site and mechanism in caspases. Proc. Natl. Acad. Sci. USA 103, 7595–7600 (2006).

    Article  CAS  Google Scholar 

  33. Chai, J. et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399–407 (2001).

    Article  CAS  Google Scholar 

  34. Smith, C.K. & Regan, L. Guidelines for protein design: the energetics of β sheet side chain interactions. Science 270, 980–982 (1995).

    Article  CAS  Google Scholar 

  35. Orth, K., Chinnaiyan, A.M., Garg, M., Froelich, C.J. & Dixit, V.M. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271, 16443–16446 (1996).

    Article  CAS  Google Scholar 

  36. Takahashi, A. et al. Cleavage of lamin A by Mch2 but not CPP32: multiple ICE-related proteases with distinct substrate recognition properties are active in apoptosis. Proc. Natl. Acad. Sci. USA 93, 8395–8400 (1996).

    Article  CAS  Google Scholar 

  37. Slee, E.A., Adrain, C. & Martin, S.J. Executioner caspase-3, -6 and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320–7326 (2001).

    Article  CAS  Google Scholar 

  38. Ruchaud, S. et al. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J. 21, 1967–1977 (2002).

    Article  CAS  Google Scholar 

  39. Mintzer, R. et al. A whole cell assay to measure caspase-6 activity by detecting cleavage of Lamin A/C. PLoS ONE 7, e30376 (2012).

    Article  CAS  Google Scholar 

  40. Williams, S.T., Smith, A.N., Cianci, C.D., Morrow, J.S. & Brown, T.L. Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis. Apoptosis 8, 353–361 (2003).

    Article  CAS  Google Scholar 

  41. Germain, M. et al. Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. J. Biol. Chem. 274, 28379–28384 (1999).

    Article  CAS  Google Scholar 

  42. Xu, G. et al. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410, 494–497 (2001).

    Article  CAS  Google Scholar 

  43. Klaiman, G., Champagne, N. & LeBlanc, A.C. Self-activation of caspase-6 in vitro and in vivo: caspase-6 activation does not induce cell death in HEK293T cells. Biochim. Biophys. Acta 1793, 592–601 (2009).

    Article  CAS  Google Scholar 

  44. Salvesen, G.S. & Duckett, C.S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401–410 (2002).

    Article  CAS  Google Scholar 

  45. Vaux, D.L. & Silke, J. IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell Biol. 6, 287–297 (2005).

    Article  CAS  Google Scholar 

  46. Vaidya, S., Velazquez-Delgado, E.M., Abbruzzese, G. & Hardy, J.A. Substrate-induced conformational changes occur in all cleaved forms of caspase-6. J. Mol. Biol. 406, 75–91 (2011).

    Article  CAS  Google Scholar 

  47. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  48. Zhang, Y. et al. Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat. Chem. Biol. 5, 217–219 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Sun for contributions in the very early phase of this project, A. Eztevez and K. Bowman for protein expression, J. Wu for help with protein purification and W. Fairbrother for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.S., M.S., L.Z., C.D.P., J.W.L., Y.Z., J.M. and R.N.H. designed experiments. K.S., M.S., L.Z., C.D.P., I.K., J.M.E., Y.Z. and R.N.H. performed experiments. C.Q. and J.T. conducted peptide synthesis, and Y.F. and C.T. performed DNA cloning. J.M. solved the cocrystal structure of zymogen caspase-6–pep419 complex. K.S., J.W.L. and J.M. provided input on the manuscript. R.N.H. conceived of and directed the study and wrote the manuscript.

Corresponding author

Correspondence to Rami N Hannoush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 11317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanger, K., Steffek, M., Zhou, L. et al. Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Nat Chem Biol 8, 655–660 (2012). https://doi.org/10.1038/nchembio.967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.967

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research